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Abstract

The stress formulas for dislocation arrays located at the interface between two different materials are derived and shown to
be simple generalizations of the well-known formulas for arrays in homogeneous bodies. The results are given for arrays that
consist of discrete distribution of edge dislocations, and for those modeled by a continuous distribution of infinitesimal
dislocations. The far field stresses exerted by a discrete array represent the stress field of the corresponding continuous array.
The stress distribution due to an infinite dislocation array beneath the free surface of a semi-infinite body is derived and used
in conjunction with an energy criterion to discuss a condition for spontaneous nucleation of the dislocation array.

1. Introduction

A study of dislocation arrays is an important issue in
modeling various features of material behavior. Dis-
location wall structures have been extensively used
to model the grain boundaries, persistent slip bands,
polygonalization, etc. (Nabarro, 1967, Hirth and
Lothe, 1968). The arrays of dislocations along the
common slip plane have been successfully utilized in
the thin film and interface studies to accommodate
for the misfit between two adjacent crystals (Mat-
thews, 1979; Jesser and van der Merwe, 1989; Fre-
und, 1993). They have also been used to interpret
various results of the mathematical theory of plastic-
ity (Mura, 1987).

A detailed study of stress fields produced by finite,
infinite, and semi-infinite walls of edge dislocations
in homogeneous infinite and semi-infinite bodies has
been presented in a preceding paper (Lubarda and
Kouris, 1996). Here, we extend that analysis by

considering dislocation walls and other arrays at the
interface between two different materials. This is
accomplished by using a solution for the stress field
due to a single dislocation at the interface (Head,
1953; Dundurs and Mura, 1964; Dundurs, 1969).
Simple closed form expressions are derived, which
represent generalizations of the well-known formulas
for homogeneous bodies (Hirth and Lothe, 1968).
The arrays that consist of a discrete distribution of
edge dislocations, as well as the arrays modeled by a
continuous distribution of infinitesimal dislocations
are analyzed. The stress distribution due to an infi-
nite array of edge dislocations beneath the free sur-
face of a semi-infinite body is then derived. This is
used to discuss a condition for spontaneous forma-
tion of the dislocation array, based on an energy
criterion proposed by Herring (1951).

Elastic isotropy is assumed throughout the paper.
Dislocation walls in a homogeneous anisotropic ma-
terial were considered by Chang (1962). Dislocation
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walls at the interface between two different or-
thotropic materials were studied by Chou et al.
(1975). The relationship between the stress field of
dislocation walls at interfaces and the Frank formula
for a grain boundary was discussed by Hirth et al.
(1979).

2. Dislocation walls at interface of two joined
half-spaces

Consider an edge dislocation located at the interface
of two joined elastic half spaces, with its Burgers
vector normal to the interface (Fig. 1a). Let w, and
v, be the shear modulus and the Poisson ratio of the
material @, and p, and v, of the material @ The
Alry stress function for this problem is given by Egs.
(28) and (29) of [8], which can be rewritten in a
compact form as

®=—kyb[rInrsin+(l—w)rdcosd]. (1)

In Eq. (1), r and 6 are the polar coordinates, & is the
magnitude of the dislocation Burgers vector, and
o=1%+p, where the minus sign corresponds to
material (D and the plus sign to material @. The
constant k, is defined by

w I+a

ky= , W= . 2
0 2m(1=v)) Ky 1_BzM1 (2)

The Dundurs parameters
Ik, +1)—k,—1
T D)t 1

I'(k,—1)—x,+1 3
CT(k, +1) k1 (®)

are conveniently employed, where I" = v, /., while
kK;=3=4v, and x,=3—4v, are the Kolosov
elastic constants for plane strain. For two identical
homogeneous materials, a =3 = 0.

