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Symmetrization of the growth deformation and velocity
gradients in residually stressed biomaterials
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Abstract. Some fundamental issues in the kinematic and kinetic analysis of the stress-modulated
growth of residually stressed biological materials are addressed within the context of the mul-
tiplicative decomposition of deformation gradient into its elastic and growth parts. The sym-
metrizations of the growth part of the deformation gradient and the growth part of the velocity
gradient are derived for isotropic pseudoelastic soft tissues. The significance of results in the
formulation of the biomechanic constitutive theory is discussed.
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1. Introduction

The analysis of the stress-modulated growth of biological materials such as blood
vessels and other soft tissues has received a great deal of attention in bioengineer-
ing community. A reference to earlier work can be found in the book by Fung [1]
and review articles by Taber [2] and Humphrey [3]. Recently, there has been a
considerable effort devoted to the formulation of the analysis in the framework of
large deformation continuum mechanics based on the multiplicative decomposition
of the deformation gradient into its elastic and growth parts. This decomposition
was first used in the context of biomechanics by Rodrigez et al. [4]. A similar
decomposition of elastoplastic deformation gradient has long been known and suc-
cessfully applied to problems of polycrystalline and single crystal plasticity [5–7].
In the previous work on the multiplicative decomposition, for both elastoplas-
tic and biomaterials [8–11], the assumption was commonly made that the initial
configuration of material sample is stress free. The intermediate configuration is
then defined by a complete elastic distressing of the currently deformed configu-
ration to zero stress. In this paper, we extend the elastic analysis of residually
stressed bodies [12, 13] to materials with a growing mass. We assume that the
initial configuration of material sample is not stress-free, but characterized by a
self-equilibrating distribution of residual stress. This configuration evolves by a
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non-uniform volumetric deposition of mass, without any applied external load.
The newly deformed configuration is characterized by a new distribution of resid-
ual stress. The intermediate configuration is then obtained by reducing the current
residual stress to the initial state of residual stress. The elastic and growth parts
of the deformation gradient are defined relative to this intermediate configuration.
In general, the growth part of the deformation gradient is a non-symmetric tensor,
involving all nine independent components. The procedure for its symmetriza-
tion is constructed, and the relationship between the corresponding symmetrized
and non-symmetrized quantities is established. The symmetrization of the growth
velocity gradient relative to partially and completely relaxed intermediate config-
uration is derived. The significance of the results for the constitutive analysis of
the stress-modulated growth of pseudoelastic soft tissues is then discussed.

2. Elastic stress response of a growing tissue

Consider a material sample in its initial configuration Bo, which is characterized by
an internal distribution of self-equilibrating residual stress σo. This stress can be
relieved by dissecting the material sample into sufficiently small pieces, which are
uniformly stressed in the limit. When each piece is allowed to relax, a virtual initial
configuration B̂o is obtained, which is incompatible but stress free. Denote by Fo

the local deformation gradient between B̂o and Bo. Restricting considerations to
isotropic hyperelastic materials, the residual stress in Bo can be expressed as [14]

σo = f(Bo) , f(Bo) =
1

(detBo)1/2

(
Bo · ∂ψo

∂Bo
+

∂ψo

∂Bo
· Bo

)
. (1)

The left Cauchy–Green deformation tensor is Bo = Fo · FT
o = V2

o, and Vo is
the left stretch tensor. The elastic strain energy per unit unstressed volume is
ψo = ψo(Bo). The stress response does not depend on any rotation superposed
to B̂o, since the material is assumed to be isotropic. If f is invertible, the stretch
tensor Vo, corresponding to the residual stress σo, can be calculated from

Vo = B1/2
o , Bo = f−1(σo) . (2)

