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The present paper focuses on the study of some of the fundamental aspects of the cooperative brittle phenomena and 
damage growth. This rather complex problem is studied on a simple discretized artifice known as the parallel bar model. 
The disorder in microstructure is introduced by a statistical description of the distribution of the link rupture strengths. The 
criteria of the damage growth are derived from the thermodynamic analysis of the rupturing process. Stability analysis of the 
damage growth is also presented. The paper discusses different damage measures and corresponding conjugate affinities. 

I. Introduction 

Depending on circumstances brittle rupture in 
a typical material  with disordered microstructure 
may occur in one of several different modes. In 
this study the attention is focused on the case 
when rupture occurs as a result of a cooperative 
action of a diffuse population of microcracks. 
More specifically, the considered deformation 
process may be interpreted as a gradual dilution 
of the microstructure of a solid reflecting nucle- 
ation of new and growth of the already existing 
microcracks. On the specimen scale this process 
is observed and measured as the degradation of 
specimen transport  properties (macro stiffness or, 
less rigorously, elastic moduli). Of  special interest 
is the infinitely short interval during which a 
continuous process on the microscale (gradual 
dilution) causes an abrupt, discontinuous and 
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qualitative change of the macro response (loss of 
the specimen stiffness or macro failure in a load 
controlled test). 

In actual engineering solids the inelastic defor- 
mation processes are to a large extent character- 
ized by disorder on the microscale. The micro-de- 
fects randomly scattered over a large part  of the 
volume are, additionally, random in shape and 
size as well. This is especially true during the 
initial phase of the deformation process. In the 
course of loading a semblance of order is induced 
by the prevailing stress field in terms of preferen- 
tial directions of damage growth. At macro fail- 
ure a large number  of defects self organizes into 
a cluster spanning the specimen from one end to 
the other reducing its stiffness to zero. 

The evolution of damage in disordered mi- 
crostructures is obviously not a simple, determin- 
istic process admitting careless application of 
conventional continuum models formulated origi- 
nally for considerations of ductile phenomena.  In 
general, crack growth will commence when the 
available elastic energy release rate exceed the 
material toughness at the crack tip. Hence,  the 
damage evolution (defined here as formation of 
new internal surfaces in the material  through the 
process of cracking) depends on the coincidence 
of local stress concentration (hot spots) and re- 
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gions of inferior toughness (weak links) of the 
microstructure. Fracture toughness is, generally, 
a random function of coordinates and its scatter 
depends on the material itself, previous history 
and defects attributable to manufacturing pro- 
cesses. The energy release rate for the observed 
crack is an integrated quantity which, neverthe- 
less, depends on the adjacent microdefects and 
microstructure as well. Thus, in the case of many 
microcracks estimates of their individual growth 
are quantified by a continuum measure of dam- 
age representing expectations of the growth of 
the entire ensemble of microcracks. In order to 
be useful this measure must be physically identifi- 
able and measurable in tests. 

Analytical modeling of this process is, for obvi- 
ous reasons, fraught by pitfalls and open to ambi- 
guity. For the most part these pitfalls are propor- 
tional to the complexities of the cumbersome 
mathematical structure of non-deterministic mod- 
els claiming both rigor and generality. A bevy of 
different continuum damage models, often pre- 
tentious and seldom rigorous (Krajcinovic, 1984), 
is a testimony to this state of affairs. 

To clarify some of the fundamental aspects of 
the physics of damage evolution it is helpful to 
start with models characterized by simple mathe- 
matical structures. Simplification in modeling is 
typically achieved through discretization. A truss 
or a grid is, for example, one of the rudimentary 
approximations of a solid. The parallel bar system 
is an even simpler computational artifice which 
was, nevertheless, extensively and successfully 
used in the past to mode[ both ductile (Iwan, 
1967; Lubarda et al., 1992) and brittle (Krajcinovic 
and Silva, 1982; Hult and Travnicek, 1982, etc.) 
phenomena. Historically, the first application of 
the parallel bar in applied mechanics was used to 
estimate the rupture strength of cables (Daniels, 
1945). 

A parallel bar model emphasizes parallel con- 
nection of N links (bars, bonds). Each end of the 
system links is provided by a rigid beam (bus) 
ensuring equal elongation of links during the 
deformation process. A parallel bar system may 
be considered as being either a loose or a tight 
bundle depending on the manner in which the 
externally applied tensile load F is shared by the 

[inks. In a loose bundle system the external load 
F is shared equally by all extant links regardless 
of their relative position within the system. In 
contrast, to describe the local load fluctuations in 
dependence of the position of defects within a 
tight bundle system it is nccessary to prescribe a 
local load sharing rule. 

2. Loose bundle parallel bar system 

Consider first the simplest approximation of a 
perfectly brittle solid by a loose bundle parallel 
bar system assuming that: 
(i) all extant links share equally in carrying the 

external tensile load F regardless of their 
position within the system; 

(ii) all N links have identical stiffness k = K/N 
and elongations u; 

(iii) all links remain elastic until they rupture; 
and 

(iv) the rupture strength fr of links is a random 
variable defined by a prescribed probability 
density distribution P(fr). 