It is observed that for each material the Airy stress
function (1) consists of two parts, one corresponding
to a dislocation in an infinite homogeneous body
with elastic properties (i}, v,), and the other corre-
sponding to a Flamant concentrated force of magni-
tude Bk,bm, tangent to the free surface of a semi-in-

finite body. The stress components are obtained from
(1) by the appropriate differentiation, which gives

si sin 0
cos 6
Tre=kob - . (4)

The principal stress directions relative to the radial
direction are inclined at an angle « defined by
tan 2c = cot 6/(1 — o). If the two half spaces are
of identical material (w = 1), Eq. (4) reduces to the
well-known expressions for a dislocation in an infi-
nite homogeneous medium (Nabarro (1967), Eq.
(2.12), p. 56), where the principal stress directions
are at 45° relative to the radial direction. The same is
also the case if the two materials are different, but
both incompressible, since then k, =k, =1, and
B=0.

The Cartesian in-plane stress components at an arbi-
trary point (x, y) are likewise

y[(20 +1) #? +y2]

o, = —kob - 5
, 1) (5)
o, = LG Y] ©
(x2+y%)
x[x2 = (20~ 1) ]
T, = kob ey 7
(x2+y?) ()

Note that the shear stress variation 7, along the slip
plane of the dislocation (y = 0) is the same in both
materials. Furthermore, since the solution contains a
contribution from the Flamant concentrated force,
the integral of the shear stress along any line parallel
to the y-axis is equal to Bkybm (Dundurs and
Sendeckyj, 1965; Comninou, 1977). If the two half
spaces are of identical materials, Eqs. (5)-(7) reduce
to the stress expressions due to dislocation in an
infinite homogeneous medium, However, an edge
dislocation at the interface of two inhomogeneous
materials is a non-equilibrium, high energy configu-
ration which is relaxed by pushing dislocation out of
the interface, toward a softer material. This has been
discussed by Hirth et al. (1979), Gutkin et al. (1989),
Gutkin and Romanov (1994), and Lubarda (1996).
Egs. (5)-(7) are simple generalizations of the corre-
sponding formulas for a homogeneous infinite body,
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obtained when = 1. Nakahara et al. (1972) used
equivalent stress expressions, which were written in
a less compact form separately for each half-space.

(@)

nh

Fig. 1. (a) An edge dislocation at the interface between two
different semi-infinite bodies. The Burgers vector of dislocation is
normal to the interface; (b) Dislocation wall of identical edge
dislocation along the interface between two semi-infinite bodies.

Consider a dislocation wall at the interface of the
two joined half spaces consisting of identical, uni-
formly spaced edge dislocations along the y axis,
from y=L, to y=L, (Fig. 1b). Let L, =N,k and
L, = N,h, where & is the uniform dislocation spac-
ing. The in-plane stresses at an arbitrary point (x, y)
are obtained by adding the contributions from all
dislocations in the wall, which gives

N,
0x= _kOb Z
n=N,
y (y=nh)[(20 + 1) 2%+ (y = nh)’]
[x2 + (y—nh)2]2

o = kb % (y—nh)[xz—(Zw—l)(y—nh) ]

(8)

P
n=N, [x2+(y—nh)2]
(9)
Nox| 2= (Quw—1 y—nh2
S i Ll UL (Elil R
n=N, [x2+(y—nh)]
If Ny= — and N, =, an infinitely long wall in

both directions is obtained. The sums appearing in
Egs. (8)—(10) can be performed analytically, follow-
ing an analogous procedure used by Hirth and Lothe
(1968) in the case of a homogeneous infinite body.
The resulting stresses are

o, = —kwii—qi—fﬂ[/x + 20w sinh(2wE)]
(11)
o,= —km'&i;nl [Qw~1)A—-20mE
X sinh(2m¢)] (12)
2méE
Ty = kfrr—-Az— {w[cosh(Zw&) cos(2mm) — 1]
sinh(2mE)
+(1—(0)A—'—2F-}, (13)

where k=k,b/h, and A = cosh(2m§) — cos(2mm).
The non-dimensional variables £ = x/h and n=y/h
are conveniently employed. If two half spaces are of
identical material (or both incompressible), w =1
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and Egs. (11)-(13) reduce to Egs. (19-75)-(19-77)
of Hirth and Lothe (1968), p. 670. Similar, but
separate expressions for the two half-spaces, were
also derived by Chou and Lin (1975), although their
Egs. (9a) and (9b) contain a missprint, due to omit-
ted sinh(2 &) term.

