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Abstract: The relationship between the film thickness and dislocation spacing in the interface dislocation
arrays is studied by using a criterion based on the energy difference between the relaxed film configuration
and a selected, partially relaxed or unrelaxed reference configuration. It is shown that arrays with lower
dislocation density are formed in relaxation processes that are more gradual. Stability of arrays is examined,
and new bounds of the stable range are constructed.

1. INTRODUCTION

Thin films constitute important parts of many electronic, optoelectronic, and magnetic
devices. When the lattice parameters of the film and a substrate match, the film grows
without a mismatch strain. If the lattice parameters differ, strain is needed to achieve
perfect atomic registry across the interface (strained-layer epitaxy). The elastic energy
stored in the film can cause the onset and propagation of structural defects in the layer.
These defects are generally undesirable, since they can degrade electrical and optical
performance of the layer and heterostructural device. If a dislocation is nucleated, for
example as a half-loop from irregularities at the free surface, or if it extends from the
substrate to the free surface of the layer, it is desirable that the dislocation expand into
the configuration with a threading segment across the layer and a long misfit dislocation
left behind at the interface between the layer and its substrate. The driving force provided
by the misfit energy in the layer pushes the threading segment until it exits at the edges
of the film. Only the misfit dislocation is left, which relaxes the strain in the layer and
causes nonalignment between the layer and substrate lattices. The smallest layer thickness
at which first misfit dislocation forms during epitaxial growth is known as the critical layer
thickness. Comprehensive review of the subject can be found in Matthews [1], Nix [2],
Fitzgerald [3], van der Merwe [4], and Freund [5].

If the layer is grown beyond its critical thickness and more dislocations enter, it be-
comes desirable to determine the relationship between dislocation spacing in the interface
array and the layer thickness, for any given amount of initial mismatch strain, crystalline
orientation, and material properties (Willis et al. [6, 7]; Jain et al. [8]; Gosling et al. [9];
[5]). A continuation of such studies is the objective of the present paper. In the analysis we
use a criterion of strain relaxation, which is based on the difference between the energy of
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the relaxed film and the energy of selected reference configuration, with or without dislo-
cations. This gives rise to a driving force for the transition between the two configurations.
According to this criterion, the most dense array that could form in the film of a given
thickness is the array created by simultaneous formation of all its dislocations. We then
show that the arrays with lower dislocation density form in more realistic relaxation pro-
cesses, with the gradual introduction of dislocations. Comparison with predictions based
on the Frank and van der Merwe energy minimization criterion is also made. Stability of
the arrays and the bounds which define the range of their stable configurations are subse-
quently examined. A new set of bounds is constructed. This analysis may be useful in a
study of other more irregular dislocation structures.

Some important features of the process were not included in this paper, such as the
lattice friction stress, possible dissociation of the threading dislocation into partial dis-
locations, and interaction of dislocations with other defects. An analysis based on the
Peierls-Nabarro model of a threading dislocation was recently reported by Beltz and Fre-
und [10]. The incorporation of elastic anisotropy and the differences between the elastic
constants of the layer and the substrate were given by Gosling and Willis [11]. Dislocation
arrays and compound arrays in buried and capped epitaxial layers were considered by
Willis et al. [12] and Gosling et al. [13].

2. ENERGY OF A GENERAL STRAIGHT DISLOCATION ARRAY

An exact expression for the energy of a general straight dislocation array beneath the free
surface of a semi-infinite body was derived by [6, 7]. For the array whose dislocations
have Burgers vectors consisting of edge componentsbx andby , and screw component
bz (Figure 1), the strain energy per unit length of a dislocation in the strip of widthp,
excluding the dislocation core, is

Ed = −1

2

∫ h−ρ

0
[bxσxy(x,0)+ byσy(x,0)+ bzσzy(x,0)] dx − Eρ. (1)

The energyEρ is the contribution from the tractions on the dislocation core surface of
radiusρ. For a sufficiently small core radius (ρ � h), Eρ can be calculated by replacing
the dislocation core with a cylindrical hole, whose surface is subjected to tractions of an
isolated dislocation in an infinite homogeneous medium, along with the corresponding
displacements. With a displacement discontinuity imposed along the cut along thex-axis
from 0 toh, this is

Eρ = 1

4
k [b2

x − b2
y − 1

2(1 − ν)
(b2
x + b2

y)], (2)

wherek = µ/2π(1 − ν). The stressesσxy(x,0), σy(x,0), andσzy(x,0) are listed in
Appendix A. Upon substitution into equation (1) and integration, it follows that



DISLOCATION ARRAYS 413

Fig. 1. An infinite array of dislocations with uniform spacing p at the distance h below the free surface
of a semi-infinite body.
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The nondimensional variablesϕ0 = 2πh/p andρ0 = πρ/p are used. For a sufficiently
small core radius, shρ0 can be replaced byρ0. Equation (3) is equivalent to the corre-
sponding expression of [6, 7], which was given in terms of exponential functions.

