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ABSTRACT

Two conservation laws of nonlinear micropolar elasticity (Jk = 0 andLk = 0)
are derived within the framework of Noether’s theorem on invariant variational
principles, thereby extending the earlier authors’ results from the couple stress
elasticity. Two non-conservedM -type integrals of linear micropolar elasticity are
then derived and their values discussed. The comparison with related work is also
given.

x 1: INTRODUCTION

Three conservation integrals of infinitesimal non-polar elasticity (Jk, Lk, and

M ) were derived by employing Noether’s (1918) theorem on variational princi-

ples invariant under a group of infinitesimal transformations by G¨unther (1962),

and Knowles and Sternberg (1972). When evaluated over a closed surface which

does not embrace any singularity, these integrals give rise to conservation laws

Jk = 0, Lk = 0, andM = 0. The lawJk = 0 applies to anisotropic non-

linear material, the lawLk = 0 to isotropic nonlinear material, andM = 0 to

anisotropic linear material. If the surface embraces a singularity or inhomogene-

ity (defect), Eshelby (1951,1956) has shown that the value ofJk is not equal to

zero but represents a configurational or energetic force on the embraced defect

(vacancy, inclusion, dislocation). The path-independentJ integral of plane frac-

ture mechanics, independently introduced by Rice (1968), has proved to be of

great practical importance in modern fracture mechanics, allowing the prediction

of the behavior at the crack tip from the values of the remote field quantities.
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Budiansky and Rice (1973) interpreted theLk andM integrals as the energetic

forces (potential energy release rates) conjugate to rotation (by erosion/addition

of material) and self-similar expansion (erosion) of the traction-free void. Fre-

und (1978) used theM conservation law for certain plane elastic crack problems

to calculate the elastic stress intensity factor without solving the corresponding

boundary value problem. The reference to other related work can be found in the

papers by Eshelby (1975) and Rice (1985). Noether’s theorem was further applied

by Fletcher (1975) to obtain a class of conservation laws for linear elastodynam-

ics. Jarić (1979) and Vukobrat and Jari´c (1981) studied the conservation laws in

thermoelasticity and linear theory of elastic dialectrics, and Vukobrat (1989) and

Vukobrat and Kuzmanovi´c (1992) in micropolar and nonlocal elastodynamics.

Yang and Batra (1995) and Huang and Batra (1996) used Noether’s theorem to

derive the conservation laws and energy-momentum tensors for piezoelectric ma-

terials and nonsimple dialectrics. Pucci and Saccomandi (1990) applied a version

of Noether’s theorem to deduce the conservation laws of micropolar elasticity, but

their analysis was unnecessarily restricted to linear constitutive equations. Nikitin

and and Zubov (1998) derived the conservation laws for the Cosserat continuum

under finite deformations. Lubarda and Markencoff (2000) modified a non-polar

analysis of Knowles and Sternberg (op. cit.) and derived the conservation laws

Jk = 0 andLk = 0 for the couple stress elasticity. The results are here ex-

tended to the more general framework of the nonlinear micropolar elasticity, in

which the local rotation of material elements is not constrained as in the couple

stress elasticity, but independent of the displacement field. The derived conser-

vation laws correspond to infinitesimal invariance of the strain energy relative to

translational and rotational transformations of the position coordinates, and the

displacement and rotation fields. It is then shown that the quadratic strain energy

is not infinitesimally invariant under a self-similar scale change, which prevents
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the existence of theM conservation law in linear micropolar elasticity (M 6= 0).