In the limit as x = 4+, both normal stresses vanish,
but a far field constant shear stress exists, equal to
Bkm. The three stress components in (11)-(13) are
periodic functions of the coordinate m, with a period
equal to one, so that along the slip plane of any
dislocation in the wall ¢, = ¢, =0, and

B kg sinh(27E)
T"'y_——sinhz('n'g) o+(l-w el
(14)

For w =1, Eq. (14) reduces to the well-known ex-
pression given, for example, by Nabarro (1967) (Eq.
(2.91), p. 96). It should be noted, however, that a
dislocation wall at the interface between two differ-
ent materials is not an equilibrium dislocation con-
figuration, and the wall is subject to forces which
tend to move it toward the softer material. This

3.0 T T

instability has been discussed by Chou and Lin
(1975), and Hirth et al. (1979).

A semi-infinite wall is obtained if ¥, =0 and N, =
. The sums appearing in the expressions for the
normal stresses o, and o, diverge. The shear stress
along the slip plane of the leading dislocation in the
wall (i.e., along the x-axis), is given by

1 - (20— 1)n?
é:- Ez:1 (&2 +n?)” ]’

which can be summed to give

xy

(15)

B 1 wiE
=M 2 T T (g
sinh(2m§) ]}

o+(l-o 16
(1-0)—5 (16
This also can be obtained directly from the infinite
wall solution (14) by an appropriate superposition.

If a dislocation wall is modeled by a continuous
distribution of infinitesimal dislocations with density

1/h, the stresses are obtained by an appropriate

T, /Bkn

-3.0

3

-15.0 -10.0 -5.0

0.0 5.0 10.0 18.0
x/h

Fig. 2. The shear stress variation along the line at distance # above the leading dislocation of a semi-infinite dislocation wall at the interface
between two different materials. As x — £+, the shear stress approaches the constant value of Bk /2. If two materials are the same, the
shear stress distribution becomes antisymmetric, with a zero far-away value as x approaches to .
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integration. For the wall along the y-axis extending
from L, to L,, this gives

L
1 x2+(y—u)2 x? :

o, =k{—=In 5 -0 5
2 x X (y-v) ),
(17)

1 X+ (y—v)
0'y=k{5(2co— 1) ln——xz—

l } 2 (18)

o3
x>+ (y—v) L

K (o-1) =t 2
T, = - —_—
xy x

x(y=v) } (19)

w—;—ﬁ .
x*+(y—v) L
In the case of a homogeneous infinite body (w = 1),
the above expressions reduce to Egs. (9)-(11) of
Lubarda and Kouris (1996).
An infinite wall of continuously distributed disloca-
tions is obtained if L, = — and L, =%, When the
infinite wall is at the interface of two different half
spaces, from Egs. (17)-(19) it follows that the nor-
mal stresses are zero, but the shear stress is constant
throughout the body and equal to B4m. For the wall
in a homogeneous infinite body, all stress compo-
nents vanish. The existence of a narrow longitudinal
layer around the wall with the significant stresses in
the case of a discrete dislocation distribution is,
therefore, lost when the wall is modeled by a contin-
uous distribution of infinitesimal dislocations.
If L,=0 and L, = are substituted in Eqgs. (17)-
(19), the stress distribution for a semi-infinite wall is
obtained. In this case both normal stresses diverge,
while the shear stress becomes

Xy
x2+y? |
(20)
Note that 7, is constant and equal to k7 /2 along
the x-axis. The variation of 7,, along the line y=~h

is shown in Fig. 2. As x — £, 7, approaches the
far away value of Bk /2. For f =0 and w =1, Eq.

kel +(1 12
= —+(l-w)tan” —+o
Txy Bz ( 0.)) x

(20) reduces to the expression (21-50) of Hirth and
Lothe (1968), p. 711.