The energy for an isolated dislocation near a free surface (Freund [14, 15]) is obtained
whenh � p in equation (3). This gives

Ed
0 = 1

2
k
{[b2

x + b2
y + (1 − ν)b2

z ]ln
2h

ρ
− 1

4(1 − ν)
[(3 − 4ν)b2

x − b2
y]

}
. (4)

If the layer is bonded to the substrate, with dislocations at the interface, and if the ini-
tial uniform misfit strains areεm

y , εm
z , εm

zy , and the corresponding stressesσm
y = 2µ(εm

y+νεm
z )/(1−ν), σm

z = 2µ(εm
z + νεm

y )/(1−ν), σm
zy = 2µεm

zy , the total elastic strain energy
per unit length of a dislocation within the strip of widthp is

E = Ed + Em + Ed,m. (5)

Here,Ed is the energy associated with dislocations alone, given by equation (3), andEm

is the energy associated with the misfit strain alone,
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Em = 1

2
(σm
y ε

m
y + σm

z ε
m
z + 2σm

zyε
m
zy)hp. (6)

The interaction energyEd,m is the work of uniform misfit stresses on dislocation jump
displacements along the cut from the free surface tox = h; that is,

Ed,m = −(σm
y by + σm

zybz)h. (7)

During the layer deposition, all elastic accommodation is assumed to take place in the
layer, with the substrate, being much thicker than the layer, essentially behaving as a rigid
elastic half-space.

3. CONDITIONS FOR DISLOCATION ARRAY FORMATION

The dislocation array will not form at the interface if the process is not energetically
favored. We can thus require as a necessary, but not sufficient condition, thatE ≤ Em

for an array to form. The differenceF = Em − E can be interpreted as the total driving
force on each threading dislocation in the array, when all dislocations are imagined to
simultaneously form [5]. In view of equation (5), we therefore have

F = −(Ed + Ed,m), (8)

whereEd is given by equation (3) andEd,m is given by equation (7). If the array is at the
interface,F ≥ 0. For arbitraryϕ0, the limiting conditionF = 0 gives the relationship
between the layer thicknessh and dislocation spacingp. Actually, it gives the smallest
dislocation spacing for which the array could exist in the film of a given thickness. The ar-
rays with larger spacing could also exist at this film thickness, but they would be associated
with the conditionF > 0. Alternatively, for a given dislocation spacing of the array, the
conditionF = 0 specifies the smallest film thickness required to support the array at the
interface. Thicker film could also support the considered array, but it would correspond
toF > 0. SinceEd is positive, in order thatF ≥ 0, the interaction energyEd,m must be
negative, and its magnitude greater than or equal toEd.

In the limit ϕ0 → 0, the conditionF = 0 reduces to the Matthews-Blakeslee [16]
equation for the critical film thickness, associated with the introduction of an isolated
dislocation. In this caseF = −(Ed

0 + Ed,m), whereEd
0 is given by equation (4). If

ϕ0 → ∞, that is,h � p, from equation (8) it follows that the smallest dislocation
spacing of the interface array for a very thick layer is independent ofh and is given
by p = kπ [2b2

y + (1 − ν)b2
z ]/(σm

y by + σm
zybz). Physically, the independence ofh is a

consequence of the fact that forh � p the stress field in the layer becomes essentially
constant, and both energies, far ahead of and far behind the threading dislocation segments,
are proportional to the layer thickness.

The misfit dislocation, far behind the threading dislocation segment, must be under
a force directed away from the free surface so that misfit dislocations are not pulled out
to the free surface. This force is given by the negative gradient of the energy difference
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E − Em with respect to the film thickness; that is,Fx = ∂F/∂h. Although this must be
positive, the misfit dislocation will not advance into the substrate, since the external stress
in a thick substrate is zero, and the free surface exerts only an attractive force on the misfit
dislocation.

As an illustration, consider the layer and substrate which share the same cubic lattice
and orientation, with the interface parallel to their(001) crystallographic planes. If the
lattice parameters of the layer and substrate areal and as , the fractional mismatch of
the lattice parameter isεm = (as − al)/al. The associated misfit strain components are
εm
y = εm

z = εm, εm
zy = 0, and the biaxial stress state isσm

y = σm
z = σm = 4πk(1 + ν)εm,

σm
zy = 0. If the layer/substrate system is GexSi1−x/Si, wherex is the fraction of lattice

sites in the layer occupied by Ge atoms, the lattice parameters of the layer and substrate
areal = xaGe + (1 − x)aSi (approximately, by Vegard’s rule), andas = aSi. SinceaSi =
5.4305Å andaGe = 5.6576Å, the misfit strain isεm ≈ −0.042x. Forx = 0.25, this gives
εm ≈ −0.01. The dislocation array consists of dislocations along[11̄0] crystallographic
direction on the(111) glide planes. The dislocation Burgers vector is along the[01̄1], so
that relative to the(xyz) coordinate systembx = −b/√2, by = −b/2, andbz = b/2,
whereb is equal toal/

√
2. Consequently, equation (3) becomes

Ed = kb2

8

[
(4 − ν)ln

shϕ0

ρ0
− 3ϕ2

0

2sh2ϕ0
− ϕ0 cothϕ0 + 5 − 2ν

4(1 − ν)

]
, (9)

whereas equation (7) givesEd,m = 2πk(1 + ν)εmbh. The relaxation occurs because
Ed,m is negative. (Relaxation actually proceeds with the formation of two orthogonal
dislocation arrays; the other array consists of dislocations along[110] direction on the
(11̄1) glide planes. Since the incorporation of the contribution from the second array is
straightforward, we proceed with the consideration of one array only.) Withν = 0.3, and
with the core radiusρ equal to the length of the Burgers vectorb, the critical layer thickness
is hcr = 19.25b, whereb = 3.88Å. This satisfies the conditionFx > 0, which requires
h > 5.66b. The relationship between the dislocation spacing and the layer thickness,
resulting from the conditionF = 0, is shown in Figure 2. The dislocation spacingp tends
to infinity whenh → hcr. The thicknessh0 = 29.25b corresponds to a dislocation spacing
p0 = −b/2εm = 50b at which the array completely relaxes the initial mismatch strain.