Two non-conservedM -type integrals are derived and their values discussed. The

comparison with related work is also given.

x 2: BASIC EQUATIONS OF MICROPOLAR ELASTICITY

In a micropolar continuum the deformation is described by the displacement

vector and an independent rotation vector. The rotation vector specifies the ori-

entation of the triad of director vectors attached to each material particle, which

are thus geometrically characterized by both their position and orientation. An in-

finitesimal material surface element transmits a force and a couple vector, which

give rise to non-symmetric stress and couple stress tensors. The former is related

to a non-symmetric strain tensor, and the latter to a non-symmetric curvature ten-

sor, defined as the gradient of the rotation vector. This type of the continuum

mechanics was originally introduced by Voigt (1887) and the brothers Cosserat

(1909), and later further developed by G¨unther (1958), Grioli (1960), Aero and

Kuvshinskii (1960), Mindlin (1964), and Eringen and Suhubi (1964). An exten-

sive list of additional contributions can be found in the review article by Dhaliwal

and Singh (1987). The physical rational for the extension of the classical non-

polar to micropolar elasticity was that the classical theory could not predict the

size effect experimentally observed in the problems in which there is a geometri-

cal length scale comparable to material’s microstructural length, such as the grain

size in a polycrystalline or granular material. For example, the apparent strength

of some materials with stress concentrators such as holes and notches is higher

for smaller grain size; for a given volume fraction of dispersed hard particles,

the strengthening of metals is greater for smaller particles; the bending and tor-

sional strengths are higher for very thin beams and wires (Mindlin 1963, Muki and

Sternberg 1965, Kaloni and Ariman 1967, Fleck, Muller, Ashby and Hutchinson

1994). The classical theory was also in disagreement with experiments for high-
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frequency ultra-short wave propagation problems, when the wave length becomes

comparable to the material’s microstructural length (Mindlin 1964, Brulin and

Hsieh 1982). The research in micropolar and related non-local and strain-gradient

theories of material response (both elastic and plastic) has intensified during the

last decade, largely because of an increasing interest to describe the deforma-

tion mechanisms and manufacturing of micro and nanostructured materials and

devices (Fleck and Hutchinson 1997, Valiev, Islamgaliev and Alexandrov 2000),

and inelastic localization and instability phenomena (Zbib and Aifantis 1989, De

Borst and Van der Giessen 1998).

A brief review of the governing equations of infinitesimal, geometrically linear

micropolar elasticity is as follows. The deformation is described by the displace-

ment vectorui and an independent rotation vector'i, which are both functions

of the position vectorxi. A surface elementdS transmits a force vectorTi dS

and a couple vectorMi dS. The surface forces are in equilibrium with the non-

symmetric Cauchy stresstij, and the surface couples are in equilibrium with the

non-symmetric couple stressmij, such that

Ti = njtji ; Mi = njmji ; (1)

wherenj are the components of the unit vector orthogonal to the surface element

under consideration. In the absence of body forces and body couples, the integral

forms of the force and moment equilibrium conditions areZ
S

Ti dS = 0 ;

Z
S

(eijkxjTk +Mi)dS = 0 : (2)

The skew-symmetric alternating tensor iseijk. Upon using Eq. (1) and the Gauss

divergence theorem, Eq. (2) yields the differential equations of equilibrium

tji;j = 0 ; mji;j + eijk tjk = 0 : (3)
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For elastic deformations of micropolar continuum, the increase of the strain en-

ergy is due to external work done by the surface forces and couples, i.e.,Z
V

_W dV =

Z
S

(Ti _ui +Mi _'i) dS : (4)

The strain energy per unit volume isW , and the superposed dot denotes the time

derivative. Incorporating Eqs. (1) and (3) and using the divergence theorem gives

_W = tij _ij +mij _�ij ; (5)

where

ij = uj;i � eijk'k ; �ij = 'j;i (6)

are the non-symmetric strain and curvature tensors, respectively (e.g., Mindlin

1964, Nowacki 1986). The symmetric and anti-symmetric parts ofij are

(ij) = �ij =
1

2
(uj;i + ui;j) ;

<ij> = !ij � eijk'k ; !ij =
1

2
(uj;i � ui;j) :

(7)

In general, both�kk and�kk are different from zero. In addition, there is an identity

�ij;k = �kj;i = 'j;ik. Assuming that the strain energy is a function of the strain

and curvature tensors,W = W (ij; �ij), the differentiation and the comparison

with Eq. (5) establishes the constitutive relations of micropolar elasticity

tij =
@W

@ij
; mij =

@W

@�ij
: (8)

