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Abstract

The stress distribution and dislocation forces for screw dislocations near cavities and straight boundaries are examined, depending

on the selected cut used to impose a displacement discontinuity and create a dislocation. The location of the equilibrium dislocation

position is determined in each considered case. The slip-induced stress amplification in thin ligaments between a cavity and a straight

boundary, between the inner and outer surface of an eccentric hollow cylinder, and between two approaching cavities in an infinite

medium are calculated. It is shown that in the limit of vanishingly small ligament width d , the shearing stress amplifies at the order

of d�1/2.

# 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The stress and strain fields, the strain energy, and

dislocation forces for a screw or edge dislocation in a

simply-connected region do not depend on the cut along

which a displacement discontinuity is imposed. Only

displacements differ in the regions between different cuts

by a rigid-body translation. The situation is different for

multiply connected regions, where the solution depends

on the cut used to create a dislocation, and if the

connectivity of the region is n , there are as many

possible solutions. This was demonstrated in Ref. [1]

for a screw dislocation in a hollow cylinder and near a

cavity in an infinite body. The results are here extended

to other cases of interest. A detailed analysis is given for

a screw dislocation between a cavity and a free surface

of a half-space, and for a screw dislocation between two

cavities in an infinitely extended material. Two different

solutions are derived in the former case, and three in the

latter case. The method of image dislocations is con-

veniently used to obtain these solutions. The results are

then applied to study a slip-induced stress amplification

in thin ligaments between a cavity and a free surface of a

half-space, between inner and outer surfaces of an

eccentric hollow cylinder, and between two approaching

cavities in an infinite space. The presented analysis

extend the earlier analysis of stress amplification in

vanishingly small geometries by Markenscoff [2], and

Wu and Markenscoff [3]. In particular, it is shown that

in the limit of vanishingly small ligament width d , the

shearing stress amplifies at the order of d�1/2.

The solution for a screw dislocation at a distance h

from a free surface of a half-space y�/0 is obtained by

summing the solutions for a dislocation at the point

(0,h) and an image dislocation of the opposite sign at the

conjugate point (0,�/h ) within an infinite space. The two

dislocations cancel each other’s traction over the surface

y�/0 and provide the solution for a screw dislocation in

a half-space. The solution for a screw dislocation

eccentrically situated in a circular cylinder was derived

by Eshelby [4]. If a screw dislocation is at a distance a

from the center of a cylinder of radius R , there is an

image dislocation of opposite sign at the conjugate point

at distance R2/a from the center. The two dislocations

cancel each other’s stress fields on the cylindrical surface

r�/R . Eshelby also considered the end effects in the case

of a cylinder of finite length, and the resulting con-
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sequences on the location of the equilibrium dislocation

position. Previously, Eshelby and Stroh [5] obtained the

solution for a screw dislocation at the center of a short

disk, accounting for the traction free boundary condi-

tions on all sides of the disk.

A study of edge dislocations in plane strain is more

difficult, because the method of image dislocations is not

sufficient to achieve the traction free boundary condi-

tions (e.g., Nabarro [6], Hirth and Lothe [7]). Equili-

brium distributions of edge dislocations near stress-free

boundaries were recently studied analytically and nu-

merically in [8�/13]. The results for slip-induced stress

amplification obtained in this paper for screw disloca-

tions and antiplane strain can be numerically extended

to the case of edge dislocations and plane strain. The

analysis of more complex dislocation configurations

near free boundaries, such as straight dislocations

emerging at the planar surface, or straight dislocations

near the spherical cavity are more complex and few

analytical results are available (e.g., [14,15]).

2. Screw dislocation near a cavity within a half-space

For a screw dislocation between a cavity and a free

surface of a half-space (Fig. 1), infinitely many image

dislocations are needed to fulfill the traction free

boundary conditions. One half of image dislocations is

within the boundary of the cavity, and the other half is

to the right of the free surface of a half-space. If the

center of the cavity of radius R is at a distance h from

the free surface, and if the dislocation is at a distance a

from the center of the cavity, the shear stresses are
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where m is the shear modulus, and bz is the Burgers

vector of the dislocation. In these equations, the

recursive formulas apply

an�2h�bn�1; bn�
R2

an�1

; n�1; 2; 3; . . . ; (3)

with a0�/b0�/a . All image dislocations are in the region

between h�/b and h�/b from the center of the cavity,

where b�/(h2�/R2)1/2. In Eq. (1) and Eq. (2) it is implied

that the displacement discontinuity is imposed along a

cut from the point a to the free surface of a half-space

(or from the point a to �/�), as shown in Fig. 2a. If the

Fig. 1. A screw dislocation between a cavity and a free surface of a

half-space. Image dislocations pile-up at two conjugate points at

distance b from the boundary of a half-space.