3.1. Frank and van der Merwe Energy Criterion

Frank and van der Merwe proposed that, for a given layer thicknessh, dislocations in the
array will arrange themselves by choosing the periodicityp which minimizes the energy
per unit area of the free surface. This energy isE/p, and the criterion requires

d

dp

(E
p

) = 0 that is, p
dE

dp
= E. (10)

SinceE is given by equation (5), from the above condition it follows that

p
dEd

dp
= Ed + Ed,m. (11)
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The right-hand side of equation (11) is equal to−F. Defining the forcef by

f = −pdE
d

dp
, (12)

the Frank and van der Merwe energy condition can be expressed as

F = f, (13)

where

f = k

2

{[(b2
x + b2

y)ϕ0cothϕ0 − 2b2
y]

ϕ2
0

sh2ϕ0
+ [2b2

y + (1 − ν)b2
z ]ϕ0cothϕ0

−[b2
x + b2

y + (1 − ν)b2
z ]

}
. (14)

It can be verified thatf is always positive (or equal to zero in the limitϕ0 → 0) as
expected, since from the criterionE ≤ Em, we know thatF cannot be negative. A physical
interpretation off can be given as follows. The force on a single threading dislocation
entering alone into an epitaxial layer which already contains an array of spacingp is
the negative gradient of the specific energy with respect to dislocation density; that is,
G = −d(E/p)/d(1/p) [9]. Indeed, ifn is the large number of dislocations in the array
before one additional dislocation is inserted, the force can be written asG = nE(p)− (n

+1)E(p + dp). Since dislocations distribute within the same domain,np = (n + 1)
(p + dp). Thus, upon expanding,G = pdE/dp − E = F − f . The forcef is,
therefore, the difference between the forceF on a threading dislocation associated with
a simultaneous formation of all dislocations in the array of spacingp and the forceG on
a single dislocation when it alone enters an epitaxial layer already containing an array
of spacingp. In the latter case, it is assumed that the array remains periodic upon the
introduction of new dislocation by appropriate adjustment of its spacing (if necessary, by
dislocation climb). Sincef is never negative, it follows thatF ≥ G (equal sign applying
only at infinitely large dislocation spacing). From this we can again conclude that the
equilibrium spacing predicted by the Frank and van der Merwe criterion (G = 0) must
be greater than that obtained from the conditionF = 0. Indeed, if for an arrayF = 0,
thenG < 0, and one dislocation would tend to leave the array, which would increase the
spacing among the remaining dislocations. The process would gradually continue until
the conditionG = 0 is reached, which gives the equilibrium array configuration according
to the Frank and van der Merwe criterion.

For the layer/substrate system under consideration, the predictions based on the con-
ditionF = f , and the conditionF = 0, are shown in Figure 2. As previously discussed,
for a given film thickness, a larger spacing is predicted by the Frank and van der Merwe
criterion. If the array with dislocation spacing according to Frank and van der Merwe were
formed by a simultaneous threading of all dislocations, the corresponding forceF on the
threading segments would not be zero, but large and positive. Arrays are observed which
do not correspond to the minimum energy, or the most relaxed configuration, so that the
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Fig. 2. Dislocation spacing p versus layer thickness h (scaled by the length of the Burgers vector)
according to the condition based on simultaneous array formation,F = 0; Frank and van der Merwe
energy minimum condition,F = f ; and the conditions based on two different processes of gradual
array formation,F = f1, andF = f2 (0< f1 < f2 < f ).

actual spacing may indeed be greater or smaller than that predicted by the Frank and van
der Merwe criterion. One reason for this is that during the process of their gradual intro-
duction, dislocations cannot easily readjust their positions to minimize the total energy [9].
Experiments, however, indicate that for a film thickness that exceeds the critical thickness
by a factor of 2 or 3, the dislocation spacing is substantially greater than that predicted by
the conditionF = 0 [5].

The critical layer thicknesses according to both criteria are identical [6]. The critical
thickness according to the Frank and van der Merwe criterion follows from equation (13)
in the limit p → ∞, which implies that very few dislocations are introduced in the film.
Sincef goes to zero asp goes to infinity, the condition (13) reduces toF = 0, which
is the Matthews condition for the critical layer thickness. It is interesting to note that at
this value of the layer thickness, the stationary value of the specific energyE/p, reached
asymptotically in the limitp → ∞, is actually a local energy maximum. There is also
an energy minimum (being very slightly lower than the local energy maximum) which
occurs at a large but finite value of the dislocation spacing. This was originally observed
by [8]. However, by taking the critical film thickness to be just slightly smaller than that
associated with the conditionF = 0, the value of the energy in the limit of infinite spacing
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becomes an energy minimum, and a single dislocation can be deposited at the interface in
a stable manner.