In the case of material linearity, the strain energy is a quadratic function of the

strain and curvature components

W =
1

2
Cijkl ijkl +

1

2
Kijkl �ij�kl : (9)

The fourth-order tensors of micropolar elastic moduli areCijkl andKijkl. Dimen-

sionally,[Kijkl] = l
2 [Cijkl], wherel is a material length parameter, characteristic
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of a particular micropolar material. Since the strain and curvature tensors are not

symmetric, only reciprocal symmetries holdCijkl = Cklij andKijkl = Kklij. The

stresses associated with Eq. (9) aretij = Cijkl kl andmij = Kijkl �kl. In the case

of isotropic micropolar elasticity, we have

Cijkl = (�+ ��) Æik Æjl + (�� ��) Æil Æjk + � Æij Ækl ;

Kijkl = (� + ��) Æik Æjl + (�� ��) Æil Æjk + � Æij Ækl ;
(10)

where�; ��; � and�; ��; � are the Lam´e-type constants of isotropic micropolar elas-

ticity. The symmetric and anti-symmetric parts of the stress tensors are in this case

t(ij) = 2� �ij + � �kk Æij ; t<ij> = 2�� (!ij � eijk 'k) ;

m(ij) = 2��(ij) + � �kk Æij ; m<ij> = 2���<ij> :
(11)

More generally, suppose that the elastic strain energy of a nonlinear isotropic

material is given by

W = W
�
I ; II; �II; III; I�; II�; �II�; III�

�
; (12)

where

I = kk ; II = ij ij ; �II = ij ji ; III =
1

6
eijk elmn il jm kn ; (13)

and similarly for the first, second, and third-order invariants of the curvature tensor

�ij. It follows that

tij = c1 Æij + c2 ij + �c2 ji + c3 eikl ejmn km ln ;

mij = k1 Æij + k2 �ij + �k2 �ji + k3 eikl ejmn �km �ln ;
(14)

with

c1 =
@W

@I
; c2 = 2

@W

@II
; �c2 = 2

@W

@ �II
; c3 =

1

2

@W

@III
;

k1 =
@W

@I�
; k2 = 2

@W

@II�
; �k2 = 2

@W

@ �II�
; k3 =

1

2

@W

@III�
:

(15)
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In a simplified micropolar theory, the so-called couple stress theory (Toupin

1962, Mindlin and Tiersten 1962), the rotation vector'i is not independent of the

displacement vectorui, but related to it through the classical elasticity expression

'i =
1

2
eijk !jk =

1

2
eijk uk;j ; !ij = eijk 'k : (16)

In this case the strain tensor is a symmetric tensor(ij = �ij), and the curvature

tensor is a deviatoric tensor(�kk = 0). A spherical part of the couple stress

mij does not appear in any of the basic field equations of couple stress theory, and

without loss of physical generality it may be assumed to vanish (Koiter 1964). The

antisymmetric part of the stress tensort<ij> is indeterminate by the constitutive

analysis, but from the moment equilibrium equation it is determined ast<ij> =

�eijkmlk;l=2. An expose of the finite-deformation micropolar elasticity can be

found in Stojanovi´c (1970) and Eringen (1968,1999).

x 3: NOETHER’ S THEOREM OFMICROPOLAR ELASTICITY

Stimulated by the paper of Knowles and Sternberg (1972), there has been a

significant interest in the application of Noether’s theorem to a variety of solid

mechanics problems (e.g., Fletcher 1975, Golebiewska–Herrmann 1981, Olver

1984, Bui and Proix 1984, Maugin 1990, Honein and Herrmann 1997, Apari-

cio 2000). The original Noether’s (1918) theorem on invariant variational prin-

ciples states in essence that there is a conservation law for the Euler–Lagrange

differential equations associated with each infinitesimal symmetry group of the

Lagrangian functional. A comprehensive treatment of the general and various re-

stricted forms of Noether’s theorem, with a historical outline, can be found in the

