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The elastic strain energies of circular inclusions with a sliding and bonded interfaces
are compared. It is shown that the energy in the inclusion with sliding interface due
to uniform eigenstrain is greater than the energy in the inclusion with a bonded
interface if the Poisson ratio of the material is less than 1

6 , and smaller if it is greater
than 1

6 . The total energy in the inclusion and the matrix due to uniform eigenstrain is
always smaller in the case of a sliding inclusion. The opposite is true for the inclusion
under remote uniform loading at infinity. The relationships between the energies of
sliding and bonded inhomogeneities are also derived.
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1. Introduction

A study of elastic inclusions with sliding interfaces is important for modelling certain
features of material behaviour, such as the grain-boundary sliding in polycrystalline
materials. In his pioneering work on the subject, Zener (1941) derived a solution for
the circular sliding inclusion under remote uniaxial loading by an adequate super-
position of three known elasticity solutions. Ghahremani (1980) extended his results
to three dimensions, and obtained a solution for the sliding spherical inclusion by
using the Papkovich–Neuber displacement potentials. In a series of papers, Mura and
his collaborators studied the stress fields of ellipsoidal inclusions with sliding inter-
faces under various types of eigenstrain or remote loading (Mura & Furuhashi 1984;
Mura et al . 1985; Tsuchida et al . 1986; Jasiuk et al . 1987; Furuhashi et al . 1992).
The Papkovich–Neuber potentials in the form of infinite series were commonly used.
Lubarda & Markenscoff (1998) examined an unusual nature of the stress field in slid-
ing ellipsoidal inclusions due to uniform shear eigenstrain, and proposed a method
to calculate this field for nearly circular or spherical inclusions. An energy study of
sliding circular inclusions is presented in this paper. Simple relationships between
the energies of inclusions with sliding and bonded interfaces are derived. It is shown
that the energy in the sliding inclusion with uniform eigenstrain can be either greater
or smaller than the energy in the inclusion with a bonded interface, depending on
the value of the Poisson ratio. The total energy in the inclusion and the matrix is
always smaller in the case of a sliding inclusion. The opposite is found to be true
for the inclusion under remote uniform loading at infinity. The relationship between
the energies of circular inhomogeneities with sliding and bonded interfaces is also
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962 V. A. Lubarda and X. Markenscoff

derived. These results are of interest for the evaluation of average elastic properties
of composites with sliding interfaces and for other applications.

Since the analysis presented requires a knowledge of the stress and displacement
fields, these are given for both the inclusion and the matrix in the appendices of
the paper. A new superposition method is constructed to determine the stresses and
displacements for sliding inclusions under remote loading, based on the knowledge
of these fields in the corresponding eigenstrain problems. All expressions are given
in compact form, which enables easy comparison between the effects of sliding and
bonded interfaces. For example, it is shown that a discontinuity in the hoop stress
across the interface of a sliding inhomogeneity under remote shear loading does not
depend on the material properties, while it does in the case of bonded interface.

2. Energy expressions for sliding inclusion

The elastic strain energy in an inclusion, which has undergone a stress-free eigenstrain
transformation, is equal to the work done on the inclusion to insert it back into the
matrix. This is

EI = E∗ + 1
2

∫
S
(tIi − t∗i )uI

i dS +
∫

S
t∗i u

I
i dS, (2.1)

where uI
i is the displacement, and tIi = σI

ijnj is the traction on the boundary, S, of the
inclusion when inserted back into the matrix; σI

ij = Cijkl(εIkl − ε∗kl) is the correspond-
ing stress, and εIij and ε∗ij are the strain and eigenstrain in the inclusion, respectively.
Defining σ∗ij = −Cijklε∗kl, we also have t∗i = σ∗ijnj and E∗ = −1

2

∫
V
σ∗ijε

∗
ij dV . There-

fore, upon the application of the divergence theorem, equation (2.1) gives

EI = 1
2

∫
V

σI
ij(ε

I
ij − ε∗ij) dV. (2.2)

The strain energy in the matrix is

EM = 1
2

∫
S
tMi u

M
i dS, (2.3)

where uM
i is the displacement of the points of the matrix along the surface S, and

tMi = −tIi = −σI
ijnj is the corresponding traction. Thus

EM = −1
2

∫
S
σI
iju

M
i nj dS. (2.4)

The total strain energy, in the inclusion and the matrix, is ET = EI +EM, which
gives

ET = −1
2

∫
V

σI
ijε
∗
ij dV. (2.5)

In the case of a bonded interface between the inclusion and the matrix, this follows
because uI

i = uM
i at the interface (Eshelby 1957). In the case of the sliding interface,

equation (2.5) follows because σI
ijnj(u

I
i − uM

i ) = 0, the traction vector being normal
to the slip vector uI

i − uM
i at the interface.