4. GRADUAL STRAIN RELAXATION

During the film growth beyond its critical thickness, dislocations gradually enter to form
the misfit dislocation array at the interface between the film and its substrate. To uniformly
relax the film, dislocations tend to form periodic arrays. A misfit dislocation already de-
posited at the interface on a particular glide plane relaxes the elastic strain on adjacent glide
planes, reducing a tendency for another misfit dislocation there. The gradual relaxation is
a difficult process, which involves time effects and the kinetics of dislocation nucleation
and motion for any given temperature of the film growth. A simplified model of gradual
relaxation was suggested by [5]. Imagine that in the process of the formation of an array
of spacingp, at some instant the array of uniform spacing 2p is first formed. Denote the
corresponding energy within the width 2p by E(2p). The film is assumed to be thick
enough for the energy difference

F(2p) = 2Em − E(2p) = −Ed(2p)− Ed,m (15)

to be positive. This is required to make the configuration energetically preferred relative to
the film configuration without dislocations. The actual order by which dislocations entered
the film to form the considered array is irrelevant for the present discussion, since the energy
E(2p) does not depend on that order. Thus, the value ofF(2p) is also independent of the
order, althoughF(2p) can be interpreted as a driving force on each threading dislocation
in the array if all were to form simultaneously. ForF(2p) to be positive, the film thickness
must be greater than the thickness associated with the conditionF(2p) = 0.

A second set of dislocations is introduced by the glide of their threading segments along
the planes midway between the glide planes of the first set. After this set is introduced, an
array of dislocation spacingp is formed. The corresponding elastic strain energy per unit
length of dislocation, stored within the width 2p, can be written as

2E(p) = E(2p)+ Ed(2p)+ Ed,m + Ed,d(2p). (16)

Here,E(p) is the energy within the widthp, given by equation (3), andEd,d(2p) is the
interaction energy between the two sets of dislocations (two arrays of spacing 2p). The
film of a given thickness will prefer the array of spacingp rather than the array of spacing
2p if 2E(p) < E(2p), regardless of the order by which the second set is introduced. The
difference

F1 = E(2p)− 2E(p) (17)

is a driving force on each threading dislocation from the second set if all were introduced
simultaneously. Substituting equations (15) and (16) into equation (17), we obtain

F1 = F(p)− f1, f1 = 1

2
Ed,d(2p). (18)
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The forceF(p) is given by equation (8). An expression for the interaction energyEd,d(2p)
can be conveniently obtained by using the fact that the elastic strain energy does not
depend on the sequence by which dislocations are introduced in the array (alternatively,
the interaction energy can be calculated by integration using the stress formulas listed in
Appendix A). Thus, the energy within the width 2p, associated with sequential formation of
the array, given by equation (16), must be equal to the energy associated with simultaneous
formation of the whole array, which is 2E(p) = 2Ed(p)+Em + 2Ed,m. By equating this
to the right-hand side of equation (16), we find

Ed,d(2p) = 2[Ed(p)− Ed(2p)]. (19)

Substituting equation (3), this becomes explicitly

Ed,d(2p) = k

{
[b2
x + b2

y + (1 − ν)b2
z ]ln(ch

ϕ0

2
)+ 1

8
(b2
x + b2

y)
ϕ2

0

ch2(ϕ0/2)

−1

2
(b2
x − b2

y)ϕ0 th
ϕ0

2

}
. (20)

For the previously considered layer/substrate system, equation (20) simplifies to

Ed,d(2p) = kb2

4

[
(4 − ν) ln(ch

ϕ0

2
)+ 3ϕ2

0

8ch2(ϕ0/2)
− 1

2
ϕ0 th

ϕ0

2

]
. (21)

It can be verified that this energy is always positive. It is also observed thatEd,d is
a monotonically increasing function ofϕ0, so thatEd,d(p) > Ed,d(2p). The plot of the
relationship between the dislocation spacingp and the layer thicknessh associated with the
conditionF1 = 0, that is,F(p) = f1, is shown in Figure 2. For a given film thickness, the
predicted dislocation spacing is greater in the case of sequential, rather than simultaneous,
array formation associated with the conditionF(p) = 0.

An additional increase in predicted dislocation spacing is obtained if the relaxation
process is more gradual. For example, imagine that, in the transition from the array
of spacing 2p to the array of spacingp, an intermediate configuration is first reached
which contains a periodic array of period 4p. The dislocation spacing in this array is
nonuniform, and it varies fromp to 2p. The array is shown in Figure 3, ifp is replaced by
2p. This configuration can be obtained by the introduction of a new dislocation between
every second pair of dislocations of the array of spacing 2p; that is, by an appropriate
introduction of an array of spacing 4p. The corresponding energy, within the width 4p, is

E2 = 2E(2p)+ Ed(4p)+ Ed,m + Ed,d(2p). (22)

The driving force for the transition from the configuration with the array of spacing 2p to
the considered intermediate configuration is 2E(2p)−E2, which is assumed to be positive.
The driving force from the intermediate configuration to the configuration with the array
of spacingp isF2 = E2 − 4E(p), which gives
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Fig. 3. An array of nonuniform dislocation spacing, which alters between p and 2p.