book by Olver (1986). In the sequel, we apply the formulation of Knowles and

Sternberg (op. cit.) from the non-polar elasticity, and Lubarda and Markenscoff

(2000) from the couple stress elasticity to derive the conservation laws for the non-

linear micropolar elasticity. Consider a family of coordinate mappings defined by
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a vector-valued function

x̂ = f(x; �) ; � 2 (���; ��) ; (17)

such thatf(x; 0) = x for all position vectorsx. Consider also the families of the

displacement and rotation mappings

û = g(u; �) ; '̂ = h('; �) ; (18)

such thatg(u; 0) = u andh('; 0) = ' for all displacement and rotation vectors

u = u(x) and' = '(x). Finally, introduce a one-parameter family of functionals

E� =

Z
V̂

W (̂ij; �̂ij) dV̂ ; (19)

where

̂ij =
@ûj
@x̂i

� eijk '̂k ; �̂ij =
@'̂j

@x̂i
; (20)

and

dV̂ = det

�
@x̂j
@xi

�
dV = det(fj;i) dV : (21)

When the parameter� is equal to zero, we have

E0 = E =

Z
V

W (ij; ; �ij) dV ; (22)

which is the total strain energy within the volumeV . The familyE� is, there-

fore, the family of functionals induced from the functionalE by the families of

mappingsf , g, andh.

Definition: The functionalE is considered to be invariant at(u;') with re-

spect tof , g, andh, if

E� = E ; � 2 (���; ��) ; (23)

and infinitesimally invariant if �
@E�

@�

�
�=0

= 0 : (24)
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Theorem: If u and' satisfy the equilibrium equations

@

@xj

�
@W

@ji

�
= 0 ;

@

@xj

�
@W

@�ji

�
+ eijk tjk = 0 ; (25)

for all x in V , then the total strain energyE is infinitesimally invariant at(u; ')

with respect to mappingsf , g, andh, if and only if

@

@xi
(aiW + bj tij + cjmij) = 0 ; (26)

where

ai = f 0

i(x; 0) ; (27)

bi = g0

i(u; 0)� f 0

k(x; 0)ui;k ; (28)

ci = h0

i('; 0)� f 0

k(x; 0)'i;k : (29)

The prime designates the derivative with respect to the parameter�, such that

f 0

i(x; 0) =

�
@

@�
fi(x; �)

�
0

: (30)

For brevity, the subscript0 is used to indicate that the quantity within the brackets

is evaluated at� = 0. The condition (26) implies the conservation law in the

integral form Z
S

(ainiW + Tibi +Mici)dS = 0 ; (31)

for every surfaceS bounding a regular subregion ofV .

Proof: By differentiating Eq. (15) with respect to� and then setting� = 0,

there follows�
@E�

@�

�
0

=

Z
V

�
Wf 0

k;k(x; 0) +
@W

@ij

�
@̂ij
@�

�
0

+
@W

@�ij

�
@�̂ij
@�

�
0

�
dV : (32)

The partial derivatives with respect to� appearing in Eq. (32) can be evaluated by

using Eqs. (20) and (21). This gives�
@̂ij
@�

�
0

=
@g0

j(u; 0)

@uk
uk;i � f 0

k;i(x; 0)uj;k � eijk h
0

k('; 0) ; (33)
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�
@�̂ij
@�

�
0

=
@h0

j('; 0)

@'k

�ik � f 0

k;i(x; 0)�kj ; (34)

"
@(dV̂ )

@�

#
0

= f 0

k;k(x; 0) dV : (35)

The integrand in Eq. (32) is continuous onV , so that the integral vanishes if and

only if its integrand vanishes at eachx. The leading term of the integrand can be

eliminated by using the identity

@

@xk
[Wf 0

k(x; 0)] = Wf 0

k;k(x; 0) + f 0

k(x; 0)

�
@W

@ij
ij;k +

@W

@�ij
�ij;k

�
: (36)

Accordingly, the integrand in Eq. (32) becomes

@

@xk
[Wf 0

k(x; 0)] +Dij

@W

@ij
+ dij

@W

@�ij
= 0 ; (37)

where

Dij =

�
@̂ij
@�

�
0

� f 0

k(x; 0) ij;k ; (38)

dij =

�
@�̂ij
@�

�
0

� f 0

k(x; 0) �ij;k : (39)