A complete solution for the displacement and stress distribution for a circular
inclusion with a sliding interface in an infinite matrix under different types of loading
is given in the appendices of the paper. These results were used to determine the
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relevant energies in the problem, and to compare them with those of the Eshelby
inclusion problem with a perfectly bonded interface. In calculations, it is convenient
to first calculate the total energy and the energy in the matrix, from the formulae

ET = −1
2

∫ a

0

∫ 2π

0
(σI
rε
∗
r + σI

θε
∗
θ + 2σI

rθε
∗
rθ)r drdθ, (2.6)

EM = −1
2

∫ 2π

0
(σI
ru

M
r + σI

rθu
M
θ )adθ, (2.7)

and then to calculate the energy in the inclusion as EI = ET − EM. In the case of the
sliding interface, σI

rθ = 0 in equation (2.7). The energy expressions for sliding inclu-
sions and inhomogeneities under remote loading at infinity are given in §§ 4 and 5.

3. Energies due to eigenstrain

The stress field within the circular inclusion with a sliding interface due to biax-
ial eigenstrain ε∗x and ε∗y is given by equations (A 10)–(A 12) of Appendix A. The
radial displacement at the interface is given by equation (A 8) or (A 13), with r = a.
Expressing the eigenstrain (ε∗x, ε

∗
y) in polar coordinates by usual transformation for-

mulae, substitution into equations (2.6) and (2.7) and integration, gives the following
expressions for the energies (per unit length in the z-direction):

ET
S =

µa2π

32(1− ν)
[8(ε∗x + ε∗y)

2 + 3(ε∗x − ε∗y)2], (3.1)

EM
S =

µa2π

256(1− ν)2 [32(ε∗x + ε∗y)
2 + 3(5− 6ν)(ε∗x − ε∗y)2], (3.2)

EI
S =

µa2π

256(1− ν)2 [32(1− 2ν)(ε∗x + ε∗y)
2 + 3(3− 2ν)(ε∗x − ε∗y)2]. (3.3)

The subscript ‘S’ indicates the sliding interface. The energy in the matrix is greater
than in the inclusion, more so the less compressible the material. Indeed,

EM
S − EI

S =
µa2π

128(1− ν)2 [32ν(ε∗x + ε∗y)
2 + 3(1− 2ν)(ε∗x − ε∗y)2]. (3.4)

It is helpful to express the stress in the inclusion with respect to rectangular
coordinates as:

σS
x = − µ

8(1− ν)

[
4(ε∗x + ε∗y) + 3(ε∗x − ε∗y)

(
1− 2

y2

a2

)]
, (3.5)

σS
y = − µ

8(1− ν)

[
4(ε∗x + ε∗y)− 3(ε∗x − ε∗y)

(
1− 2

x2

a2

)]
, (3.6)

σS
xy = 0, (3.7)

for, then, it follows that the average stresses in the sliding inclusion are

σ̄S
x, σ̄

S
y = − µ

16(1− ν)
[8(ε∗x + ε∗y)± 3(ε∗x − ε∗y)], σ̄xy = 0. (3.8)

Thus, comparing with equation (3.1), the total energy can also be expressed as

ET
S =

(1− ν)a2π

24µ
[3(σ̄x + σ̄y)2 + 16(σ̄x − σ̄y)2]. (3.9)
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The energy expressions in the case of a circular inclusion with a bonded interface
can be obtained from Eshelby’s (1957) formulae. These give

ET
B =

µa2π

8(1− ν)
[2(ε∗x + ε∗y)

2 + (ε∗x − ε∗y)2], (3.10)

EM
B =

µa2π

32(1− ν)2 [4(ε∗x + ε∗y)
2 + (3− 4ν)(ε∗x − ε∗y)2], (3.11)

EI
B =

µa2π

32(1− ν)2 [4(1− 2ν)(ε∗x + ε∗y)
2 + (ε∗x − ε∗y)2]. (3.12)

The energy in the matrix is greater or smaller than the energy in the inclusion,
depending on the value of the Poisson ratio and the type of biaxial strain, since

EM
B − EI

B = − µa2π

16(1− ν)2 [2(3− 8ν)(ε∗x + ε∗y)
2 − (1− 2ν)(ε∗x − ε∗y)2]. (3.13)

The most interesting result follows by comparing the energies stored in the inclu-
sions with sliding and bonded interfaces. From equations (3.3) and (3.12), the differ-
ence in these energies is

EI
S − EI

B =
1− 6ν

256(1− ν)2µa
2π(ε∗x − ε∗y)2. (3.14)