F2 = F(p)− f2 f2 = 3Ed(p)− 2Ed(2p)− Ed(4p)− Ed,d(2p). (23)

The plot of the relationship between the film thickness and the dislocation spacing, resulting
from the conditionF2 = 0, that is,F(p) = f2, is shown in Figure 2. The results
demonstrate that, for a given film thickness, the predicted spacing is greater than that
associated with the conditionF1 = 0. Thus, the more gradual the relaxation process, the
less dense is the array deposited at the interface.

5. STABILITY OF ARRAY CONFIGURATIONS

Consider a periodic array of spacingp at the interface between the film and its substrate.
If the film is sufficiently thick, additional dislocations will enter to relax the film. If the
film is too thin, some dislocations will recede. For example, if enough dislocations enter
so that, from the array of spacingp, an array of spacingp/2 is formed, the driving force
for the transition isE(p)− 2E(p/2) = F(p)−Ed,d(p). If the film resists the transition,
this force must be negative; hence,

F(p) < Ed,d(p). (24)

On the other hand, if the film is too thin, it may not support the array of dislocation
density as high as 1/p, and some dislocations will recede. Imagine that every second
dislocation from the array leaves the film. The driving force for this recession is−F1 =
−F(p)+Ed,d(2p)/2, as given by equation (18). If the recession is not preferred, the force
must be negative, and
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F(p) > 1

2
Ed,d(2p). (25)

Combining the inequalities (24) and (25), we obtain the bounds which define the range of
the(p, h) values for which the array can stably exist at the interface, at least with regard
to the considered perturbations in its structure. The bounds are shown in Figure 4, where
they are designated by B1. Recall from Section 3 that the stable range was previously
bounded from below by the conditionF > 0, which defines the lowest lower bound.

A higher lower bound can be obtained from the conditionF2 > 0 associated with the
recession in which every fourth dislocation leaves the array of uniform spacingp. From
equation (23), we have

F(p) > 3Ed(p)− 2Ed(2p)− Ed(4p)− Ed,d(2p). (26)

On the other hand, a lower upper bound can be obtained by considering a possible transition
of the array of spacingp into the array of nonuniform spacing, which is obtained by the
entrance of additional dislocation midway between every second pair of dislocations in the
array of uniform spacingp (Figure 3). The energy of this configuration, within the width
2p, is 2E(p)+ Ed(2p)+ Ed,m + Ed,d(p). Thus, if the transition should not occur,

F(p) < Ed,d(p)+ Ed(2p)− Ed(p). (27)

The bounds defined by (26) and (27) are also shown in Figure 4, designated there by B2,
and they are within the previously defined bounds B1.

5.1. Stability Criteria of [9]

Stronger stability conditions and restrictions on possible bounds can be obtained by using
the analysis of [9], who introduced the criterion based on the conditions for the entrance,
or recession, of a single dislocation from the periodic array. If the dislocation spacing can
adjust so that the array maintains its periodicity upon the entrance of a new dislocation,
the force on a threading dislocation entering the array would beG = F − f . Since the
adjustment of spacing generally requires dislocation climb (which may not be operative
at low temperatures), [9] assumed that dislocations in the array remain fixed as the new
misfit dislocation deposits at the interface. The array is then considered to be stable if this
deposition is resisted. The driving force on a threading dislocation midway between the
two dislocations of the periodic array of spacingp is the difference between the energies
of the two configurations: the energy of the configuration with a periodic array and the
energy of the same configuration with an inserted new dislocation. The latter is equal to
the former, plus the energy of the added dislocationEd

0 given by equation (4), plus the
work done to introduce the new dislocation against the stress of the existing array and
the misfit stress, which isEd,d(p) + Ed,m. Thus, the force to drive a dislocation into the
array is

F(+) = −Ed,d(p)− Ed,m − Ed
0 = F(p)− Ed,d(p)+ Ed(p)− Ed

0. (28)
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Fig. 4. Four sets of bounds (B1 through B4) which define range of stable array configurations with
respect to assumed perturbations in the periodic array structure, as described in the text.

If the introduction of new dislocation is resisted, thenF(+) < 0, and

F(p) < Ed,d(p)− [Ed(p)− Ed
0]. (29)

It was additionally proposed by [9] that the recession of a single dislocation from the array
(creation of a vacancy in its periodic structure) should also be resisted. A simple way
to calculate the force which tends to drive a dislocation out of the array, while all other
dislocations remain fixed, is to imagine that a negative dislocation (whose Burgers vector is
opposite to that of dislocations in the array) is introduced to annihilate one of dislocations
from the array. The energy difference between the two configurations is then equal to the
energy of the added negative dislocation,Ed

0, plus the work done to introduce the negative
dislocation against the stress of the existing periodic array and the misfit stress. This
work is

∫ h−ρ

0
[bxσxy(x,0)+ byσy(x,0)+ bzσzy(x,0)] dx

+ 2Eρ − Ed,m = −2Ed(p)− Ed,m.