Introducing the vectorsbi and ci, defined by Eqs. (28) and (29), it can be

readily verified that

bj;i = Dij + eijk ck ; cj;i = dij : (40)

Thus, there is an identity

@

@xi

�
@W

@ij
bj +

@W

@�ij
cj

�
=

@W

@ij
Dij +

@W

@�ij
dij

+
@W

@ij
eijk ck +

@

@xi

�
@W

@ij

�
bj +

@

@xi

�
@W

@�ij

�
cj :

(41)

In view of the equilibrium equations (25), the last two terms on the right-hand side

of Eq. (41) are together equal to�cj ejkl tkl, so that

@W

@ij
eijk ck � cj ejkl tkl = 0 : (42)
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Consequently, Eq. (41) reduces to

@

@xi
(tij bj +mij cj) =

@W

@ij
Dij +

@W

@�ij
dij : (43)

Substituting Eq. (43) into Eq. (37) gives the desired result of Eq. (26). The

conservation law (31) follows by applying the Gauss divergence theorem. The

Knowles and Sternberg (1972) proof for infinitesimal non-polar elasticity follows

by taking W = W (�ij), and by settingmij = 0 andt<ij> = 0.

The formulation and the proof of Noether’s type theorem for micropolar elas-

ticity presented here can be compared with the results of Lubarda and Markenscoff

(1999,2000) for the couple stress elasticity, in which there is a rotation constraint

given by Eq. (16). Since

'̂i =
1

2
eijk

@ûk
@x̂j

=
1

2
eijk

@ûk
@um

@um
@xn

@xn
@x̂j

; (44)

there follows

h0

i('; 0) =
1

2
eijk

�
@g0

k(u; 0)

@ul
ul;j � f 0

l;j(x; 0)uk;l

�
: (45)

Using this, in conjunction with Eqs. (18) and (19) of Lubarda and Markenscoff

(2000), it can be readily shown that their condition (16) (dij�ji = eijk ci�jk) is

identically satisfied. This was not explicitly demonstrated in their paper with this

generality, although it was proven in each particular case there considered.

x 4: CONSERVATION INTEGRALS IN MICROPOLAR ELASTICITY

The strain energyE in micropolar elasticity is invariant under the mappings

x̂i = x0i � +Qij(�) xj ; ûi = Qij(�) uj ; '̂i = Qij(�)'j ; (46)

wherex0i is a constant vector, andQij(�) is an orthogonal tensor in the case

of an isotropic material, andQij = Æij (Kronecker delta) in the case of a fully
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anisotropic material. Thus, since the invariance necessarily implies an infinites-

imal invariance, the corresponding conservation laws follow from Eq. (31). In-

deed, we have

f 0

i(x; 0) = x0i + qij xj ; g0

i(u; 0) = qij uj ; h0

i('; 0) = qij 'j ; (47)

and

ai = x0i + qij xj ; (48)

bi = qij uj � (x0m + qmn xn) ui;m ; (49)

ci = qij 'j � (x0m + qmn xn)'i;m ; (50)

whereqij = Qij(0). When this is substituted into Eq. (31), we obtain

x0i

Z
S

(W ni � Ti ui;j �Mi 'i;j) dS

+ qij

Z
S

(W ni xj + Ti uj +Mi 'j � Tl ul;i xj �Ml 'l;i xj) dS = 0 :

(51)

For a fully anisotropic materialqij = 0, and by choosing the vectorx0i to be a unit

vector in the directionk (x0i = Æik, for each value ofk = 1; 2; 3), Eq. (51) gives

Jk =

Z
S

(Wnk � Tk uk;j �Mk 'k;j) dS = 0 : (52)

For an isotropic materialqij are the components of an orthogonal tensor, and we

can takeqij = eijk for k = 1; 2; 3, so that, in addition to (52), there is a conserva-

tion law

Lk = eijk

Z
S

(Wni xj + Ti uj +Mi 'j � Tl ul;i xj �Ml 'l;i xj) dS = 0 : (53)

