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Abstract

The volume change and the strain energy stored in an isotropic elastic matrix by a disperse substitution of spherical

inclusions are determined by a non-linear analysis which accounts for the second-order elastic e�ects. When reduced to

linear theory, the results are compared with those of Eshelby. Ó 1999 Published by Elsevier Science Ltd. All rights

reserved.

Keywords: Inclusions; Dilute distribution; Elasticity; Second-order e�ects; Strain energy

1. Introduction

A second-order elastic analysis, in which the
strain energy is assumed to be a cubic polynomial
in strain invariants, has been successfully applied
in the past to study material response under high
pressure, the Poynting e�ect, material behavior in
the localized regions of severe deformation, and
other problems (Murnaghan, 1951; Seeger and
Mann, 1959; Seeger and Buck, 1960; Toupin and
Bernstein, 1961; Gschneidner and Vineyard, 1962
etc.). There has also been a signi®cant amount of
research devoted to the evaluation of e�ective
elastic properties of non-linear composites and
pollycrystalline materials (e.g., Ogden, 1974; Ha-
shin, 1985; Chen and Jiang, 1993; Imam et al.,
1995; Lubarda, 1997, 1998). In the present paper

we develop a second-order elastic analysis of a
dilute distribution of spherical inclusions, by ex-
tending the corresponding linear analysis of
Eshelby (1956). We ®rst derive the volume change
associated with a disperse substitution of spherical
inclusions in an isotropic matrix, and then derive
an expression for the total elastic energy stored in
the composite. When second-order e�ects are
ommitted, the results are compared with those
derived by Eshelby in his study of substitutional
atoms and binary alloys. A mistake in his ®nal
expression for the energy of an alloy is indicated.

2. Spherical inclusion in second-order elasticity

A solid spherical inclusion inserted into a
spherical hole of a matrix material is a classic
elasticity problem of importance for various
applications. For example, it has been often
considered as a simpli®ed elastic model of a
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substitutional or interstitial atom (e.g., Friedel,
1954; Eshelby, 1956). If the size of an inclusion is
only slightly di�erent from a size of the hole, linear
elasticity can be employed to determine the stress
and deformation ®elds in the inclusion and the
matrix. For larger di�erences in size, non-linear
e�ects become important. In the present analysis,
it is assumed that the material response is elastic,
and that the non-linear e�ects are accounted for by
taking the strain energy (per unit initial volume) to
be a cubic polynomial in the strain invariants
(second-order elasticity). For an isotropic solid,
this is (Murnaghan, 1951)

w � 3j� 4l
6

I2 ÿ 2lII � l� 2m
3

I3

ÿ 2mI � II � nIII ; �1�
where j and l are the second-order bulk and shear
moduli, while l, m and n are the third-order elastic
moduli. The three invariants of the Lagrangian
strain, E� (FTF ) I)/2, F being the deformation
gradient and I the second-order unit tensor, are:

I � E: I; II � 1

2
�I2 ÿ E: E�;

III � 1

3
�ÿI3 � 3I � II � E2: E�: �2�

The symmetric Piola±Kirchho� stress S is the
gradient of w with respect to E, which yields a
quadratic relationship between S and E given by

S � ��jÿ 2l=3�I � lI2 ÿ �2mÿ n�II �I
� �2l� �2mÿ n�I �E� nE2: �3�

In the absence of body forces, equilibrium equa-
tions are the conditions for a divergence-free non-
symmetric Piola±Kirchho� stress tensor P�SFT.
In a problem with spherical symmetry, the equi-
librium equations reduce to a single equation

dPr

dr
� 2

r
�Pr ÿ Ph� � 0; �4�

written with respect to spherical coordinates
�r; h;/� in the undeformed con®guration. The only
non-vanishing displacement component is the ra-
dial displacement u� u(r), so that the deformation
gradient becomes F� I+�, and the Lagrangian
strain E� �� �2=2. The components of the strain
matrix � are �r� du/dr, and �h � �/ � u=r. Substi-