3. Dislocation array with the Burgers vector par-
allel to the interface

If a dislocation at the interface has its Burgers vector
parallel to the interface (Fig. 3a), the Airy stress
function is

®=—kyb[rInrcosf—(l—w)rdsinf].
(21)

The stress components in polar coordinates are

cos 6 cos 0
o,=—kyb(2w~1) , 0= —kyb ,
-
sin 6
T = —kob s (22)
r

while the corresponding Cartesian components are

X[yt - (2o —-1)x?]

o, =kyb . 23
(x*+y?) (23)
o, = _kobx[(2w+1)y2:-x2] (24)
(22 +y%)
AL bt Ly (25
(x*+y?)

Since the solution contains a contribution from the
Flamant concentrated force, the integral of the nor-
mal stress o, along any line parallel to the y-axis is
equal to Bkybm. (An extension of this result, origi-
nally observed by Dundurs and Sendeckyj (1965), to
the case of anisotropic bicrystals was given by Bar-
nett and Hirth (1974)). If the two half spaces are of
identical materials, Egs. (23)-(25) reduce to the
stress expressions due to dislocation in an infinite
homogeneous medium, in which case there is no net
force along any line parallel to the y-axis.

Consider an infinite dislocation array at the interface
of the two joined half spaces consisting of identical,
uniformly spaced edge dislocations of spacing A
(Fig. 3b). The in-plane stresses at an arbitrary point
(x, y) are obtained by adding the contributions from
all dislocations in the array. Using the expressions
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(23)~(25) for the stresses due to a single dislocation
at the point (0, nh), one obtains the stresses for the
dislocation array as

= (y—nh)’ = (20-1)x

oy =kobx ¥ 7 (26)
n=-c [x2+(y—nh)]

5, = ~kbs i (2(1)+1)(}7—nh)2-}2-x2 )

n= o [x2+(y—nh)]
"rxy=k0bx i
o=y - o-12]

[x2+(y—nh)2]2

(28)

The sums appearing in Eqgs. (26)-(28) can be per-
formed analytically, with the resulting stress distribu-
tion

2mé
0, = —km—5 {w[cosh(2w§) cos(2mm) — 1]

+(w—1)A

sinh(2m&) } 9)

2k

2k
o,= k’TTT {w[cosh(ng) cos(2mn) — 1]

—(0+1)A (30)

sinh(27E)
2wk }
Tey = kﬂﬂj:—n){ A—2ow§ sinh(2wE)},

(31)

where again k=kyb/h, and A= cosh(2m§)—
cos(2 7). If two half spaces are of identical material
(or both incompressible), w =1 and Egs. (29)—-(31)
reduce to Eqs. (19-79) of Hirth and Lothe (1968), p.
671 (apart from a printing error in the last equation
of (19-79) in the first edition of the mentioned
reference, where o, should be replaced by —ay).

In the limit as x— +o, the shear stress goes to
zero, but a non-vanishing normal stress field exists,

given by o, = k7, and o, =B F2kn. If two
materials are identical (0 = 1), only o, = F2k is

non-zero. As an illustration, consider a dislocation
array at the interface between aluminum (., =
26GPa, v, =0.33) and copper (u, = 45GPa, v, =

(a)

Fig. 3. (a) An edge dislocation at the interface between two
different semi-infinite bodies. The Burgers vector of dislocation is
parallel to the interface; (b) An infinite array of edge dislocation
along the interface between two semi-infinite bodies.
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0.35), so that from (3) the Dundurs parameters are segment of length % is equal to ABkw. Along the
a =028 and B =0.08. The variations of o, along lines x= +2h, o, is essentially constant and equal
the lines x= +0.14 and x= +# are shown in Fig. to Bkm. Along the interface line (y-axis), the normal
4, The integral of the normal stress o, along any stress o, is zero, except at the locations of the

60.0 T - T 7 ; T
(a)
x=-=0.1h
40.0
20.0
B
~
<
N
0.0
-20.0
_40'0 1 1 1 Il . ]
-1.5 -1.0 -0.5 0.0 0.5 1.0 15
y/h
1.5 N T T T T T
(b)