If the micropolar terms are omitted, the above conservation laws reduce to those

of the classical non-polar elasticity (Knowles and Sternberg 1972, Budiansky and

Rice 1973). The micropolar conservation law (52) was earlier derived without
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referral to Noether’s theorem by Dai (1986) and Jari´c (1986). Pucci and Sacco-

mandi (1990) deduced (52) and (53) from Noether’s theorem, but unnecessarily

restricted their considerations to linear isotropic materials in the case of (52), and

linear materials in the case of (53). See also a Corollary 4.30 of Olver (1986).

Conservation laws for the Cosserat continuum under finite deformations were de-

rived by Nikitin and Zubov (1998).

Introducing the Eshelby’s (1970,1975) energy-momentum tensor of micropo-

lar elastic field,

Pij = W Æij � tik uk;j �mik 'k;j ; (54)

the derived conservation integrals can be recast as

Jk =

Z
S

Pjk nj dS ; (55)

Lk = eijk

Z
S

(Pli xj + tli uj +mli 'j)nl dS : (56)

x 5: CONSERVATION LAWS OF PLANE-STRAIN MICROPOLAR ELASTICITY

In two-dimensional plane-strain problems within(x1; x2) plane, the compo-

nents'3, M3, m13, andm23 are generally different from zero, while other rota-

tion, moment, and couple stress components are equal to zero. By takingS to be a

cylindrical surface with its generatrix parallel tox3 axis and with its two flat bases

bounded by a curveC, integration in Eqs. (55) and (56) gives (per unit length in

x3 direction)

J� =

Z
C

P�� n� dC ; (57)

L = e��3

Z
S

(P� x� + t� u�)n dC : (58)

The energy-momentum tensor of the plane-strain micropolar elasticity is

P�� = W Æ�� � t� u;� �m�3 '3;� : (59)
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The summation in repeated Greek indices is over1 and2. TheJ1 integral from

Eq. (57) was used by Atkinson and Leppington (1974) to calculate the energy re-

lease rate for a semi-infinite crack within a strip of thicknessh. Xia and Hutchin-

son (1996) also used theJ1 integral to study the elastoplastic crack tip field in

a strain-gradient dependent material described by the deformation-type theory of

plasticity.

x 6: M INTEGRAL OF MICROPOLAR ELASTICITY

In contrast to classical elasticity, there is noM conservation law of micropo-

lar elasticity. In two-dimensional case this was originally observed by Atkinson

and Leppington (1977), and later discussed in the three-dimensional context by

Pucci and Saccomandi (1990), and for the couple stress elasticity by Lubarda and

Markenscoff (2000). To elaborate, consider a family of scale-changes

x̂i = (1 + �)xi ; ûi =
�
1�

�

2

�
ui : (60)

It is easily verified that the total strain energy of a non-polar elastic material with a

quadratic strain energy representation is infinitesimally invariant under (60). This

is, however, not so in the case of micropolar elasticity, because the material length

parameter, whose square is the ratio of the representative micropolar elastic mod-

uli l2 = [K]=[C], remains unaltered by the transformation (60). Indeed, since the

angle change corresponding to (60) is

'̂i =
1� �=2

1 + �
'i ; (61)

which follows from a simple dimensional argument (u � x', û � x̂'̂), we have

̂ij =
1� �=2

1 + �
ij ; �̂ij =

1� �=2

(1 + �)2
�ij : (62)

We assume here that�� < 1. Thus, for a linear micropolar material with a

quadratic strain energy representation,

E� =
1

2

�
1�

�

2

�2
Z
V

�
(1 + �) tij ij +

1

1 + �
mij �ij

�
dV ; (63)
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so thatE� 6= E0 = E, and�
@E�

@�

�
0

= �

Z
V

mij �ij dV 6= 0 : (64)