(30)
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Equation (1) was used to express the integral in equation (30) in terms of other introduced
energy contributions. Thus, the force to drive dislocation out of the array is

F(−) = 2Ed(p)+ Ed,m − Ed
0 = Ed(p)− Ed

0 −F(p). (31)

An analogous expression was derived by [7] using a different procedure. A dislocation
will not recede from the array ifF(−) < 0; that is,

F(p) > Ed(p)− Ed
0. (32)

For the considered layer/substrate system, the bounds defined by equations (29) and (32)
are shown in Figure 4, where they are designated by B3. These bounds are within the
bounds B1. This was clear for the upper bounds, sinceEd(p) − Ed

0 is positive. It was
also expected for the lower bounds on physical grounds, since the array may be in a stable
configuration with regard to the recession of every second dislocation from the array but in
an unstable configuration with regard to a slighter disturbance due to recession of a single
dislocation. For example, suppose the film is in the state corresponding to a point on the
lower bound curve. With further film growth, dislocation spacing remains constant until
the point on the upper bound curve is reached, at which instance a new dislocation can
enter the film.

5.2. Further Bounds

A new set of bounds which define a possible range of stable array configurations is con-
structed in this subsection by comparing the array configuration with two perturbed neigh-
boring configurations, as follows.

5.2.1. LOWER BOUND

Consider a perturbed array configuration which contains one dislocation at a distance 3p/2
from the two neighboring dislocations, while the rest of the array has uniform spacingp

(Figure 5a). This configuration can be obtained from a perfectly periodic array of spacing
p by recession of two neighboring dislocations, and by injection of one new dislocation
along the slip plane midway between the two receding dislocations. One may also think
that one dislocation has receded, while one dislocation, ahead of or behind the receding
dislocation, has subsequently positioned itself in the middle between the two dislocations
of the perturbed array. The change of energy between the perturbed and unperturbed
configurations can be calculated as follows. First, introduce a new dislocation midway
between the two neighboring dislocations of the perfect array. As previously shown, the
energy increases byEd

0 + Ed,d(p) + Ed,m. Next, introduce two negative dislocations to
annihilate two dislocations, ahead of and behind the inserted dislocation. This further
increases the energy by 2[Ed

0 − 2Ed(p) − Ed,m], plus the interaction energy among the
three dislocations, which isE in = E(−,−) + 2E(+,−). It is shown in Appendix C that the
interaction energy between the two negative dislocations is
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Fig. 5a. Perturbed array configurations used to derive the lower bound of the stable array configu-
rations (designated by B4 in Figure 4).

E(−,−) = k

2

{
[b2
x + b2

y + (1 − ν)b2
z ]ln(1 + η2)

− [(1 + 3η2)b2
x − (3 + η2)b2

y]
η2

(1 + η2)2

}
,

(33)

whereη = 2h/p. The interaction energy between the positive and negative dislocation
E(+,−) is given by the same expression, withη replaced by 2η andk by −k. The force
which drives the perfect array into the perturbed array is the negative of the corresponding
energy change, which gives

F∗ = −F(p)+ 3[Ed(p)− Ed
0] − Ed,d(p)− E in. (34)

If the perturbation is resisted,F∗ < 0; that is,

F(p) > 3[Ed(p)− Ed
0] − Ed,d(p)− E in. (35)

This defines a lower bound for the stable configuration of the perfect array (B4 in Figure 4)
which is slightly higher than the lower bound B3 defined by (32). This was expected
to be the case, since the symmetric configuration in Figure 5a is more relaxed than the
configuration with the array containing the vacancy in its periodic structure, with the
surrounding dislocations being fixed.

Since dislocation adjustment may require climb, it is supportive to the above consid-
eration to give an additional or alternative interpretation of the conditionF∗ < 0. Imagine
that the periodic array of uniform spacingp is completed, except for two missing disloca-
tions next to each other. Denote the corresponding energy byE. (Total energies of infinite
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arrays are infinitely large, but their differences are finite, and will be needed only in this
discussion.) If two dislocations enter and complete the perfect array, the energy becomes
Ea, and the driving force for this to occur would beFa = E−Ea. If, instead of two, only
one dislocation enters, midway between the two missing dislocations of the perfect array,
the energy isEb, and the corresponding force would beFb = E − Eb. If Fa > Fb, the
case (a) is preferred, since thenEa < Eb. On the other hand, the force which would drive
the configuration (a) into (b) isF∗ = Ea − Eb = Fb − Fa. Thus, the conditionF∗ < 0
again givesFa > Fb, which means that the perfect array (a) would be preferred to the
perturbed array (b).

5.2.2. UPPER BOUND

A lower upper bound can be obtained by considering a perturbed array configuration shown
in Figure 5b. This configuration can be obtained from the perfectly periodic array of spacing
p by recession of one dislocation, and by symmetric injection of two new dislocations at
the distancep/3 from the receding dislocation. Alternatively, one may consider that a
perfect array was created, except for one missing dislocation, and that the competition
is taking place whether one more dislocation will enter and complete the perfect array or
whether two dislocations will symmetrically enter to form the perturbed array in Figure 5b.
Imagine that a negative dislocation is introduced to cancel one dislocation from the perfect
array, and two additional dislocations are then injected. The energy change relative to the
perfect configuration is equal to the energy of the added negative dislocation,Ed

0, plus
the work done to introduce the negative dislocation against the stress of the perfect array
and the misfit stress, which is given by equation (30), plus the energy associated with the
introduction of the two dislocations. This is 2Ed