Suppose that the material sample deforms due to non-uniform volumetric mass
growth, without externally applied loads. After some time the configuration B
is reached which supports a self-equilibriating stress field σ. Denote the defor-
mation gradient between Bo and B by F. We assume that material points are
everywhere dense during the volumetric mass growth, so that in any small neigh-
borhood around the particle there are always points that existed before the growth.
This assumption enables us to treat the problems of volumetric mass growth by
using the usual continuum mechanics concepts, such as deformation gradient and
strain tensors. The internal stress σ can be relieved by dissecting the material
sample into sufficiently small pieces and by allowing them to relax to zero stress.
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Figure 1. The initial configuration Bo supports the residual stress σo. Upon the mass growth
the configuration B is reached, which supports the residual stress σ. The corresponding un-

stressed configurations are B̂o and B̂g. For elastically isotropic material these are obtained by
distressing without rotation. The intermediate configuration Bg supports the initial residual
stress σo.r

The corresponding incompatible stress free configuration is B̂g (Fig. 1). If mate-
rial remains elastically isotropic during the growth, the stress σ depends only on
the left stretch tensor V̂e of the elastic deformation F̂e from B̂g to B. A particu-
lar intermediate configuration B̂g can be defined by requiring that the removal of
stress from B to B̂g is performed along the principal directions of σ. This is shown
in Fig. 1. Assuming that the material remains isotropic and that it preserves its
elastic properties during the growth process, we can write

σ = f (B̂e) . (3)

Thus, the elastic stretch V̂e corresponding to the stress tensor σ is

V̂e = B̂1/2
e , B̂e = f−1 (σ) . (4)

Introduce next the intermediate configuration Bg by reducing the self equili-
brating stress σ in the current configuration B to the initial state of the residual
stress σo. The configuration Bg is in general incompatible, because a non-uniform
mass growth during the deformation from Bo to B produces a non-uniform change
of the initial pattern of residual stress. In addition, the configuration Bg is non-
unique. For example, one specification of Bg is obtained by reducing the principal
stresses of σ along their principal directions to the principal values of σo, fol-
lowed by the rotation that carries the principal directions of σ to the principal
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directions of σo. Other specifications are also possible, as discussed in the sequel.
Denoting by Fo = Vo · Ro the elastic deformation gradient from B̂g to Bg, and
by Fe = Ve ·Re the elastic deformation gradient from Bg to B, the multiplicative
decomposition holds

V̂e = Fe · Fo = Fe · Vo · Ro . (5)

Since Vo and V̂e are both unique, by Eqs. (2) and (4), it is clear from Eq. (5)
that Fe is not unique, but changes with the change of the rotation Ro. The
relationship between Fe and Ro has to be such that the product on the right-hand
side of Eq. (5) is a symmetric tensor, i.e.,

Fe · Vo · Ro = RT
o · Vo · FT

e . (6)

The rotation Ro is arbitrary since for elastically isotropic material the stress σo in
the configuration Bg is independent of the rotation Ro, superposed to B̂g prior to
the stretching Vo. For example, if Ro = I (identity tensor), the elastic deformation
gradient is

Fe = V̂e · V−1
o . (7)

On the other hand, if Ro = QT , where Q is the known rotation tensor that carries
the principal directions of σo to principal directions of σ, we have

Fe = Ve · Q , Fo = Vo · QT , (8)

and
V̂e = Ve · (Q · Vo · QT ) . (9)

For isotropic material the principal directions of Vo are parallel to those of σo,
while the principal directions of Q · Vo · QT are parallel to those of V̂e and σ.
It consequently follows from Eq. (9) that Ve is coaxial with σ. Thus, the choice
Ro = QT corresponds to previously discussed unloading scenario in which the
principal stresses of σ are reduced along their principal directions to principal
stresses of σo, followed by the rotation QT .