This shows that the total strain energyE is not infinitesimally invariant with re-

spect to the considered family of scale-changes. Consequently, there is noM

conservation law in micropolar elasticity. Actually, the value of theM integral is

equal to the expression in Eq. (64). This follows from

f 0

i(x; 0) = xi ; g0

i(u; 0) = �
1

2
ui ; h0

i('; 0) = �
3

2
'i ; (65)

and

M =

Z
S

�
Wxi ni �

1

2
Ti ui �

3

2
Mi 'i � Ti xj ui;j �Mi xj 'i;j

�
dS : (66)

Upon using the Gauss divergence theorem, the evaluation of the last integral gives

M = �

Z
V

mij �ij dV : (67)

In the derivation it should be observed that

W;k = tij ij;k +mij �ij;k ; (68)

and that, for the quadratic strain energy representation, the identities hold

tij ij;k = tij;k ij ; mij �ij;k = mij;k �ij : (69)

In terms of the energy-momentum tensor (54), theM integral of Eq. (66) can be

rewritten as

M =

Z
S

�
Pij xj �

1

2
tij uj �

3

2
mij 'j

�
ni dS : (70)

The plane-strain counterpart is

M =

Z
C

(P�� x� �m�3 '3)n� dC : (71)

If the polar effects are neglected, the couple stress vanishes and the conservation

lawM = 0 of the classical linear isotropic elasticity is recovered. Its applications

in two-dimensional fracture mechanics were explored by Freund (1978), Kubo

(1982), Lubarda (1993), and others.
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x 7: CONCLUSIONS

We have derived in this paper two conservation laws of micropolar elasticity

(Jk = 0 andLk = 0, k = 1; 2; 3) by using the framework of Noether’s theorem

on invariant variational principles. These laws can also be proven independently

of Noether’s theorem by direct evaluation of the considered integrals. For exam-

ple, in evaluating theLk integral one first applies the divergence theorem, and

incorporates the equilibrium conditions and the expression

W;k = tij uj;ik +mij 'j;ik � eijl tij 'l;k : (72)

Since,

euij (tvi vj � tjv iv) = 0 ; euij (mvi �vj �mjv �iv) = 0 ; (73)

because the tensors within the brackets are symmetric in(i; j) by Eq. (11) (in the

case of material linearity), after a straightforward but lengthy derivation it follows

thatLk = 0. In the case of material nonlinearity, there is an extra term in the

stress expression (14) proportional toeikl ejmn km ln, but its contribution to ei-

thereuij tvi vj or euij tjv iv vanishes (similarly for the couple stress and curvature

terms). For instance,

euij tvi vj = 2 evkl vj kj lu : (74)

Since the alternating tensor is antisymmetric, the right-hand side vanishes because

vj kj is symmetric in(v; k). An analogous derivation proceeds in evaluating the

integrals appearing in the definitions ofJk andM . Noether’s theorem was, how-

ever, of fundamental importance in arriving at the proper representation of the

considered integrals in terms of the kinematic and kinetic quantities that appear in

the structure of micropolar elasticity (ui, 'i, Ti, Mi, andW ). In the less general

context of the couple stress elasticity this was already discussed by Lubarda and
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Markenscoff (op. cit.). For example, another non-conserved integral of micropo-

lar elasticity can be introduced as

N = M +

Z
S

Mi 'i dS : (75)

The evaluation of this integral gives

N = �

Z
V

tij eijk 'k dV = �

Z
V

tij (<ij> � !ij) dV : (76)

In the couple stress elasticity this simplifies becauseij = �ij, and<ij> = 0. The

plane-strain counterpart of (76) is

N =

Z
C

P�� x� n� dC ; (77)

with the energy-momentum tensorP�� defined by Eq. (59). TheN integral was

used by Atkinson and Leppington (1977) to show that the energy release rate

for the finite crack in an infinite medium under remote tension reduces from its

polar to non-polar value when the micropolar parameter tends to zero. The energy

release rate decreases as the material length scale increases relative to the crack

length. For an analysis of the fractal cracks in micropolar elastic solids, a recent

paper by Yavari, Sarkani and Moyer (2002) can be consulted.
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