tution into Eq. (4) yields a di�erential equation for
u, which is highly non-linear and di�cult to solve
analytically. Murnaghan (1951) accordingly used a
systematic approximation procedure to simplify
the analysis, and for a pressurized spherical hole in
an in®nite matrix, the following expression for the
displacement is obtained,

u1�r� � p
4l1

� �a1 ÿ a1� p
4l1

� �2
" #

R3
1

r2

� a1

p
4l1

� �2 R6
1

r5
: �5�

The applied pressure is p, and the initial radius of
the hole is R1. The introduced parameters are:

a1 � 11l1 � n1

4l1

; a1 � 1� l1 � 2m1

c1j1

; �6�

c1 � 1� 4l1

3j1

: �7�

The subscript 1 indicates the matrix material. Note
that the ®nal expression for a radial displacement,
given by Murnaghan (1951) at the bottom of p.
124, has a printing error, since the term propor-
tional to R6

1=r5 is there missing. The points on the
surface of the hole are displaced by

u1�R1� � p
4l1

� a1

p
4l1

� �2
" #

R1: �8�

On the other hand, the stress and deformation in a
solid sphere of material 2, under pressure p, are
uniform and associated with the displacement ®eld
(Murnaghan, 1951)

u2�r� � ÿ p
3j2

� a2

p
3j2

� �2
" #

r;

a2 � 9l2 � n2

3j2

ÿ 1

2
: �9�

If a spherical inclusion of radius R2 is inserted into
a spherical hole of radius R1, within an in®nite
matrix material, the required pressure for insertion
of the inclusion is obtained from the mis®t con-
dition u1�R1� ÿ u2�R2� � D, where D � R2 ÿ R1 is
the mis®t between the inclusion and the hole. In
view of Eqs. (8) and (9), this gives the mis®t-
pressure relationship
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D
cR1

� p
4l1

� b
p

4l1

� �2

; �10�

where

b � 1� 1

c
�a1 ÿ 1� �a2 � 1��cÿ 1�2�: �11�

The parameter c is

c � 1� 4l1

3j2

: �12�

By inverting Eq. (10), the pressure can be expres-
sed in terms of the mis®t as

p
4l1

� D
cR1

ÿ b
D

cR1

� �2

; �13�

to second-order terms in D=R1. If the mis®t is
su�ciently small, this reduces to the well-known
linear elasticity result, p � 4l1D=R1c.

The displacement ®eld outside the inclusion can
be expressed in terms of D=R1 by substituting
Eq. (13) into Eq. (5). The result is

u1�r� � D
cR1

� �a1 ÿ a1 ÿ b� D
cR1

� �2
" #

R3
1

r2

� a1

D
cR1

� �2 R6
1

r5
; �14�

to second-order terms in D=R1. The displacement
in the inclusion is similarly

u2�r� � ÿ �cÿ 1� D
cR1

� �a2�cÿ 1�
(

ÿb� D
cR1

� �2
)

r:

�15�
Su�ciently distant from the inclusion, the term
proportional to rÿ5 in Eq. (14) can be neglected,
and the displacement there becomes

u11 �r� �
C
r2
;

C � R3
1

D
cR1

� �a1 ÿ a1

"
ÿb� D

cR1

� �2
#
: �16�

In the case of linear elasticity, C � R2
1D=c, and

everywhere in the matrix material the displacement
is u1�Cr/r3. This is a divergence free ®eld, giving

no volume strain anywhere in the matrix (Eshelby,
1956).

The radius of the inclusion after its insertion in
the matrix is R�R2 + u2(R2). This is also equal to
the radius of the hole after insertion of the inclu-
sion, i.e. R�R1 + u1(R1), which gives

R � R1 1� D
cR1

� a1 ÿ b� � D
cR1

� �2
" #( )

: �17�

If the inclusion is incompressible, so that the sec-
ond-order bulk modulus j2 is in®nitely large, the
parameter c � 1 from Eq. (12), and a1� b from
Eq. (11).