Whatever the specification of Ro, the stress response from B̂g to B can be
expressed from Eq. (3) as

σ = f
(
Fe · Bo · FT

e

)
, (10)

having regard to
B̂e = Fe · Bo · FT

e , Bo = V2
o . (11)

Although the elastic deformation gradient Fe is not unique, the product Fe ·Bo ·FT
e

is a unique tensor. Indeed, from Eq. (5),

Fe = V̂e · RT
o · V−1

o , (12)

and the substitution into Eq. (11) gives B̂e = V̂2
e .
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3. Symmetrization of the growth part of deformation gradient

The growth part of the deformation gradient Fg, corresponding to deformation
gradients F and Fe, is defined by the multiplicative decomposition

F = Fe · Fg . (13)

The transition (growth) from the initial configuration Bo to the intermediate con-
figuration Bg is considered to take place at the constant state of initial residual
stress σo. Since Fe is not unique, the growth part of the deformation gradient Fg

is not unique either. Indeed, the substitution of Eq. (12) into Eq. (13) gives

Fg = F−1
e · F = Vo · Ro · V̂−1

e · F , (14)

which demonstrates the dependence of Fg on the rotation Ro.
In general, the growth deformation tensor Fg is a non-symmetric tensor, in-

volving nine independent components. The question of practical importance arises
if there is a choice of the rotation Ro which makes Fg symmetric (denoted in the
sequel by Fg), so that

Fg = Vo · Ro · V̂−1
e · F = FT · V̂−1

e · RT
o · Vo = FT

g . (15)

The answer is affirmative. The pre- and post-multiplication of Eq. (15) with V−1
o

gives

Ro ·
(
V̂−1

e · F · V−1
o

)
=

(
V̂−1

e · F · V−1
o

)T

· RT
o . (16)

This equation, in conjunction with the identity Ro · RT
o = I, can be solved for Ro

to give
Ro = (ZT · Z)1/2 · Z−1 , (17)

where
Z = V̂−1

e · F · V−1
o . (18)

Details of the derivation can be found in the Appendix. Equation (17) defines the
rotation tensor Ro which symmetrizes the growth part of the deformation gradient
in Eq. (14), according to Eq. (15).

An independent derivation of this result is instructive. From Eq. (14) and the
symmetrization condition (15), we have

V−1
o · Fg = Ro · V̂−1

e · F , Fg · V−1
o = FT · V̂−1

e · RT
o . (19)

Upon the multiplication of these two expressions to eliminate the rotation tensor
Ro, there follows

Fg · V−2
o · Fg = FT · V̂−2

e · F . (20)

The pre- and post-multiplication with V−1
o then yields

(
V−1

o · Fg · V−1
o

)2
= ZT · Z . (21)
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This can be solved for the symmetrized growth part of the deformation gradient
as

Fg = Vo ·
(
ZT · Z)1/2 · Vo . (22)

On the other hand, Eq. (14) gives

Ro = V−1
o · Fg · F−1 · V̂e =

(
V−1

o · Fg · V−1
o

) · Z−1 . (23)

The substitution of Eq. (22) into Eq. (23) confirms the result (17). The orthogo-
nality property of Ro can be verified by inspection.

In the applications involving a symmetric growth of isotropic material (e.g.,
cylindrically symmetric blood vessels), it may happen that the stress tensor σ and
the deformation gradient F = V are coaxial with σo. In this case it readily follows
that Z is a symmetric tensor and that Ro = I, so that the growth deformation
tensor becomes

Fg = Vo · Z · Vo , Z = V̂−1
e · V · V−1

o . (24)

This result can be easily verified directly by combining the multiplicative decom-
positions V = Ve · Fg and V̂e = Ve · Vo.

3.1. Symmetrization of the growth deformation gradient in the absence
of residual stress

If there was no initial residual stress (σo = 0), then Vo = I, V̂e = Ve, Ro = RT
e ,

and
F = Fe · Fg = Ve · F̂g , F̂g = Re · Fg . (25)

The construction from Fig. 1 reduces to that shown in Fig. 2. In this case, it
readily follows that the growth deformation gradient is symmetrized if the rotation
Re is chosen such that

RT
e = (ZT · Z)1/2 · Z−1 , (26)

where
Z = V̂−1

e · F = F̂g . (27)

The corresponding symmetrized growth deformation gradient is

Fg =
(
ZT · Z)1/2

= Ug , (28)

where Ug is the right stretch tensor appearing in the polar decomposition

F̂g = R̂g · Ug , F = Ve · R̂g · Ug . (29)

Note that all constituents of the latter decomposition of the total deformation
gradient, i.e., Ve, R̂g and Ug, are uniquely defined.
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Figure 2. The initial unstressed configuration Bo, and the deformed configuration B under

the stress σ. The intermediate configuration B̂g is obtained from B by elastic distressing to

zero stress, without rotation. An arbitrary intermediate configuration Bg differs from B̂g by
the rotation Re. The elastic stretch tensor is Ve, so that Fe = Ve · Re.