G /Bkm

0.5 r

x=—h

———— x=

0.0 . . .
~1.5 -1.0 -0.5 0.0 0.5 1.0 15

y/h

Fig. 4. (a) The variation of the normal stress @, along the lines x = £0.14 produced by the infinite dislocation array from Fig. 3b, along
the interface between two different materials with B = 0.08. The integral along the segment of length / is in both cases the same and equal

to ABkw; (b) The same as in (a), along the lines x= +A.
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dislocation centers, where the concentrated forces of
magnitude ARk exist. These forces equilibrate the

far away stress o, = Bk,

The three stress components in (29)-(31) are peri-
odic functions of the coordinate m, with a period
equal to one, so that along any line parallel to the

4.0

O /Bkr
o
o

-4.0
-4.0

45.0

-2.0

0.0
x/h

20

4.0

30.0 -

15.0 -

C,/pkm
o
o

-16.0 -

-30.0

-45.0

:

-4.0

-2.0

0.0
x/h

2.0

4.0

Fig. 5. (a) The variation of the normal stress o, along the line y =0 produced by the infinite dislocation array from Fig. 3b, along the
interface between two different materials with § = 0.08. The stress @, tends to constant value of Bk, as x = +%=,; (b) The same as in (a),
for the normal stress o,. Away from the dislocation array, the stress quickly sets in to the value (B — 2)k7 in the material @, and to the

value (B + 2)k in the material (2.
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x-axis and passing through the dislocation center,
Ty =0 and
2kt

e lo+ (01
% cosh(2mg) — 1 ©=1)

sinh(27E)
2mé }
(32)

B 2km2E sinh(27E)
%= coh(2nE) =1 [‘”‘ (0t )= }
(33)

For a dislocation array at the interface between the
aluminum and copper (B = 0.08), the plots of (32)
and (33) are shown in Fig. 5.

When a dislocation array is modeled by a continuous
distribution of infinitesimal dislocations with density
1/h and, therefore, with the specific Burgers vector
of magnitude b/#4, the stresses are obtained by an
appropriate integration. The result is

o, =pkm,0,=(pF2)kw,7,,=0. (34)

These are, in fact, the far field (x — + ) stresses of
a discrete dislocation array (Fig. 5). In the case of a
homogeneous infinite body, o, =7, =0 and o, =
+2kmw, with a specific strain energy equal to one
fourth of w(b/h)?/(1 —v).

4. Dislocation array beneath the free surface of a
semi-infinite body

Consider an infinite dislocation array parallel to the
free surface of a semi-infinite body, and at distance [
from it (Fig. 6). The array consists of identical,
uniformly spaced edge dislocations of spacing 4.
Such a dislocation array was considered by Herring
(1951), who discussed its relation to the surface
stress and energy, and by Hartley (1969) who de-
rived the stress distribution for a more general case
of the Burgers vector inclined to the free surface.
The stress distribution due to dislocation wall near
the free surface and normal to it was derived by
Lubarda and Kouris (1996). The in-plane stresses at
an arbitrary point (x, y) in Fig. 6 are obtained by
adding the contributions from all dislocations in the
array. The stresses due to a single dislocation at the
point (x,— [) can be derived using an image proce-

y

! X

TTTTTJ'LTTTT
h

Fig. 6. An infinite dislocation array of identical edge dislocation
with uniform spacing #, at the distance / beneath the free surface
of a semi-infinite body.

dure (Head, 1953), which gives the stresses as the
sum of two stress fields:

-0+ (y+ )]

e [(x—u)2+(y+lj2]2
) (y—z>[3(x2—u> +<y2—zz>] -
[(x=w)*+ (y= 1)
N <y+z>[<x—u>2—<y+zz>z]
[(x=u)+ (y+1)7]
_(y—l)[(x:u) —(y;l)] o)
[(x=u)*+ (y=1)]
et <x—u>[<x—u>2—<y+zz>2]
[(x=w)+(y+1)]
_(x—u)[(x;u) —<y2—21>] -
[((x=w)+ (y-1)7]
and

o, = 2koblf (x—1)* = 6(x—u)’ y(y—1)
+2y(y=0= (3=
$[(e=w?+ (-1 9)
o, =2k bl{(x = 1)* +6(x—u)’ y(y—1)
=2y(y=1)’ = (v -1

x[(x=w?+ (=07 (39)