3. Volume change due to inclusions

Consider a ®nite matrix of volume V enclosed
by the surface S, free of any external load or sur-
face constraint. Remove a small sphere of radius
R1 deep inside the volume V, and replace it by an
inclusion of radius R2 > R1. (An analogous deri-
vation proceeds in the case R2 < R1.) The external
surface S expands, causing an increase DV of the
volume within S. Eshelby's (1956) analysis for the
calculation of the volume change can be applied as
follows. The inclusion is ®rst considered to be in-
serted in an in®nite matrix. The points on an
imagined internal surface, having the size and
shape of S, are far from the inclusion and, thus,
have displacements given by Eq. (16). The volume
increase within the surface S is accordingly

DV 1 �
Z

S

u11 � n dS � 4pC; �18�

where n is the outward normal to S. This follows
by using Eq. (16) and from the Gauss divergence
theorem, recalling that for any n and the three-
dimensional vector r, div(rnr)� (n + 3)rn. The ef-
fects of the second-order elasticity are included in
the quadratic term of the expression for the con-
stant C in Eq. (16).

An auxiliary problem is next considered, in
which the Cauchy image traction, tim �
ÿn � r11 � ÿ2l1 n � �11 , is applied over the surface
S of the body V. The superposition of two prob-
lems makes the total traction over S equal to zero,
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and thus represents the solution of the original
problem. Since the volume of inserted inclusion is
small comparing to the matrix volume V, in the
image problem we can neglect the fact that the
material of the inclusion is di�erent from the sur-
rounding matrix material. Consequently, the vol-
ume change due to image traction can be
calculated from a linear elasticity formula (Eshel-
by, 1956)

DV im � 1

3j1

Z
S

r � tim dS � 4l1

3j1

DV 1: �19�

The last step follows because the strain �1 is
traceless, and because the displacement u11 �r� is a
homogeneous function of degree )2.

Upon summation of Eqs. (18) and (19), the
total volume increase produced by inserted inclu-
sion is

DV � 4pc1C: �20�
In the case of small mis®t, the term proportional to
�D=R1�2 in Eq. (16) for the constant C can be
omitted, and Eq. (20) reduces to DV � Vmisc1=c,
where Vmis � 4pR2

1D is the mis®t volume. In this
case DV 1 � Vmis=c and DV im � �c1 ÿ 1�Vmis=c, both
in accord with Eshelby's linear elasticity results.

In order to calculate the volume change asso-
ciated with a dilute distribution of N inserted
inclusions within a ®nite volume V, imagine that
all inclusions are ®rst inserted into an in®nite
matrix. Since non-linear elasticity e�ects are lo-
calized to regions around each small inclusion,
and assuming these to be distant enough so that
regions of non-linearity do not overlap, we can
calculate the volume change DV 1 within the
surface S by superposition from Eq. (18), as
DV 1 � 4pNC. The image traction is then applied
over the external surface S of the body V, asso-
ciated with the displacement ®eld of each inserted
inclusion. The volume change in the image
problem is, therefore, DV im � �4l1=3j1�DV 1.
Upon the summation, the total volume change
produced by all inclusions is

DV � 4pNc1R3
1

D
cR1

� �a1 ÿ a1 ÿ b� D
cR1

� �2
" #

:

�21�

If the quadratic term in D=R1 is neglected, Eq. (21)
reduces to the linear elasticity result of Eshelby
(1956), DV � N�c1=c�Vmis:

4. Strain energy of a single inclusion

The strain energy stored in the matrix by in-
sertion of inclusion is equal to the work done by
the pressure p over the surface of the hole, i.e.,

E1 �
Zu1

0

4p�R1 � u1�2p du1; �22�

where u1� u1(R1) is the displacement of the points
on the surface of the hole. Since, by inverting
Eq. (8),

p
4l1

� u1

R1

ÿ a1

u1

R1

� �2

; �23�

to second degree in (u1/R1), the substitution into
Eq. (22) gives, upon integration,

E1 � 6l1V1

u1

R1

� �2

ÿ 2

3
�a1 ÿ 2� u1

R1

� �3
" #

: �24�

The volume V1 � 4pR3
1=3 is the initial volume of

the hole. Expressed in terms of the relative mis®t
D=R1, the energy in the matrix is