4. Relationship between symmetrized and non-symmetrized
growth deformation gradients

Denote the symmetrized growth deformation tensor of Eq. (22) by Fg, and the
corresponding elastic deformation gradient by Fe, such that

F = Fe · Fg = Fe · Fg . (30)

An arbitrary, non-symmetrized growth deformation tensor is denoted by Fg and
its corresponding elastic deformation gradient by Fe. Since B̂e in Eq. (11) is
independent of the choice of Fe, we can write

Fe · Bo · FT
e = Fe · Bo · FT

e . (31)

Expressing from Eq. (30) the elastic deformation gradients in terms of the growth
deformation gradients as

Fe = F · F−1
g , Fe = F · F−1

g , (32)

the substitution into Eq. (31) gives

F−1
g · Bo · F−T

g = F−1
g · Bo · F−1

g . (33)
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By the pre- and post-multiplication with Vo, this equation can be rewritten as

Vo ·
(
F−1

g · Bo · F−T
g

) · Vo =
(
Vo · F−1

g · Vo

)2
. (34)

Thus,
Fg = Vo ·

(
V−1

o · FT
g · B−1

o · Fg · V−1
o

)1/2 · Vo , (35)

which establishes a desired relationship between the symmetrized and non sym-
metrized growth deformation gradients Fg and Fg. It is also noted that the incor-
poration of Eq. (14) into Eq. (35) recovers the symmetric representation (22).

If there was no initial residual stress, Eq. (35) reduces to

Fg =
(
FT

g · Fg

)1/2
= C1/2

g = Ug , (36)

in accordance with Eq. (28).

5. Relationship between Fg and F̂g

The growth part of the deformation gradient Fg was defined in the previous sec-
tions relative to the initial residually stressed configuration Bo. The intermediate
configuration Bg was defined as the reference configuration which supports the
same state of the residual stress σo. The total deformation gradient F was the
gradient of deformation from the initial configuration Bo to the current configura-
tion B. It is of interest to compare these and related kinematic quantities to the
corresponding quantities defined relative to completely relaxed (stress free) refer-
ence configurations B̂o and B̂g (Fig. 1). Let F̂ be the total deformation gradient
from B̂o to B, and let F̂g be the growth deformation gradient from B̂o to B̂g, such
that

F̂ = V̂e · F̂g . (37)

Since the intermediate configuration B̂g is defined by elastic distressing without
rotation, the growth tensor F̂g is in general non-symmetric. It readily follows that

F · Vo = V̂e · F̂g , (38)

and
Fg · Vo = Fo · F̂g . (39)

Consequently,
F̂g = V̂−1

e · F · Vo , (40)

and
Fg = Fo · F̂g · V−1

o . (41)

The latter equation represents a desired relationship between the growth defor-
mation gradients Fg and F̂g, defined relative to partially and completely relaxed
intermediate configurations. The substitution of Eq. (40) into Eq. (41) yields

Fg = Fo · V̂−1
e · F , (42)
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in accord with the previously derived expression (14).