Thus, we have a simple but appealing result: EI
S < EI

B if ν > 1
6 , and EI

S > EI
B if

ν < 1
6 . Hence, the shear stress relaxation at the interface actually increases the strain

energy in the inclusion for very compressible materials (ν < 1
6). It is interesting to

note that the value of the Poisson ratio ν = 1
6 is the value for which the two Lamé

constants of elasticity are related by µ = 2λ. The total strain energy (in the inclusion
and the matrix) is always smaller in the case of the sliding inclusion. In fact,

ET
S − ET

B = − µa2π

32(1− ν)
(ε∗x − ε∗y)2. (3.15)

The energy differences in equations (3.14) and (3.15) do not depend on the mean
eigenstrain, 1

2(ε∗x + ε∗y), since the sliding and bonded inclusion respond equally to
in-plane hydrostatic eigenstrain. Also, since the stresses in the bonded inclusion are

σB
x , σ

B
y = − µ

4(1− ν)
[2(ε∗x + ε∗y)± (ε∗x − ε∗y)], σB

xy = 0, (3.16)

we have the useful connections

σ̄S
x + σ̄S

y = σB
x + σB

y , σ̄S
x − σ̄S

y = 3
4(σB

x − σB
y ). (3.17)

The energy expressions listed for biaxial eigenstrain hold in the case of an arbitrary
uniform eigenstrain (ε∗x, ε

∗
y, ε
∗
xy), provided that the principal values of this strain state

are substituted there for the two axial strain components. Thus, the conclusion that
the energy in the sliding inclusion is greater than the energy in the bonded inclusion
for ν < 1

6 , and smaller for ν > 1
6 , applies to any uniform eigenstrain. The total strain

energy, in the inclusion and the matrix, is always smaller in the case of the sliding
inclusion.
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4. Energies due to remote loading

Consider next an infinite homogeneous block of material under plane strain condi-
tions and biaxial loading σ0

x and σ0
y at infinity. The strain energy within a circular

region of radius a around the origin is

EI
B =

1
8µ

[(1− 2ν)(σ0
x + σ0

y)2 + (σ0
x − σ0

y)2]a2π. (4.1)

What happens to this energy, i.e. does it increase or decrease when a cut is made
along the circle of radius a around the origin and the shear stress is reduced to zero,
preserving the continuity of the normal displacement and traction there? The prob-
lem is, thus, of a circular sliding inclusion under remote biaxial stress at infinity, for
which the complete stress and displacement distributions are derived in Appendix B.
The strain energy in the inclusion is

EI
S = 1

2

∫ 2π

0
σI
ru

I
radθ, (4.2)

where σI
r is given by equation (B 2) and uI

r by equation (B 8), both evaluated at
r = a. The integration gives

EI
S =

a2π

64µ
[8(1− 2ν)(σ0

x + σ0
y)2 + 3(3− 2ν)(σ0

x − σ0
y)2]. (4.3)

Therefore,

EI
S − EI

B =
1− 6ν

64µ
(σ0
x − σ0

y)2a2π, (4.4)

which demonstrates that the strain energy within the inclusion itself can either
increase or decrease, depending on the Poisson ratio. The energy in the sliding
inclusion is decreased if ν > 1

6 , and increased if ν < 1
6 . This is opposite to the

corresponding results for a sliding inclusion with biaxial eigenstrain. We also point
out that the average stresses in the inclusion are related to applied remote stress by

σ̄S
x + σ̄S

y = σ0
x + σ0

y and σ̄S
x − σ̄S

y = 3
4(σ0

x − σ0
y),

so that
σ̄S
x − σ0

x = −1
8(σ0

x − σ0
y) and σ̄S

y − σ0
y = 1

8(σ0
x − σ0

y).

Therefore, if σ0
x > σ0

y, the average stress, σ̄S
x, in the inclusion is smaller, and σ̄S

y

greater than the corresponding stress in the body without a sliding interface.
Let EM

B denote the (infinite) strain energy in the matrix domain outside the circular
region of radius a, before the cut was introduced and sliding took place. The total
strain energy in the infinite medium is ET

B = EI
B + EM

B . After the cut is introduced
and shear stress at the interface relaxed to zero, the strain energy in the sliding
inclusion becomes EI

S and in the surrounding matrix EM
S . The corresponding total

strain energy is ET
S = EI

S +EM
S . The strain energy change, ∆E = ET

S −ET
B , produced

by the shear stress relaxation at the interface, being equal to the negative of the total
potential energy change, is the work done by the shear stress,

σrθ(a, θ) = −1
2(σ0

x − σ0
y) sin 2θ,

on the slip discontinuity at the interface,

∆uθ = −[(1− ν)/2µ](σ0
x − σ0

y)asin2θ.
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This gives

∆E = 1
2

∫ 2π

0
σrθ(a, θ)∆uθadθ =

1− ν
8µ

(σ0
x − σ0

y)2a2π. (4.5)

The energy difference is positive, so that ET
S > ET

B . The total strain energy increases
because the whole system becomes more compliant in the presence of a sliding inclu-
sion, and for an applied remote load the average deformation, and thus the strain
energy, both increase. Note that ∆E = −∆Π, Π being the total potential energy (the
strain energy less the load potential at infinity). Thus, while for the strain energies
ET

S > ET
B , the opposite inequality holds for the potential energies, ΠT

S < ΠT
B .