E1 � 6l1V1

( 
D

cR1

!2

� 2

"
2

3
�a1 � 1� ÿ b

#
D

cR1

� �3
)
: �25�

The strain energy in the inclusion is E2 � V2w,
since the inclusion is deformed uniformly. The
speci®c strain energy w is calculated from Eq. (1)
with the invariants: I � 3��u2=R2� � �u2=R2�2=2�,
II � I2=3, and III � I3=27, and with the dis-
placement u2 � u2�R2� de®ned by Eq. (9). This
gives

E2 � 9

2
j2V2

u2

R2

� �2

� 2

3
�a2 � 2� u2

R2

� �3
" #

: �26�

Expressed in terms of D=R1, the energy in the in-
clusion is
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E2 � 6l1V2�cÿ 1� D
cR1

� �2
(

�2
2

3
�cÿ 1��a2 ÿ 1� ÿ b

� �
D

cR1

� �3
)
: �27�

The total strain energy stored in the inclusion and
the matrix is E�E1 + E2. Thus, upon substitution
of Eqs. (25) and (27),

E � 6l1V1 c
D

cR1

� �2

� u
D

cR1

� �3
" #

; �28�

where

u � cÿ 1

3
�2a1 ÿ 1� �2a2 � 1��cÿ 1�2�: �29�

If the inclusion is incompressible (c � 1), the pa-
rameter u � 2�2ÿ a1�=3.

The total energy can be rewritten in terms of the
mis®t volume Vmis � 4p�R3

2 ÿ R3
1�=3 by using the

approximation

D
R1

� 1

3

Vmis

V1

ÿ 1

3

Vmis

V1

� �2
" #

: �30�

For example, in the case of small mis®t and linear
elasticity, the total energy is

E � 2

3

l1

c
V 2

mis

V1

; Vmis � 4pR2
1D: �31�

The derived energy expressions also apply when a
small inclusion is inserted deep inside a large, but
®nite body. This is because the strain energy due to
image tractions, required in the transition from an
in®nite to a ®nite body, can be neglected com-
paring to E, since it is of the order of (V1/V)E, V
being a large volume of the body (V � V1).

The gradients of the two energies with respect
to the corresponding boundary displacements are:

oE1

ou1

� 4R2
1pp0

1;
oE2

ou2

� ÿ4R2
2pp0

2; �32�

where p0
1 and p0

2 are the nominal or ®rst Piola±
Kirchho� pressures on the surface of the hole and
the inclusion, i.e.,

p0
1 � 4l1

u1

R1

ÿ �a1 ÿ 2� u1

R1

� �2
" #

; �33�

p0
2 � ÿ3j2

u2

R2

� 1

3
�a2 � 5� u2

R2

� �2
" #

: �34�

The derivative of the total strain energy with re-
spect to the radius R of the inclusion, after its in-
sertion into the matrix, is likewise

oE
oR
� oE1

ou1

� oE2

ou2

� 4p�R2
1p0

1 ÿ R2
2p0

2�; �35�

which is equal to zero, since R2
1p0

1�R2
2p0

2�R2p.
Therefore, the inclusion will adopt the size in its de-
formed state which minimizes the total strain energy
of the inclusion and the matrix. In the case of linear
elasticity, the distinction between the pressures p0

1

and p0
2 disappears, and 4l1u1 � ÿ3j2u2. Since

u1 ÿ u2 � D, it follows that u1 � D=c, in agreement
with a linearized form of the result following from
Eq. (14).