6. Symmetrization of the growth velocity gradient

The relationship between the growth velocity gradients in the partially and com-
pletely relaxed intermediate configurations is obtained by incorporating Eq. (34)
into

Ḟg · F−1
g = Ḟo · F−1

o + Fo ·
( ˙̂Fg · F̂−1

g

)
· F−1

o . (43)

Since Fo = Vo · Ro and V̇o = 0, we also have

Ḟo · F−1
o = Vo ·

(
Ṙo · R−1

o

)
· V−1

o . (44)

The growth part of the velocity gradient in the relaxed configuration can be ex-
pressed in terms of the total velocity gradient as

˙̂Fg · F̂−1
g = V̂−1

e ·
(
Ḟ · F−1 − ˙̂Ve · V̂−1

e

)
· V̂e . (45)

In general, this is a non-symmetric tensor. The velocity gradient in Eq. (43) is
also non-symmetric, even when Ro is selected so that Fg is symmetric. In the
rate-type analysis [11, 15, 16], it may be of interest to symmetrize the growth
velocity gradient, rather than the growth deformation gradient. This can also be
accomplished by an appropriate selection of the rotation Ro, i.e., the spin tensor
Ωo = Ṙo·R−1

o . The growth velocity gradient will be symmetric if its antisymmetric
part is equal to zero. This gives

V2
o ·

(
V−1

o · Ωo · V−1
o

)
+

(
V−1

o · Ωo · V−1
o

) · V2
o = Ω̂ , (46)

where the spin tensor Ω̂ is defined by

Ω̂ = −2
[
Vo · Ro ·

( ˙̂Fg · F̂−1
g

)
· RT

o · V−1
o

]
a

. (47)

The subscript (a) stands for the antisymmetric part. The solution of Eq. (46) can
be obtained by using the procedure outlined in [17], with the end result

V−1
o · Ωo · V−1

o = k2 Ω̂ − (
k1 I − V2

o

)−1 · Ω̂ − Ω̂ · (k1 I − V2
o

)−1
, (48)

where
k1 = tr

(
V2

o

)
, k2 = tr

(
k1 I − V2

o

)−1
. (49)

The pre- and post-multiplication of Eq. (48) with Vo yields an explicit expression
for the spin Ωo, and thus the rate of rotation Ṙo = Ωo · Ro, which symmetrizes
the growth part of the velocity gradient.

If the principal directions of the growth deformation gradient remain fixed
during the mass growth, the symmetrizations of the growth deformation gradient
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and the growth velocity gradient are simultaneous. For example, suppose that the
growth deformation gradient allows a spectral representation

Fg =
3∑

i=1

ϑi Ni ⊗ Ni , (50)

relative to a triad of orthogonal unit vectors N1, N2, and N3, whose orienta-
tion remain fixed during the growth process. The corresponding growth velocity
gradient is

Ḟg · F−1
g =

3∑
i=1

ϑ̇i

ϑi
Ni ⊗ Ni . (51)

Both tensors are clearly symmetric tensors. If the mass growth is isotropic, they
become

Fg = ϑ I , Ḟg · F−1
g =

ϑ̇

ϑ
I . (52)

6.1. Symmetrization of the growth velocity gradient in the absence of
residual stress

If there was no initial residual stress (σo = 0), Eq. (43) reduces to

Ḟg · F−1
g = RT

e ·
( ˙̂Fg · F̂−1

g − Ωe

)
· Re , (53)

where
Ωe = Ṙe · R−1

e (54)

is the spin tensor associated with a time dependent rotation Re. Clearly, if the
growth velocity gradient in Eq. (53) is to be symmetric, we must have

Ωe =
( ˙̂Fg · F̂−1

g

)
a

, (55)

since then

Ḟg · F−1
g = RT

e ·
( ˙̂Fg · F̂−1

g

)
s
· Re =

(
Ḟg · F−1

g

)T

. (56)

The subscript (s) stands for the symmetric part. Alternatively, in view of F =
Ve · F̂g and