Fig. 2. Two different cuts used to create a dislocation between a cavity

and a free surface of a half-space; parts (a) and (b). The same for a

dislocation to the left of the cavity; parts (c) and (d).
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dislocation is introduced by a displacement discontinu-

ity along a cut from the point on the cavity to a (Fig.

2b), one needs to add to the previous solution a solution

for the negative dislocation at the point h�/b along the
x -axis, and a solution for the positive dislocation at the

point h�/b . These two dislocations are mirror image of

each other in the plane x�/h , and are also conjugate

points with respect to the cavity, producing no traction

on either boundary. If h�/2R , for example, the disloca-

tion is at an unstable equilibrium position for a :/

1.343R in the first case, and for a :/1.647R in the

second case. The latter distance is greater because when
a :/1.343R the dislocation force in the first case is

directed away from the cavity, and is balanced in the

second case by added pair of dislocations at two

conjugate points. A somewhat more involved, but still

straightforward construction of image dislocations can

be used in the case when a screw dislocation is above the

cavity, i.e., along the y-axis in Fig. 1 In the limit h 0/�,

keeping R constant, the solution for a dislocation near a
cavity in an infinite body is recovered [1]. If both h and

R tend to �, but h�/R�/d remains constant, the

solution for a dislocation in an infinite strip of width

d is obtained.

A similar analysis can be performed if the dislocation

is located to the left of the cavity, at the distance a from

its center (Fig. 2c). In this case one only needs to use

a0�/b0�/�/a in the recursive formulas (Eq. (3)). A
displacement discontinuity is imposed from �/� to x�/

�/a (or from x�/�/a to x�/h ). If a displacement

discontinuity is imposed from x�/�/a to x�/�/R (Fig.

2d) we add to the previous solution the solution for a

negative dislocation at x�/h�/b and a positive disloca-

tion at x�/h�/b . A simple special case of this is obtained

when h�/0, so that the dislocation is near a semi-

circular groove of a half-space. Only three image
dislocations are required in this case to fulfill the

traction free boundary conditions along the groove

and the straight edge of a half-space.

If there is more than one dislocation within the

material, the stress field is obtained by superposition

of stress fields of individual dislocations. For a random

distribution of dislocations, numerical evaluations are

needed, as described in Ref. [9]. It is of interest to
examine the mutual effect of two dislocations on the

stress field of each other. For example, consider the first

dislocation to in the ligament between the cavity and the

free surface, and the second dislocation to the left of the

cavity. Both dislocations are created by cuts from the

dislocation to the cavity. The stress field within the

ligament will then be less affected by the second

dislocation, closer this dislocation is to the cavity. This
is so because the stress field of a pair of two opposite

dislocations at small distance l decreases with the

distance r as mbzl /r2. In the process of introducing

image dislocations, l rapidly diminishes for each new

pair of dislocations, and since the first dislocation is

within the ligament it makes a dominant stress con-

tribution there. This is particularly pronounced for

higher values of the ratio R /h (thin ligaments). If two
dislocations are both between the cavity and the straight

boundary, there is a stronger interaction of dislocations

with each other, and with the free surface of the cavity

and the straight boundary. If dislocations are alike, they

would tend to exit the material by mutual repulsion and

by the attraction from the free surfaces.

3. Screw dislocation in an eccentric hollow cylinder

The solutions for a screw dislocation between a cavity

and a free surface of a half-space, and for a screw

dislocation in a hollow cylinder can both be deduced by

appropriate limits from a more general problem of a
screw dislocation in an eccentric hollow cylinder (Fig.

3). All image dislocations outside the outer boundary of

the cylinder are at the distances an , and all image

dislocations within the inner boundary of the cylinder

are at the distances bn from the center of the inner circle,

where

an�
R2

1

c � bn�1

�c; bn�
R2

2

an�1

; n�1; 2; 3; . . . (4)

The spacing between the centers of the two circles is c .