Since EI
S + EM

S = EI
B + EM

B + ∆E, the change in the matrix energy produced by
the shear stress relaxation at the interface is

EM
S − EM

B = EI
B − EI

S + ∆E =
7− 2ν

64µ
(σ0
x − σ0

y)2a2π, (4.6)

by equations (4.4) and (4.5). Thus, the matrix energy increases by the shear stress
relaxation at the interface.

The expressions for the energies listed for biaxial remote loading hold in the case
of an arbitrary uniform loading at infinity (σ0

x, σ
0
y, σ

0
xy), provided that the principal

values of this stress state are substituted for the biaxial stress components. Thus, the
conclusion that the energy in the inclusion decreases by introduction of the sliding
interface if ν < 1

6 , and increases if ν > 1
6 , applies to any remote uniform loading.

The matrix energy is also increased by the introduction of the sliding interface.

(a) Some comments on energy calculations

It is instructive to calculate the total strain energy within a large circle of radius
R around the sliding inclusion. This is

ERS = 1
2

∫ 2π

0
(σM
r u

M
r + σM

rθu
M
θ )R dθ, (4.7)

where σM
r and σM

rθ are given in Appendix B by equations (B 5) and (B 7), and uM
r

and uM
θ are given by equations (B 10) and (B 11), with r = R. After integration,

letting R→∞, it follows that

ERS − ERB =
1− 2ν

16µ
(σ0
x − σ0

y)2a2π. (4.8)

Evidently, this is different from the total strain energy change ∆E, given by equa-
tion (4.5). Physically, ERS − ERB does not capture the total strain-energy change,
because there is a difference between the strain energies left in the medium behind
the radius R, even in the limit as R → ∞. However, if we use a solution for the
problem of an inclusion within a finite concentric annulus, loaded over its external
boundary of radius R by tractions associated with uniform stress state, the difference
ERS −ERB is, in the limit as R→∞, the total energy change due to shear stress relax-
ation at the sliding interface. This was pointed out to us by Professor David Barnett
of Stanford University, who also indicated an analogy with the calculations of the
energy release for the Griffith crack, or the void in an infinite medium under remote
loading (Sih & Liebowitz 1967). We performed the calculations and confirmed it.
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Since there is no material behind the radius R in the case of an inclusion within a
concentric annulus, the difference ERS − ERB is, in the limit as R → ∞, exactly the
total energy change ∆E of equation (4.5).

To make further connections between equations (4.5) and (4.8), we may proceed
as follows. The energy within a circle of large radius R would be ERB if the slip was
not allowed at the interface. When the slip is introduced, a change in strain energy
arises due to the work done by the relaxing shear stress at the interface on the slip
discontinuity there. Furthermore, an energy contribution comes from the work done
by already applied tractions on additional displacements produced at the remote
boundary (R, θ) by the shear stress relaxation at the interface (a, θ). Thus,

ERS − ERB = −1
2

∫ 2π

0
σB
rθ∆uθadθ +

∫ 2π

0
(σB
r δur + σB

rθδuθ)R dθ, (4.9)

where
δur = uS

r (R, θ)− uB
r (R, θ) and δuθ = uS

θ(R, θ)− uB
θ (R, θ).

During additional displacements δur and δuθ at the boundary (R, θ), the tractions
on it change by

δσr = σS
r − σB

r and δσrθ = σS
rθ − σB

rθ,

but the products δσrδur and δσrθδuθ go to zero in the limiting process. As shown
in Appendix B, δσ ∼ a2/R2 and δu ∼ a/R. It can be easily verified that the second
integral in equation (4.9) is (σ0

x − σ0
y)a2π(3− 4ν)/16µ, in the limit as R→∞. Since

the first term in equation (4.9) is equal to −(σ0
x − σ0

y)a2π(1− ν)/8µ, equation (4.9)
reduces to equation (4.8).

On the other hand, the nature of the stress and displacement fields for the sliding
inclusion within a concentric annulus is such that the second integral in equation (4.9)
becomes (σ0

x − σ0
y)a2π(1− ν)/4µ, in the limit as R→∞. Adding this to the first

term, −(σ0
x − σ0

y)a2π(1− ν)/8µ, gives the total strain energy change ∆E of equa-
tion (4.5). This explains the difference between equations (4.5) and (4.8). Finally, we
observe that by moving the second integral in equation (4.9) to the left-hand side,
and combining it with the strain energy difference ERS − ERB , we obtain a general
expression for the potential energy difference, ΠR

S −ΠR
B , between the problems of

sliding and bonded inclusion within a concentric annulus. In view of equation (4.5),
this expression confirms the relationship ΠR

S −ΠR
B = −(ERS − ERB ).