5. Strain energy of two distant inclusions

The strain energy due to one inclusion (say,
inclusion a), expressed in terms of the pressure pa

required for insertion of the inclusion into the
matrix, is

Ea � 6l1V1

pa

4l1

� �2

� 4

3
�a1 � 1� pa

4l1

� �3
" #

� 9

2
j2V2

pa

3j2

� �2

� 4

3
�a2 ÿ 1� pa

3j2

� �3
" #

: �36�

This is obtained by summing Eqs. (24) and (26),
and by incorporating the pressure-displacement
relationships given by Eqs. (8) and (9). When the
second inclusion is inserted into a matrix, far from
its boundary and from the inclusion a, the addi-
tional strain energy stored in the system can be
calculated as the work required for the second
insertion. This is

Eb � 6l1V1

pb

4l1

� �2

� 4

3
�a1 � 1� pb

4l1

� �3
" #

�
Z
Sb

ta
n � ub

1 dSb � 9

2
j2V2

pb � pa
im

3j2

� �2
"

� 4

3
�a2 ÿ 1� pb � pa

im

3j2

� �3
#
: �37�
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The contribution given by the integral over Sb in
Eq. (37) follows because, when a hole is cut in the
matrix to insert the inclusion b, its surface Sb is
already under the traction ta

n due to the stress ®eld
of the previously inserted inclusion a. The work of
this traction on the displacement required for the
insertion of inclusion b is

Z
Sb

ta
n � ub

1 dSb � ÿra
iju

b
1

Z
Sb

ninj dSb � 4pR2
1pa

imub
1: �38�

The last step follows because the integral of ninj is
equal to 4pR2

1dij=3, and because ra
ij has a non-

deviatoric contribution only from the image stress,
i.e., ra

kk � ÿpa
im, where pa

im is the pressure over Sb

due to the image ®eld of the inclusion a. To insert
the inclusion, the pressure pb is added to the sur-
face of the hole Sb, which gives rise to the energy
contribution represented by the ®rst term in
Eq. (37). In order to insure the continuity of
traction between the inclusion b and the matrix,
the total pressure applied to the inclusion b is
pb + pa

im. This pressure appears in the last part of
the energy in Eq. (37).

The mis®t condition for the inclusion b is

ub
1 ÿ ub

2 � D� pa
im

3j1

R1: �39�

The term R1pa
im=3j1 is included because it repre-

sents how much the spherical portion of the
matrix material, to be replaced by the inclusion b,
has changed its size by the image ®eld of the in-
clusion a, before the insertion of the inclusion b
took place. By inversion of Eqs. (8) and (9), we
have:

ub
1 �

pb

4l1

� a1

pb

4l1

� �2
" #

R1; �40�

ub
2 � ÿ

pb � pa
im

3j2

� a2

pb � pa
im

3j2

� �2
" #

R2; �41�

and the substitution into the mis®t condition of
Eq. (39) gives

D
cR1

� pb

4l1

� b
pb

4l1

� �2

� 1ÿ c1

c

"

�d1

pb

4l1

� d2

pb

4l1

� �2
#

pa
im

4l1

; �42�

to within linear terms in the image pressure. The
introduced parameters are:

d1 � cÿ 1

c
�2cÿ c1 � 2a2�cÿ 1��; �43�

d2 � cÿ 1

c
�a1 � a2�cÿ 1��6cÿ c1 ÿ 3��: �44�

Solving Eq. (42) for the pressure pb, we obtain

pb � pa ÿ 1ÿ c1

c
ÿ 2b 1ÿ c1

c

� �
ÿ d1

� �
D

cR1

(

��d2 ÿ 3bd1� D
cR1

� �2
)

pa
im: �45�

Substituting Eq. (45) into Eq. (37) gives, after a
lengthy but straightforward derivation, the fol-
lowing expression for the energy stored in the
system by insertion of the inclusion b,

Eb � Ea � Eint: �46�
The energy Eint is the interaction energy between
the stress and deformation ®elds of two inclusions,
i.e.,

Eint � 3V1 c1

D
cR1

� �
� /

D
cR1

� �2
" #

pa
im; �47�

where

/ � �a1 ÿ 1� 1ÿ c1

c

� �
ÿ �a2 � 1� c1

c
�cÿ 1�2

� c1 ÿ 1: �48�
The interaction energy in Eq. (47) is much smaller
than the self-energy due to one inclusion, given by
Eq. (28), because pa

im � l1D=cR1, the latter being
of the order of the pressure between the matrix and
inclusion, which is much greater than pa

im. The
expression for the interaction energy is, however,
needed because the interaction energy becomes of
the same order as the self-energy when a large
number of inclusions is substituted in the matrix
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(see next section). Note also that for an incom-
pressible inclusion, the parameter / � �1ÿ c1�
�a1 ÿ 2�.