For n�/0, we have a0�/b0�/a . The dislocations pile up

at two points, conjugate with respect to both circles,

which are at

x1;2�
1

2c
[R2

09(R4
0�4c2R2

2)1=2]; R2
0�R2

1�R2
2�c2 (5)

from the center of the inner circle. A displacement

discontinuity is imposed along a cut from x�/a to x�/

R1�/c (Fig. 4a). If we add to this solution the solution
for a positive dislocation at x�/x1 and a negative

Fig. 3. Dislocation in an eccentric hollow cylinder. Image dislocations

pile-up at two conjugate points at distances x1 and x2 from the center

of the inner boundary.
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dislocation at x�/x2, the solution for a cut shown in Fig.

4b is obtained. If a dislocation is to the left of the inner

circle (Fig. 4c), we use a0�/b0�/�/a in the recursive

formulas Eq. (4). By adding to this solution the solution
for a positive dislocation at x�/x1 and a negative

dislocation at x�/x2, the solution for a cut shown in

Fig. 4d is deduced. If R1�/c 0/h , while both R1 and c

become infinitely large, we recover the result an �/2h�/

bn -1 for a screw dislocation near the cavity in a half-

space.

From an alternative standpoint, the solution for a

screw dislocation in an eccentric hollow cylinder can be
obtained from the solution for a dislocation in a

concentric hollow cylinder by using the mapping of an

eccentric into a concentric annulus. The conformal

mapping is particularly important in the cases when

the image method does not work, e.g., when in the

process of introducing image dislocations, some of them

fall within the region of actual material (Seeger [16]).

4. Screw dislocation between two cavities in an infinity

body

Consider a screw dislocation between two cavities in

an infinite medium. The radii of the cavities are R1 and

R2, and their distance is c (Fig. 5). Two infinite sets of

image dislocations are required to achieve the traction

free conditions on the surfaces of both cavities. One set
of image dislocations is entirely within the region of the

first cavity, and the other is entirely within the region of

the second cavity.

The stresses are consequently
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The recursive formulas

a2n�
R2

2

c � a2n�1

; a2n�1�
R2

1

c � a2n

; (8)

b2n�
R2

1

c � b2n�1

; b2n�1�
R2

2

c � b2n

; (9)

apply for n�/1, 2, 3. . ., with a1�/R1
2/a , and b1�/R2

2/(c�/

a ). As n goes to �, the image dislocations in the first

cavity pile up at the distance x1 from its center, while the

image dislocations in the second cavity pile up at the
distance x2 from the center of the second cavity. The two

points are conjugate to each other with respect to both

cavities, and are thus specified by

Fig. 4. Two different cuts used to create a dislocation in an eccentric

hollow cylinder; parts (a) and (b). The same for a dislocation to the left

of the inner boundary; parts (c) and (d).

Fig. 5. Screw dislocation between two cavities in an infinite medium.

Image dislocations pile-up at two conjugate points at distances x1 and

x2 from the centers of two cavities.
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c�x2�
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This gives

x1�
1

2c
(c2�c2

0�R2
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2);

x2�
1

2c
(c2�c2

0�R2
2�R2
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where

c4
0� [c2�(R1�R2)2][c2�(R1�R2)2]: (12)

The contributions from the pairs of positive and

negative image dislocations are summed in Eq. (6) and

Eq. (7), which ensures the convergence of the series, and
implies a displacement discontinuity along a cut from

the point a to �. If R2�/0.5R1 and c�/2.5R1, for

example, we find that the dislocation is at an unstable

equilibrium position for a :/1.535R1. The variation of

the dislocation force, as the dislocation moves between

two cavities, is shown by a solid curve in Fig. 6.

The derived solution is associated with a displacement

discontinuity along a cut from the point a to �. One
such cut is shown in Fig. 7a. Two other solutions are,

however, possible since two cavities in an infinite

medium make a triply connected region. One solution

corresponds to a displacement discontinuity along a cut

from the point a to the surface of one cavity, and the

other is associated with a cut from the point a to the

surface of another cavity (Fig. 7b,c). Details are given by

Markenscoff and Lubarda [17]. When a displacement
discontinuity is imposed as in Fig. 7b, the dislocation

force varies with the dislocation position between two

cavities as shown by a dashed curve in Fig. 6. Disloca-

tion is in an unstable equilibrium for a :/1.220R1. If a

dislocation is created by a displacement discontinuity

along a cut shown in Fig. 7c, the dislocation force varies

as indicated by a dotted curve in Fig. 6. In this case, the

dislocation is in an unstable equilibrium for a :/

1.695R1.