5. An inhomogeneity under remote loading

We end the analysis by comparing the energies of circular inhomogeneities with
sliding and bonded interfaces. Since a sliding interface is passive under an in-plane
hydrostatic load, for the evaluation of the energy difference it suffices to consider
only the remote shear loading, σ0

xy. The stress and displacement components for the
inhomogeneities with sliding and bonded interfaces are listed in Appendix C. Thus,
by substitution into equation (4.2), we obtain the following expression for the strain
energy in the sliding inhomogeneity

EI
S =

12(1− ν2)2(3− 2ν1)
[5− 6ν2 + (3− 2ν1)µ2/µ1]2

σ0
xy

2

µ1
a2π. (5.1)
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If the inhomogeneity is bonded to the matrix, its energy is

EI
B =

8(1− ν2)2

[3− 4ν2 + µ2/µ1]2
σ0
xy

2

µ1
a2π, (5.2)

which is independent of ν1. The energy in the sliding inhomogeneity can be greater or
smaller than the energy in the bonded inhomogeneity, depending on the magnitudes
of the elastic constants of the two materials. The two energies are equal to each other
if

(3− 4ν1)
(
µ2

µ1

)2

+ 2
µ2

µ1
+
[

2(5− 6ν2)2

3− 2ν1
− 3(3− 4ν2)2

]
= 0. (5.3)

If the matrix and the inclusion are of the same material, i.e. µ2/µ1 = 1, equation
(5.3) is satisfied for ν1 = ν2 = 1

6 , thus confirming the result from § 4. If two materials
are both incompressible, the energy in the sliding inhomogeneity is always smaller
than in the bonded inhomogeneity, since

EI
S − EI

B = −1
2

1
(1 + µ2/µ1)2

σ0
xy

2

µ1
a2π. (5.4)

If both materials have Poisson ratio equal to 1
3 , the energy in the sliding inhomogene-

ity is smaller than in the bonded inhomogeneity, provided that the shear modulus
ratio, µ2/µ1, is greater than about 0.255.

The energy change ∆E = ET
S − ET

B , associated with a transition from the bond-
ed to the sliding inhomogeneity, is equal to the work done by the relaxing shear
stress on the displacement discontinuity at the interface. By using the results from
Appendix C, this gives

∆E =
4(1− ν2)2

5− 6ν2 + (3− 2ν1)µ2/µ1

3− 4ν1 + µ1/µ2

3− 4ν2 + µ2/µ1

σ0
xy

2

µ1
a2π. (5.5)

If ν1 = ν2 and µ1 = µ2, equation (5.5) reduces to equation (4.5) of § 4, provided that
σ0
x = −σ0

y.
The change in the matrix energy between the problems with sliding and bonded

inhomogeneities is EM
S −EM

B = EI
B−EI

S + ∆E. The resulting expression that follows
by substitution of equations (5.1), (5.2) and (5.5) is somewhat lengthy, although in
the case of incompressible materials it takes a simple form,

EM
S − EM

B =
2 + µ1/µ2

(1 + µ2/µ1)2

σ0
xy

2

2µ1
a2π. (5.6)

For completeness, we also record the change in strain energy contained within a
large circle of radius R around the sliding and bonded inhomogeneity. In the limit
as R→∞, the result is

ERS − ERB =
8(1− ν1)(1− ν2)(1− 2ν2)

[5− 6ν2 + (3− 2ν1)µ2/µ1][3− 4ν2 + µ2/µ1]
σ0
xy

2

µ1
a2π. (5.7)

If µ1 = µ2 and ν1 = ν2, equation (5.7) reduces to equation (4.8), in the special case
when σ0

x = −σ0
y. For an incompressible matrix, or a rigid inhomogeneity, ERS = ERB .

We are grateful to Professor David M. Barnett of Stanford University for pointing out funda-
mental differences in energy calculations leading to equations (4.5) and (4.8), as discussed in § 4
of this paper. V.A.L. also acknowledges research support provided by the Alcoa Center.
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Appendix A. Stress and displacement fields for a sliding
circular inclusion under uniform eigenstrain

The Papkovich–Neuber potentials for the displacement in the sliding inclusion asso-
ciated with the eigenstrain ε∗x and ε∗y can be taken as

Φ0 = A1r
2cos2θ, Φ1 = A2r

3cos3θ +A3rcosθ, Φ2 = A2r
3sin3θ +A3rsinθ,

(A 1)

where r and θ denote the polar coordinates. The displacement components are
derived from

ux =
∂

∂x
(Φ0 + xΦ1 + yΦ2)− 4(1− ν)Φ1 | +ε∗xx, (A 2)

uy =
∂

∂y
(Φ0 + xΦ1 + yΦ2)− 4(1− ν)Φ2 | +ε∗yy. (A 3)

The terms ε∗xx and ε∗yy, appearing to the right of the vertical ( | ) line, correspond
to stress-free eigenstrain, and should not be taken into account when calculating the
stresses.