0 + 2Ed,m, plus the interaction energy of
the two dislocations with the perfect array 2E int(p/3), plus the interaction energy among
the three added dislocations,E in = E(+,+) + 2E(+,−). Thus, the force that would drive
the perfect array into the perturbed array is

F ∗ = F(p)+ 3[Ed(p)− Ed
0] − 2E int(

p

3
)− E in. (36)

The interaction energyE+,+ is given by equation (33), withη = 3h/p. The interaction
energyE(+,−) is given by the same expression, withη replaced by 2η andk by −k. The
interaction energy associated with the introduction of dislocation at a distancey from the
dislocation in the array is obtained from the general expression derived in Appendix B by
substitutingx = h. This gives

E int(y) = k[b2
xIx + b2

yIy + (1 − ν)b2
zIz], (37)

where

Ix = Iz − ϕ0 sh2ϕ0

ch2ϕ0 − cosψ
+ ϕ2

0(1 − ch2ϕ0 cosψ)

(ch2ϕ0 − cosψ)2
(38)
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Fig. 5b. Perturbed array configurations used to derive the upper bound of the stable array configu-
rations (designated by B4 in Figure 4).

Iy = Ix + 2ϕ0 sh2ϕ0

ch2ϕ0 − cosψ
(39)

Iz = 1

2
ln

ch2ϕ0 − cosψ

1 − cosψ
. (40)

In equations (38)-(40),ϕ0 = 2πh/p, andψ = 2πy/p. The interaction energyE int(p/3)
follows forψ = 2π/3.

The perturbation is resisted ifF ∗ < 0; that is,

F(p) < 2E int(
p

3
)+ E in − 3[Ed(p)− Ed

0]. (41)

This defines an upper bound for the stable configuration of the perfect array (B4 in Figure 4)
which is lower than the upper bound B3 defined by (29), since the symmetric configuration
in Figure 5b is more relaxed than the perfect array configuration with an additional dislo-
cation exactly midway between the two dislocations of the array. It is interesting to note
that the four lower bounds shown in Figure 4 are closer to each other than the four upper
bounds, so that bounds are more sensitive to perturbation modes involving the entrance of
new dislocations than the recession of some dislocations.

From a purely energetic point of view, which does not take into account possible
mechanisms by which configurations can alter, the stable configuration would be unique
and given by the Frank and van der Merwe criterion. The corresponding curve is always
between the upper and lower bound of any considered set of bounds, sincef in equation
(13) is always between these bounds. However, during the film growth, dislocations may
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be entering in such a way that the minimum energy spacing cannot actually be attained at
a given film thickness, since complete readjustment of already taken dislocation positions
would be required (either by climb, or recession of some and entrance of other dislocations).
In view of this, any spacing between derived upper and lower bounds could in principle
correspond to a given film thickness, depending on the sequence or the order by which
dislocations entered in the process of film growth. Inevitably, the dislocation spacing will
be more or less nonuniform, although dislocations will try their best to form as nearly as
possible into periodic arrays, and to minimize the total energy of the system. Furthermore,
the order by which dislocations enter depends on the location and strength of available
dislocation sources. The rate of film growth has also an obvious effect on dislocation
spacing that is eventually taken by the array at the final film thickness.

6. CONCLUSION

We have shown in this paper that dislocation spacing in the interface arrays between an
epitaxial layer and its substrate increases with an increasing tendency toward a gradual
dislocation formation. This is illustrated in Figure 2, where the relationship between
the film thickness and dislocation spacing is shown for the simultaneous introduction of
the whole array, and for two different sequences of gradual formation of the same array.
We have subsequently examined the range of stable array configurations with respect
to assumed perturbations in the structure of the array. Three new sets of bounds are
derived and compared in Figure 4 with the original bounds obtained by [9]. The results
presented are conveniently expressed in terms of the driving forceF, which represents the
energy difference between the relaxed film configuration and the film configuration without
dislocations. The only other quantities that appear are the various dislocation interaction
energies. Explicit expressions for these are derived in each case. In the appendixes, we list
in a compact form the expressions for relevant stress components due to the dislocation
arrays considered in the present work. It is believed that the results so obtained can be
helpful in dealing with more irregular dislocation structures that occur during film growth.

APPENDIX A

The required stress components along vertical planes containing a dislocation from the
array can be obtained from the general formulas listed in Appendix B. They can be con-
veniently written as

σxy(x,0) = πkbx

2p

[
ϑ

sh2(ϑ/2)
− ϕ

sh2(ϕ/2)
+ 2ϕ0

sh2(ϕ/2)
A(ϕ)

]
(A.1)

σy(x,0) = πkby

2p

[
4(coth

ϑ

2
− coth

ϕ

2
)− ϑ

sh2(ϑ/2)

+ ϕ

sh2(ϕ/2)
+ 2ϕ0

sh2(ϕ/2)
A(ϕ)

] (A.2)
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σzy(x,0) = µbz

2p

(
coth

ϑ

2
− coth

ϕ

2

)
, (A.3)

whereA(ϕ) = 1 − (ϕ − ϕ0)coth(ϕ/2).
Along vertical planes midway between the two dislocations from the array, the stresses

are

σxy(x,
p

2
) = πkbx

2p

[
− ϑ

ch2(ϑ/2)
+ ϕ

ch2(ϕ/2)
− 2ϕ0

ch2(ϕ/2)
B(ϕ)