5. Slip-induced stress amplification in thin ligaments

A comprehensive analysis of stress amplification in

vanishingly small geometries due to remote stress or

thermal loading was given in Refs. [2,3]. We extend their

analysis in this section by presenting analytical solutions

for slip-induced stress amplification in thin ligaments

within multiply connected regions. The fist considered

case is depicted in Fig. 8. We want to calculate the stress

field associated with an imposed slip discontinuity of
amount bz across the ligament of width d (or, equiva-

lently, along a cut from �/� to the surface of the

cavity). The solution is obtained by placing a negative

dislocation at the point x�/h�/b and a positive disloca-

tion at the point x�/h�/b , where b�/(h2�/R2)1/2. These

two dislocations are mirror image of each other in the

plane x�/h , and are also conjugate points with respect

to the cavity, producing no traction on either boundary.
The shear stress t(x )�/szy (x ,0) across the ligament is,

therefore,

t(x)�
mbz

2p

�
1

x � h � b
�

1

x � h � b

�
: (13)

Introducing a non-dimensional variable j such that

b�(1�z)R; z�
d

R
; (14)

it readily follows that the shear stresses at the end points

of the ligament are

t1�t(R)�
mbz

2pR

ffiffiffiffiffiffiffiffiffiffiffi
2�z

p
z�1=2;

t2�t(b)�
mbz

pR

1ffiffiffiffiffiffiffiffiffiffiffiffi
2 � z

p z�1=2: (15)

In the limit as j0/0, this establishes the j�1/2 order of

singularity in the region of the ligament, produced by

the relative sliding of two faces of the ligament. For

example, if R�/10bz and d�/bz (so that j�/0.1), there

follows t1�/0.0279m and t2�/0.0695m .

The longitudinal displacement of the points along the

straight edge is defined by

uz(h; y)�
bz

p

�
u�

p
2

�
; tanu�

y

b
: (16)

The angle u � /[0,p/2] for y �/0, and u � /[3p/2,2p] for

y B/0 (Fig. 9a). The longitudinal displacement of the

points along the boundary of the cavity is

Fig. 6. The variation of dislocation force (scaled by mb2
z /2pR1) as the

dislocation moves along horizontal direction between two cavities in

an infinite medium. Three different curves correspond to three

different ways of creating a dislocation, indicated in Fig. 7.
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uz(R;8 )�
bz

2p
(u1�u2); (17)

where the angles u1 and u2 are expressed in terms of the

polar angle 8 by using the relationships (Fig. 9b)

sinu1;2�
R

a1;2

sin8 ;

a2
1;2�R2�(h�b)2�2R(h�b)cos8 :

(18)

These expressions can be conveniently used to deter-

mine the distortion of the bounding edges due to the

imposed slip discontinuity along the width of the

ligament.
A ligament in an eccentric hollow cylinder shown in

Fig. 10. Since R1�/c�/R2�/d , we can write

c� (R1�R2)(1�z); z�
d

R1 � R2

: (19)

The shear stress across the ligament is

t(x)�
mbz

2p

�
1

x � x2

�
1

x � x1

�
: (20)

The image dislocations needed to impose a displace-

ment discontinuity across the ligament are approxi-

mately located at the distances

x1;2�R2�R1z9
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2R1R2

p
z1=2; (21)

from the center of the inner cylinder. The terms that are

proportional to higher order exponents of the small

ratio j are neglected in Eq. (21). The shear stresses at

the end points of the ligament are then

t1�t(R2)�
mbz

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2R1R2

p
�

1�
1

2

R1

R2

z

�
z�1=2;

t2�t(R2�d)�
mbz

p
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2R1R2

p
�

1�
1

2

R2

R1

z

�
z�1=2: (22)

This again establishes a j�1/2 order of singularity in

the ligament, produced by the relative sliding of two

faces of the ligament along the cut between the end

points of the ligament. We retained the term propor-

tional to j in Eq. (22) to quantify the difference between

the shear stresses at the end points of the ligament. For

instance, if R2�/20bz , c�/5bz , and d�/bz (so that j�/1/

6), there follows x1�/39.5bz , x2�/11.17bz , t1�/0.0268m ,
and t2�/0.0257m .