The Papkovich–Neuber potentials for displacements in the matrix are

Φ0 = B1r
−2cos2θ, Φ1 = B2r

−1cosθ, Φ2 = B3r
−1sinθ. (A 4)

The corresponding displacement components are obtained from (A 2) and (A 3),
excluding ε∗xx and ε∗yy terms on their right-hand side. The boundary conditions for
the sliding inclusion are the vanishing of the shear traction at the interface between
the inclusion and the matrix, and the continuity of normal traction and normal
displacement at the interface. Thus, at r = a

σI
rθ = 0, σM

rθ = 0, σI
r = σM

r , uI
r = uM

r . (A 5)

The superscript ‘I’ designates the inclusion and ‘M’ the matrix. Upon calculation,
we obtained

A1 = −3
8k(ε∗x − ε∗y), A2 = 1

8k(ε∗x − ε∗y)a−2, A3 = 1
2k(ε∗x + ε∗y), (A 6)

and

B1 = 1
8k(ε∗x − ε∗y)a4, B2,3 = −1

8k[8k(ε∗x + ε∗y)± 3(ε∗x − ε∗y)]a2, (A 7)

where k = 1/4(1 − ν). The following displacement and stress components result in
polar coordinates. The displacements in the inclusion are

ur = 1
4k

[
4(ε∗x + ε∗y)r + (ε∗x − ε∗y)

(
5− 8ν + 2ν

r2

a2

)
rcos2θ

]
, (A 8)

uθ = −1
4k(ε∗x − ε∗y)

[
5− 8ν + (3− 2ν)

r2

a2

]
rsin2θ, (A 9)

and the stresses

σr = −1
2kµ[4(ε∗x + ε∗y) + 3(ε∗x − ε∗y)cos2θ], (A 10)

σθ = −1
2kµ

[
4(ε∗x + ε∗y)− 3(ε∗x − ε∗y)

(
1− 2

r2

a2

)
cos2θ

]
, (A 11)

σrθ = 3
2kµ(ε∗x − ε∗y)

(
1− r2

a2

)
sin2θ. (A 12)
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The displacement components in the matrix are, similarly,

ur = 1
4k
a

r

{
4(ε∗x + ε∗y)a+ (ε∗x − ε∗y)

[
6(1− ν)− a2

r2

]
acos2θ

}
, (A 13)

uθ = −1
4k(ε∗x − ε∗y)

a

r

[
3(1− 2ν) +

a2

r2

]
asin2θ, (A 14)

with the corresponding stresses

σr = −1
2kµ

a2

r2

[
4(ε∗x + ε∗y) + 3(ε∗x − ε∗y)

(
2− a2

r2

)
cos2θ

]
, (A 15)

σθ = 1
2kµ

a2

r2

[
4(ε∗x + ε∗y)− 3(ε∗x − ε∗y)

a2

r2 cos2θ
]
, (A 16)

σrθ = −3
2kµ(ε∗x − ε∗y)

a2

r2

(
1− a2

r2

)
sin2θ. (A 17)

The stress state at all points of the inclusion at the interface r = a is purely
dilatational in the sense σr = σθ. A discontinuity in the tangential displacement at
the boundary of the inclusion is

∆uθ = uM
θ (a, θ)− uI

θ(a, θ) = 1
4(ε∗x − ε∗y)asin2θ. (A 18)

A discontinuity in the hoop stress across the interface of the sliding inclusion is
constant and equal to ∆σθ = 4kµ(ε∗x+ε∗y). This is in contrast to the Eshelby inclusion
(with bonded interface), where the hoop stress experiences a variable jump

∆σθ = 4kµ[ε∗x + ε∗y − (ε∗x − ε∗y)cos2θ].

The difference in the normal stress for the sliding and bonded inclusion at the inter-
face is

σS
r − σB

r = −(1
2kµ)(ε∗x − ε∗y)cos2θ.

The term proportional to (ε∗x+ ε∗y) does not appear because under dilatational eigen-
strain, the inclusion with sliding interface behaves as an inclusion with bonded inter-
face.