]
(A.4)

σy

(
x,
p

2

)
= πkby

2p

[
4
(
th
ϑ

2
− th

ϕ

2

) + ϑ

ch2(ϑ/2)
− ϕ

ch2(ϕ/2)
− 2ϕ0

ch2(ϕ/2)
B(ϕ)

]
(A.5)

σzy

(
x,
p

2

)
= µbz

2p

(
th
ϑ

2
− th

ϕ

2

)
, (A.6)

whereB(ϕ) = 1 − (ϕ − ϕ0)th(ϕ/2).
The nondimensional variablesϑ, ϕ, andϕ0 are defined in Appendix B. Multiplying

equations (A.4)-(A.6) with−bx , −by and−bz, respectively, an integration inx from 0 to
h gives the interaction energyEd,d(p). The expression is given by equation (20), in which
ϕ0/2 is replaced byϕ0.

APPENDIX B

This appendix gives the general expression for the interaction energy associated with the
introduction of an additional dislocation into the periodic array, anywhere between two
dislocations in the array; that is,

E int(x, y) = −
∫ x

0
[bxσxy(x, y)+ byσy(x, y)+ bzσzy(x, y)] dx. (B.1)

The stress components appearing in equation (B.1) can be obtained from the general for-
mulas for the stress distribution due to dislocation arrays near bimaterial interface (Lubarda
[17]). They are compactly written as

σxy = πkbx

p
Tx + πkby

p
Ty sinψ (B.2)

σy = πkby

p
Yy + πkbx

p
Yx sinψ (B.3)

σzy = πk(1 − ν)bz

p

(
shϑ

C
− shϕ

A

)
, (B.4)
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where

Tx = Dϑ

C2
− Bϑ

A2
− 2ϕ0(ϕ − ϕ0)

A3
(B − sin2ψ)shϕ (B.5)

Ty = 1

A
− 1

C
+ ϑ shϑ

C2
− ϕ shϕ

A2
+ 2ϕ0(ϕ − ϕ0)

A3
(B + sh2ϕ) (B.6)

Yx = 1

A
− 1

C
+ ϑ shϑ

C2
− (ϕ − 4ϕ0) shϕ

A2
− 2ϕ0(ϕ − ϕ0)

A3
(B + sh2ϕ) (B.7)

Yy = 2shϑ

C
− 2shϕ

A
− Dϑ

C2
+ B(ϕ + 2ϕ0)

A2
− 2ϕ0(ϕ − ϕ0)

A3
(B − sin2ψ)shϕ. (B.8)

The following abbreviations were used:A = chϕ − cosψ, B = chϕcosψ − 1, C =
chϑ − cosψ, and D = chϑ cosψ − 1. The nondimensional variables areϑ = 2π(x −
h)/p, ϕ = 2π(x + h)/p, ϕ0 = 2πh/p, andψ = 2πy/p.

Substitution of equations (B.2)-(B.4) into equation (B.1) gives, upon integration (in
which the integrals without a closed-form solution cancel out), the following expression
for the interaction energy:

E int(x, y) = k
[
b2
xIx + b2

yIy + bxbyIxy + (1 − ν)b2
zIz

]
, (B.9)

where

Ix = Iz − 1

2

ϕ shϕ

chϕ − cosψ
+ 1

2

ϑ shϑ

chϑ − cosψ
+ ϕ0(ϕ − ϕ0)

1 − chϕ cosψ

(chϕ − cosψ)2
(B.10)

Iy = Ix + ϕ shϕ

chϕ − cosψ
− ϑ shϑ

chϑ − cosψ
(B.11)

Ixy = ϑ sinψ

(
1

chϑ − cosψ
− 1

chϕ − cosψ

)
(B.12)

Iz = 1

2
ln

chϕ − cosψ

chϑ − cosψ
. (B.13)

An analogous expression was derived by [13] in their study of periodic arrays of dislocation
dipoles and strain relaxation in capped layers.

APPENDIX C

The interaction energy between two dislocations, both at depthh below the free surface of
a semi-infinite body and at the horizontal distancey from each other, is
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E(1,2) = −
∫ h

0

[
b(2)x σ

(1)
x (x, y)+ b(2)y σ

(1)
y (x, y)+ b(2)z σ

(1)
zy (x, y)

]
dx. (C.1)

One dislocation has the Burgers vectorb(1), and the otherb(2). Upon substitution of Head’s
expressions into equation (C.1), the integration gives

E(1,2) = k

2

{[
b(1)x b

(2)
x + b(1)y b

(2)
y + (1 − ν)b(1)z b

(2)
z

]
ln(1 + η2)

− (b(1)x b
(2)
y − b(1)y b

(2)
x )

2η3

(1 + η2)2

−
[
(1 + 3η2)b(1)x b

(2)
x − (3 + η2)b(1)y b

(2)
y

] η2

(1 + η2)2

}
, (C.2)

whereη = 2h/y. The energyE(−,−) of Section 5, equation (33), is obtained from equation
(C.2) by takingb(1) = b(2) = −b, andy = p. The energyE(+,−) is obtained ifb(1) =
−b(2) = b, andy = p/2.
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