Finally, consider a slip-induced stress amplification in

the ligament between two cavities in an infinite medium

(Fig. 11). Let d be a width of the ligament, so that

c�(1�r�z)R1; (23)

where

r�
R2

R1

; z�
d

R1

: (24)

The shear stress across the ligament is

t(x)�
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2p
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�
1
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�
: (25)

The image dislocations needed to impose a displace-

ment discontinuity across the ligament are approxi-

mately located at the distances
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z
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from the centers of respective cavities. The terms that

are proportional to higher order exponents of the small

ratio j�/d /R are neglected in Eq. (26). It readily follows

that the shear stresses at the end points of the ligament

are

t1�t(R1)�
mbz

pR1

�
1 � r

2r

�1=2�
1�

1

2

r

1 � r
z

�
z�1=2;

Fig. 7. Three different ways of creating a dislocation between two

cavities in an infinite space by imposing a displacement discontinuity

along one the three indicated cuts.
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t2�t(R1�d)

�
mbz

pR1

�
1 � r

2r

�1=2�
1�

1

2r

1

1 � r
z

�
z�1=2; (27)

which establishes a j�1/2 order of singularity in the

region of thin ligament between two cavities in an

infinite solid, produced by relative sliding of two faces of
the ligament across its width. The terms proportional to

j in Eq. (27) are retained to quantify the difference in

the shear stresses at the end points of the ligament. If the

cavities are identical (R1�/R2�/R ), we obtain in the

limit

x1�x2�(1�z1=2)R; (28)

and

t1�t2�
mbz

pR
z�1=2: (29)

Two numerical examples reveal the following. If R1�/

30bz , R2�/10bz and d�/2bz , the image dislocations are

approximately located at x1�/25bz and x2�/4.98bz ,

while the shear stresses at the end points of the ligament
are t2�/0.0589m and t2�/0.0625m . The shear stress t2 is

about 6% greater than t1. In the case of two equal

cavities of radius R�/10bz at the distance d�/bz , the

image dislocations are located at x1�/x2�/7.34bz , while

the shear stresses are t1�/t2�/0.1m . If the cavities were

at the distance d�/10bz , the shear stresses would have

been t1�/t2�/0.036m . This is calculated from the exact

results

x1�x2�
�

1�
1

2
z�

�
z�

1

4
z2

�1=2�
R; (30)

and

t1�t2�
mbz

2pR

�
1�

4

z

�1=2

: (31)

In the limit of infinitely distant cavities the stress t1

approaches the value mbz /2pR , corresponding to a single

dislocation at the origin.

6. Conclusions

We have presented in this paper the results for screw

dislocations near cavities and straight boundaries,

pointing out the differences in the solutions depending

on the manner in which dislocations have been created.
For example, three different solutions are derived for a

screw dislocation between two cavities in an infinitely

extended matrix. In general, for a dislocation in multiply

connected region the solution in not unique, and

depends on a cut used to create a dislocation. If the

connectivity of the region is n , there are as many

Fig. 8. Two image dislocations at the conjugate points needed to

produce a slip discontinuity across the ligament of width d between a

cavity and a free surface of a half-space.

Fig. 9. The angles used in the expressions for the displacement along the straight edge and a boundary of the cavity due to the slip discontinuity from

the cavity to the straight edge of a semi-infinite body.
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possible solutions. The dislocation force and the equili-
brium dislocation position have been determined in each

considered case. We then provide an analysis of the slip-

induced stress amplification in thin ligaments. For all

considered geometries it is shown that the shearing stress

amplifies at the order of d�1/2 in the limit of vanishingly

small ligament width d . Although the presented results

are derived for screw dislocations in antiplane strain, the

obtained conclusions can be extended to edge disloca-

tions in plane strain, albeit the latter analysis requires

numerical evaluations based on the finite or boundary
element method. This, as well as the stability analysis

associated with a possible localized buckling of thin

ligaments, is left for the future work.
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two cavities in an infinite space.
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