L = Ḟ · F−1 = V̇e · V−1
e + Ve ·

( ˙̂Fg · F̂−1
g

)
· V−1

e , (57)

we can write, instead of (55),

Ωe =
[
V−1

e ·
(
L − V̇e · V−1

e

)
· Ve

]
a

. (58)
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7. Discussion

We have demonstrated in this paper that within the framework of the multiplica-
tive decomposition of the deformation gradient, applied to study the volumetric
mass growth of isotropic pseudoelastic soft tissues, either the growth part of defor-
mation gradient or the growth part of velocity gradient can be symmetrized. This
was possible to achieve because the elastic stress response does not depend on the
rotation superposed to the reference configuration of an isotropic material. The
symmetrization was derived for both residually stressed and unstressed reference
configuration, which may be useful in the constitutive analysis of the biomechanic
material response. If the constitutive expression for the growth part of the defor-
mation gradient is being constructed directly, its representation involving only six
independent components is simpler and more appealing to relate to experimental
data. This is also the case in the rate-type biomechanic theory. If the growth part
of the velocity gradient is symmetrized, a constitutive expression for the symmetric
tensor Ḟg · F−1

g , in conjunction with the rate-type constitutive expression for the

elastic rate of deformation
(
Ḟe · F−1

e

)
s
, yields the overall constitutive structure

for the total rate of deformation

D =
(
Ḟ · F−1

)
s
=

(
Ḟe · F−1

e

)
s
+

[
Fe ·

(
Ḟg · F−1

g

)
· F−1

e

]
s
. (59)

The analysis presented in this paper was concerned with isotropic materials,
for which there is an arbitrariness in the choice of the intermediate configuration
to within a rigid-body rotation, due to independence of the stress response on
the prior rotation of the reference configuration. This motivated our search for
the most convenient choice of the intermediate configuration in the constitutive
analysis, leading us to consider the intermediate configuration that symmetrizes
either the growth deformation gradient or the growth velocity gradient. In the
case of anisotropic biomaterials, the stress response does depend on the rotation
of the intermediate configuration, which constrains the choice of the intermediate
configuration. Interestingly enough, however, the symmetric form of the growth
deformation appears to be an appealing candidate for both transversely isotropic
and orthotropic biomaterials (soft tissues with a longitudinal or an orthogonal
network of biofibers). For example, for transversely isotropic materials the inter-
mediate configuration is uniquley specified by requiring that the fibers are oriented
relative to the material as in the initial undeformed configuration. If m0 is the
unit vector parallel to the fibers, we require that the growth deformation gradient
Fg has m0 as one of its eigendirections, i.e., Fg · m0 = ηg m0, where ηg is the
stretch ratio in the fibers direction. This condition is fulfilled by the symmetric
form of the growth deformation gradient

Fg = ϑg I + (ηg − ϑg)m0 ⊗ m0 . (60)

The stretch ratio in any direction orthogonal to m0 is ϑg, and ⊗ stands for the



Vol. 55 (2004) Symmetrization of the growth deformation and velocity gradients 859

dyadic product. The constitutive development based on Eq. (60) is presented in
[11].
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Appendix

Consider a matrix equation for the orthogonal matrix Q, given by

Q · A = AT · QT , (61)

where A is a nonsingular matrix. The solution of this equation is

Q =
(
AT · A)1/2 · A−1 , (62)

as can be checked by inspection. It remains to prove that Q, given by Eq. (62),
is indeed orthogonal, i.e., that Q · QT = QT · Q = I. This can be easily verified.
For example,

Q · QT =
(
AT · A)1/2 · (AT · A)−1 · (AT · A)1/2

, (63)

which is equal to identity matrix, because AT · A is symmetric and thus (AT ·
A)−1 and (AT · A)1/2 are commutative matrices. The square root of the matrix
appearing in Eq. (62) can be evaluated by using the recipe of Hoger and Carlson
[18]. It readily follows that

(
AT · A)1/2

=
1

I1I2 + I3

[(
AT · A)2 − (I2

1 + I2)
(
AT · A) − I1I3 I

]
. (64)

The invariants
I1 =

√
λ1 +

√
λ2 +

√
λ3 , (65)

I2 = −
(√

λ1λ2 +
√

λ2λ3 +
√

λ3λ1

)
, (66)

I3 =
√

λ1λ2λ3 (67)

are expressed in terms of the principal values λ1, λ2, and λ3 of the symmetric
matrix AT · A.
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