The stress and displacement components in the inclusion and the matrix, associ-
ated with the shear eigenstrain ε∗xy, can be obtained from equations (A 8)–(A 17) by
the substitution

ε∗x − ε∗y = 2ε∗xy and ε∗x + ε∗y = 0,

and with the replacement of 2θ by 2θ − π/2. The stress state at all points of the
interface in both the inclusion and the matrix is purely dilatational, in the sense
σr = σθ. There is no discontinuity in the hoop stress, σθ, across the interface of the
sliding inclusion, in contrast to the inclusion with bonded interface, where the hoop
stress experiences a jump of the amount 8kµε∗xysin2θ. Also, the normal tractions at
the interface are related by σS

r = 3
2σ

B
r , so that upon removal of the shear traction at

the interface of the bonded inclusion, the normal traction there increases by a factor
of 3

2 , to preserve the continuity of normal displacement across the interface.
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Appendix B. Stress and displacement fields for a sliding
circular inclusion under remote uniform loading

The stress field in an infinite body with a sliding circular inclusion due to remote
biaxial loading at infinity σ0

x and σ0
y can be obtained by a superposition consideration

as
σij = σ0

ij + (σS
ij − σB

ij)∗. (B 1)
Here, σ0

ij is the constant biaxial stress state throughout the infinite medium, while σS
ij

and σB
ij denote the stresses from the sliding and bonded inclusion problem, consid-

ered in Appendix A, both evaluated by selecting the eigenstrain difference (ε∗x − ε∗y),
such that σ0

x − σ0
y = −2kµ(ε∗x − ε∗y). In this manner, we ensure that the shear traction

at the interface is equal to zero, preserving the continuity of the normal displace-
ment and traction there. Consequently, by using equation (B 1) and the results from
Appendix A, the stresses in the inclusion are found to be

σr = 1
2(σ0

x + σ0
y) + 3

4(σ0
x − σ0

y)cos2θ, (B 2)

σθ = 1
2(σ0

x + σ0
y)− 3

4(σ0
x − σ0

y)
(

1− 2
r2

a2

)
cos2θ, (B 3)

σrθ = −3
4(σ0

x − σ0
y)
(

1− r2

a2

)
sin2θ. (B 4)

The stresses in the surrounding matrix are likewise:

σr = 1
2(σ0

x + σ0
y) + 1

4(σ0
x − σ0

y)
(

2− 2
a2

r2 + 3
a4

r4

)
cos2θ, (B 5)

σθ = 1
2(σ0

x + σ0
y)− 1

4(σ0
x − σ0

y)
(

2 + 3
a4

r4

)
cos2θ, (B 6)

σrθ = −1
4(σ0

x − σ0
y)
(

2 +
a2

r2 − 3
a4

r4

)
sin2θ. (B 7)

A discontinuity in the hoop stress, when crossing from the inclusion to the matrix,
is −2(σ0

x − σ0
y)cos2θ.

The displacement components in the inclusion can also be obtained by superposi-
tion. They are

ur =
1

8µ

[
2(1− 2ν)(σ0

x + σ0
y)r + (σ0

x − σ0
y)
(

3− 2ν
r2

a2

)
rcos2θ

]
, (B 8)

uθ = − 1
8µ

(σ0
x − σ0

y)
[
3− (3− 2ν)

r2

a2

]
rsin2θ, (B 9)

and in the matrix

ur =
1

8µ

{
2(1− 2ν)(σ0

x + σ0
y)r + (σ0

x − σ0
y)
[
2
r

a
+ 2(1− ν)

a

r
− a3

r3

]
acos2θ

}
, (B 10)

uθ = − 1
8µ

(σ0
x − σ0

y)
[
2
r

a
+ (1− 2ν)

a

r
+
a3

r3

]
asin2θ. (B 11)

The discontinuity in the tangential displacement across the interface is

∆uθ = −1− ν
2µ

(σ0
x − σ0

y)asin2θ. (B 12)
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The problem of a sliding inclusion under remote biaxial loading at infinity can also
be solved directly, without using a superposition procedure. The functions of com-
plex variables and the corresponding complex potentials can be used, as given for
uniaxial loading by Muskhelishvili (1953, p. 226), or again the Papkovich–Neuber
displacement potentials. These are given by equations (A 1) and (A 4), with added
contributions to potentials Φ1 and Φ2, given, for convenience, in both the inclusion
and the matrix, by

Φ1 = − 1
4µ(1− 2ν)

[σ0
x − ν(σ0

x + σ0
y)]x, Φ2 = − 1

4µ(1− 2ν)
[σ0
y − ν(σ0

x + σ0
y)]y.

(B 13)

These contributions ensure the proper behaviour at infinity, i.e. the applied biaxial
stress state. The boundary conditions for the remaining constants are the vanishing
of the shear traction, and the continuity of normal traction and normal displacement
at the interface, which gives

A1 =
1

16µ
(σ0
x − σ0

y), A2 = − 1
16µ

(σ0
x − σ0

y)a−2, A3 = 0, (B 14)

and

B1 =
1

16µ
(σ0
x − σ0

y)a4, B2 = −B3 = − 1
16µ

(σ0
x − σ0

y)a2. (B 15)

The constants are independent of the in-plane remote mean stress 1
2(σ0

x + σ0
y), since

under in-plane hydrostatic loading, the material does not feel a sliding interface (pas-
sive interface). The straightforward calculations confirm the stress and displacement
expressions, already derived by using a superposition procedure.