Eq. (47) can be rewritten in terms of the mis®t
volume by using Eq. (30). This yields

Eint � V1

c1

c
Vmis

V1

� �
� 1

3c2
�/ÿ cc1�

Vmis

V1

� �2
" #

pa
im:

�49�
The interaction energy can also be expressed in
terms of the volume change DV given by Eq. (20).
The result is

Eint � V1

DV
V1

� 1

3c2
1

c1 �
6m1 ÿ n1

3j1

� �
DV
V1

� �2
" #

pa
im:

�50�
In the case of linear elasticity, Eq. (50) reduces to
Eint � pa

imDV , in agreement with Eq. (8.9) of
Eshelby (1956), and con®rming that the two dis-
tant inclusions interact only through their image
®elds. A reciprocity property also holds in the
linear case: the image pressure at b due to inclusion
at a, is equal to the image pressure at a due to
inclusion at b.

6. Strain energy of dilute distribution of inclusions

When a large number (N) of inclusions is
inserted into the matrix in a dilute manner, the
interaction energy among inclusions is of the
same order as the self-energy of all inclusions,
because a substitution of N inclusions introduces
N�N ÿ 1�=2 interactions among them. Thus, from
Eq. (47), the total interaction energy is

Eint � 3

2
NV1 c1

D
cR1

� �
� /

D
cR1

� �2
" #

pim; �51�

where pim is the image pressure at the location of
one inclusion due to image ®elds of the remaining
(N ) 1) inclusions. For a dilute distribution of
inclusions throughout the volume V, pim can be
calculated from the average dilatation produced
by image ®elds. This gives pim � ÿj1DV im=V ,
where DV im � 16pNl1C=3j1, from the analysis in
Section 3. Therefore,

Eint � ÿ8pl1C
V
V1

x2 c1

D
cR1

� �
� /

D
cR1

� �2
" #

;

�52�
where x � NV1=V is a measure of the volume
concentration of inclusions. It is noted that image
tractions do not change the volume only, but also
the shape of a matrix, and the total interaction
energy cannot be calculated simply as pimDV im=2.

In view of Eq. (16) for the constant C, Eq. (52)
becomes

Eint � ÿ6l1Vx2 c1

D
cR1

� �2

� w
D

cR1

� �3
" #

; �53�

within cubic terms in �D=R1�, where

w � �a1 ÿ 1� 1� c1 ÿ
2c1

c

� �
ÿ 2�a2 � 1� c1

c
�cÿ 1�2

ÿ 3c1 � 1

4
ÿ 2m1

j1

: �54�

Since a dilute distribution of inclusions is consid-
ered, Eint does not depend on a distance between
inclusions, and consequently there are no long-
range interaction forces among the inclusions.

The self-energy contribution of all inclusions is
N times the self-energy of a single inclusion, given
by Eq. (28), i.e.,

Eself � 6l1Vx c
D

cR1

� �2

� u
D

cR1

� �3
" #

: �55�

The total strain energy is the sum of the right-hand
sides of Eqs. (53) and (55). Thus,

E � 6l1Vx �cÿ c1x� D
cR1

� �2

� �u
"

ÿwx� D
cR1

� �3
#
:

�56�
In the case of small mis®t, the cubic term in
Eq. (56) can be neglected, and the total energy
becomes

E � V
V1

E0 x 1ÿ c1

c
x

� �
; �57�

where E0 � 6l1V1c�D=cR1�2 denotes the strain en-
ergy due to only one inserted inclusion. Eq. (57)
di�ers from Eshelby's (1956) result, which contains
the coe�cient c1�c1 ÿ 1�=c�cÿ 1�, rather than c1=c,
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in his (8.26). That seems to be a mistake, because
for incompressible inclusions c � 1, and Eshelby's
expression would give a negative in®nite energy.
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