200 V.A. Lubarda, D.A. Kouris / Mechanics of Materials 23 (1996) 191-203

(x=w)y[(x=u)* =3(y=1)’]
(=) + (-0

7oy = 4kobl :

(40)

where k= w/27(1 —v). The corresponding Airy
stress function for the total stress distribution is

(x—w)'+(y+1)’
(x=u)’+(y=1)°

pa—2070 }
)

1
@=k&{5(y+01n

(41)

(x—u)’+(y-1)°

The stress field due to an infinite dislocation array of
identical, uniformly spaced edge dislocations of
spacing h is obtained by adding the contributions
from all dislocations in the array. Although the sums
can be performed in a closed form (Hartley, 1969;
Lubarda, 1996), the resulting formulas are somewhat
lengthy. Consequently, consider a particularly impor-
tant feature of the stress distribution, i.e., the normal

stress o, variation along the free surface. From (35)
and (38), with u=nh and y =0, it follows that

e, Y o
nm- [(E=n)? +13]

where §=x/h, I,=
be summed to give

o,(§,0) (42)
I/h, and k=k,b/h. This can

sinh(21,)
cosh(2mly) — cos(2mE)

o.(§,0)=47k

cosh(2mly) cos(2wE) — 1
e [cosh(2m1y) = cos(2mE)]*
(43)

which is in agreement with Eq. (2) of Hartley (1969),
apart from a printing error in the fourth line of that
equation, where the plus sign preceding the term
2(c + B) should be replaced by the minus sign.

The plots are shown in Fig. 7 for several values of
l,. The oscillatory behavior of o (&, 0) is more
pronounced for smaller values of [ For [> h, the

2.0 T T T T
— =4
---= [=h2
—--— I=h
15 r 1=2h
" N -
k) AN /’
¥ 1.0 poe =
o
05
O'O 1 ] ] i il
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x/h

Fig. 7. The variation of the normal stress o,(&, 0) along the surface y = 0 caused by infinite dislocation array from Fig. 6. A pronounced
oscillatory stress behavior at small values of ! disappears for / > h, when the stress becomes essentially constant and equal to 4wk,
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stress o, (&, 0) is essentially constant and equal to
41k,

A simple result about the nature of the stress distri-
bution in a semi-infinite body is discovered when the
dislocation array is modeled by a continuous distri-
bution of infinitesimal dislocations of density 1 /.
By appropriate integration of (35)-(37) and (38)-
(40), it follows that the normal stress o, and the
shear stress 7, are identically equal to zero through-
out the body, while the normal stress o, is constant
and equal to 4wk above the dislocation array (y >
—1), and zero everywhere below the dislocation
array (y < —I). The considered dislocation array,
therefore, sets in a constant surface tension in a thin
layer adjacent to the free surface, and the zero stress
below it. This produces a constant misfit strain (of
amount b /h), well-known from the thin film and the
misfit dislocation studies. Note that the specific strain
energy in the layer is equal to p(b/h)? /(1 —v). In
this expression the spacing £ should be less or at
most equal to the layer thickness [, so that the stress
in the corresponding problem with a discrete disloca-
tion distribution becomes approximately constant
throughout the layer. Indeed, from the formulas given
in the Appendix for the array with a discrete disloca-

tion distribution, Fig. 8§ shows the normal stress
o, (£h/2, n) along the vertical lines at distance A /2
from the dislocation center, i.e. exactly in-between
the two adjacent dislocations from the array. Clearly,
for [ greater than % the results of a continuous
distribution are nearly coincident with those of a
discrete distribution (except near the dislocation
cores, along the vertical lines passing through the
distocation centers).