The stresses for the sliding inclusion due to shear loading at infinity σ0
xy, can be

derived from equations (B 2)–(B 11) by the substitution σ0
x − σ0

y = 2σ0
xy, σ

0
x + σ0

y = 0,
and with the replacement of 2θ by 2θ − π/2. A discontinuity in the hoop stress, when
crossing from the inclusion to the matrix, is −4σ0

xysin2θ, and is entirely due to the
contribution from the Eshelby part of the solution.

Appendix C. Stress and displacement fields for a inhomogeneity
under remote shear loading

The solution based on the complex potentials can be obtained by superposition
from the uniaxial loading solution given by Muskhelishvili (1953). Alternatively, the
Papkovich–Neuber potentials can be used, which, for the inhomogeneity problem, can
be taken in the same form as for the inclusion problem, with appropriately adjusted
constants. The following compact forms of the displacement and stress expressions
are thus obtained. In the case of a sliding interface, the displacement components in
the inhomogeneity are

ur =
2(1− ν2)

α

σ0
xy

µ1

(
3− 2ν1

r2

a2

)
rsin2θ, (C 1)

uθ =
2(1− ν2)

α

σ0
xy

µ1

[
3− (3− 2ν1)

r2

a2

]
rcos2θ, (C 2)
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and the stresses are

σr =
12(1− ν2)

α
σ0
xysin2θ, (C 3)

σθ = −12(1− ν2)
α

σ0
xy

(
1− 2

r2

a2

)
sin2θ, (C 4)

σrθ =
12(1− ν2)

α
σ0
xy

(
1− r2

a2

)
cos2θ. (C 5)

The displacements in the surrounding matrix are likewise:

ur =
σ0
xy

2µ2

[
r

a
− 4(1− ν2)b

a

r
− 4c

a3

r3

]
asin2θ, (C 6)

uθ =
σ0
xy

2µ2

[
r

a
− 2(1− 2ν2)b

a

r
+ 4c

a3

r3

]
acos2θ, (C 7)

with the corresponding stresses

σr = σ0
xy

[
1 + 4

(
b
a2

r2 + 3c
a4

r4

)]
sin2θ, (C 8)

σθ = −σ0
xy

(
1 + 12c

a4

r4

)
sin2θ, (C 9)

σrθ = σ0
xy

[
1− 2

(
b
a2

r2 + 6c
a4

r4

)]
cos2θ. (C 10)

The subscript 1 indicates the inhomogeneity and 2 the matrix. The introduced con-
stants are

b = 6
1− ν2

α
− 1, c = 1

4 −
1− ν2

α
(C 11)

and

α = 5− 6ν2 + (3− 2ν1)
µ2

µ1
. (C 12)

A discontinuity in the hoop stress across the sliding interface is −4σ0
xysin2θ, indepen-

dent of the material properties. In particular, if the inhomogeneity is a void (µ1 = 0),
the stress concentration factor of four is recovered.

The displacement components in the bonded inhomogeneity are

ur = 1
2(1 + β)

σ0
xy

µ1
rsin2θ, uθ = 1

2(1 + β)
σ0
xy

µ1
rcos2θ, (C 13)

and the stresses

σr = (1 + β)σ0
xysin2θ, σθ = −(1 + β)σ0

xysin2θ, σrθ = (1 + β)σ0
xycos2θ.

(C 14)

The displacements in the surrounding matrix are likewise:

ur =
σ0
xy

2µ2

{
r

a
− β

[
4(1− ν2)

a

r
− a3

r3

]}
asin2θ, (C 15)

uθ =
σ0
xy

2µ2

{
r

a
− β

[
2(1− 2ν2)

a

r
+
a3

r3

]}
acos2θ, (C 16)
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with the corresponding stresses

σr = σ0
xy

[
1 + β

(
4
a2

r2 − 3
a4

r4

)]
sin2θ, (C 17)

σθ = −σ0
xy

(
1− 3β

a4

r4

)
sin2θ, (C 18)

σrθ = σ0
xy

[
1− β

(
2
a2

r2 − 3
a4

r4

)]
cos2θ. (C 19)

The parameter β is defined by

β =
1− µ2/µ1

3− 4ν2 + µ2/µ1
. (C 20)

A discontinuity in the hoop stress across the bonded interface is 4βσ0
xysin2θ. If the

inhomogeneity is a void, β = −1. For a rigid inhomogeneity, β = (3− 4ν2)−1.
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