It is not hard to see that a uniform continuous
dislocation distribution of density 1/A?, everywhere
in the layer y> —1I beneath the free surface, pro-
duces a linear stress distribution o, = 4wk(l+y)/h
within the layer, and zero stress outside the layer.
This result by itself is of interest, since it can be
conveniently utilized, in the spirit of Mura (1987), to
interpret various results of the mathematical theory
of plasticity. '

According to Herring (1951), dislocation array just
beneath the free surface will spontaneously form if
the lowering of the surface energy caused by the
array is greater than the strain energy of the array
itself. The change of a specific surface energy v
associated with a surface strain of amount e =b/h
is (3 /de)b/h. Since dy/de = f — v, where f is the

— =i
10 f e 2w

—-— I=h
- 1=2h

x

O /4kn

-0.2

L

-3.0 -2.5 -2.0

-1.5 ~-1.0 -0.5 0.0
y/h

Fig. 8. The variation of the normal stress o,(+//2, m) produced by the infinite dislocation array from Fig. 6. For /> A, the stress becomes
nearly constant and equal to 4wk in the subsurface layer —/ <y <0, and equal to zero in the rest of the body (y < —1I).
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surface stress (Herring, 1951), the nucleation condi-
tion becomes | f— vy | > (I/Wub/(1 ~v). For most
materials the condition is not satisfied, although for
some materials it could be, particularly for those
with a compressive rather than tensile surface stress
(f<0). It should be also pointed out that an estimate
of the specific strain energy due to dislocation array
used by Herring (1951) and Cammarata (1994) is
based on an approximate result for a single disloca-
tion near the free surface, which underestimates the
actual strain energy. An exact expression for the
energy of the array has been derived by Willis et al.
(1990). An alternative derivation was given by
Lubarda (1996).

5. Conclusion

The closed form solutions for the stress fields due to
various dislocation arrays at the interface between
two different materials are derived. The well-known
results for dislocation arrays in a homogeneous body
follow as a special case from these more general
expressions. The arrays with discrete and continuous
dislocation distributions are both analyzed. The stress
field of the arrays with a continuous distribution of
infinitesimal dislocations is identical to the far-away
stress field of the arrays with a discrete dislocation
distribution. The stress field due to an infinite array
of edge dislocations beneath the free surface of a
semi-infinite body shows that this dislocation array
can produce a constant surface stress in a thin layer
adjacent to the free surface, with no stress below it.
The solution is used to discuss under what condition
is a spontaneous formation of the dislocation array a
~ likely event.

Appendix A

An expression for the normal stress o, due to dislo-
cation array in Fig. 6, along the vertical line passing
through the dislocation center, is obtained as the sum
of Egs. (35) and (38) at x=0, i.e.

* 3nt+(m -i-lo)2
Gx=k Z (n+10) 272
|72+ (n+1,)]

3n2 + (=)’
[”2 +(n-— 10)2]2
n*— (n- 10)2
2
[72+ (0= 1,))]
3n' - (n - 10)2
3 b
[+ (0= 1)’]
where m=y/h, ly=1/h and k=kyb/h. By using
the well-known sum
i 1 T

X 5 = -Z-wth(ﬂz), (A.2)

R 2+n

—(n—1)

+21,

—4lyn(n = 1) (A1)

Eq. (A.1) can be cast in the following compact form

¢
sinh? ¢,

o, = k'n'[Z(coth ®, —coth ¢,) —

@, 2wl
sinh? o,  sinh? @,

(1=2mm coth ;) |,

(A3)

with ¢, =w(y+1)/h, and ¢, =w(y—1)/h.
An expression for the normal stress o, along the
vertical line at distance #/2 from the dislocation
center is obtained from (A.l) by replacing n with
2n+1 and by introducing the appropriate defini-
tions of m and I,. Then, since

hd 1 T

mZ
——— = —tanh—, Ad
n=z_m22+(2n+l)2 2z 2 (8.4)

it follows that

@)
-0, =km|2(tanh ¢, — tanh +—_—
05 = km 2tanh o, 9:) cosh? ¢,
¢, 2ml,
- + 1 ~ 27n tanh .
cosh? @,  cosh? goz( ™ @)
(A3)
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