Application of a loose bundle parallel bar sys- 
tem implicitly assumes that the damage evolution 
and ultimately the failure are attributable primar- 
ily to the existence of the regions of inferior 
toughness within the material. Local stress con- 
centrations are, therefore, assumed to have a 
second-order effect on the structural response. It 
is worth mentioning that the parallel bar model is 
the discrete version of the popular self-consistent 
model based on the assumptions identical to these 
listed above (Krajcinovic, 1989). 

During the deformation of the system sub- 
jected to a quasistatically incremented external 
tensile load F the tensile forces in individual 
links f, (i = 1 to N)  keep increasing. When the 
force f, in a link exceeds its strength fri the link 
ruptures releasing its force. The released force is 
distributed quasistatically and equally to all ex- 
tant links. Consequently, the deformation process 
is characterized by the sequential ruptures of 
individual links. On the system scale rupture of 
individual links is observed as a gradually de- 
creasing (system) stiffness. 
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Since each link is perfectly elastic until it rup- 
tures, the force-displacement relation for the ith 
link is 

f i= K u / N =  ku, if 

and 

f / = 0 ,  if ku>~f~ i. 

0 <~ ku <~ fri, 

(2.1) 

The equilibrium equation for the system is then 

N 

i=1 

where n is the number of ruptured links (at a 
given magnitude of the externally applied tensile 
force F). On the micro-scale the number of rup- 
tured links n suffices to define the recorded 
history. The fraction of ruptured links 

D = n /N ,  (2.3) 

is a physically appealing measure of the recorded 
history, in this case accumulated damage, on the 
macro-scale. In absence of ductile phenomena 
and residual strains, D fully defines the state of 
the material and quantifies the level of degrada- 
tion of the material stiffness and, perhaps, even 
the residual load bearing capability. The defor- 
mation of the system is fully defined by two 
variables u and D. 

For a very large number of links N a given 
property can be treated as being equal to its 
expectation. For instance, P(fr) dfr is the proba- 
bility that the rupture strength fri can be found 
within the interval [f~, f~ + df~]. Thus, the dam- 
age parameter  (2.3) rewritten as 

= f k"p(fr) dfr  = p r o b ( f  r < ku) = P(ku) ,  D 
fmin 

(2.4) 

is actually the cumulative probability function 
P(ku) of the given rupture strength probability 
density function p(f~). In (2.4) fmin is the rupture 
strength of the weakest link (Fig. 1). As shown in 
Krajcinovic and Silva (1982), the reliability func- 
tion reflecting the chance that the system will 
survive the level of force Ku is (1 - D), while the 
instantaneous failure (hazard) rate that the sys- 

P(~) 

f.,in ku fmax fr 
Fig. 1. Rupture strength probability function P(fr). fmin and 
fmax are the rupture strengths of the weakest and strongest 
link. The damage variable D is the cumulative probability 
corresponding to current displacement level u. 

tem which survived the same force will fail imme- 
diately thereafter is p(ku)/(1 - D ) .  

It is interesting to point out that (2.4) repre- 
sents the damage evolution law, i.e., the constitu- 
tive relation relating damage and elongation. The 
incremental form of (2.4) is 

dD =p(ku )k  du = p ( u )  du. (2.5) 

Therefore,  once the distribution of rupture 
strengths P(fr) on the microscale is known, the 
damage evolution law can be derived in contrast 
to being a priori and arbitrarily postulated. 

Maximum force to which the system can be 
subjected (i.e., macro failure in a force-controlled 
test) occurs when the tangent modulus reduces to 
zero, i.e., when 

d F  
- 0 ,  for u = u  m. (2.6) 

du 

The displacement u m corresponding to the maxi- 
mum attainable force fm is the physically mean- 
ingful solution of the equation 

P (um)  + UmP(Um) -- 1 = 0. (2.7) 

The maximum force to which the system can be 
subjected is from (2.2) and (2.7) 

F m = K u 2 p ( U m ) .  ( 2 . 8 )  

Once the maximum load (2.8) is reached in a 
load-controlled experiment the extant links will 
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rupture in a cascade mode unable to carry the 
force released by the link failing at F = k],,. 

In unloading the force-displacemcnl relation 
is simply 

F = K ( 1  - D . ) u ,  (2.9) 

where D~ = constant is the damage level reached 
at the point at which the unloading commenced 
(at the highest recorded force F, Fig. 2). Conse- 
quently, the system unloads along the current 
(secant) stiffness R = K(1 - Do), i.e., along a line 
connecting the point at which the unloading 
started and the origin of the F-u space. After the 
unloading is completed no residual strain is re- 
tained in the system. 

Consider as an example the Weibull distribu- 
tion of link rupture strengths 

1 { f~ )~ ' [ 1 [  j~ t'~ ] 
p ( f ~ ) = k - ~ -  m ~ e x p - o f L k u m  I 1 ,  

(2.10) 

with the corresponding cumulative probability as 
the damage variable 

~k,, exp[ 1( u ""- D=jo P ( f ~ ) d f r = l -  - ~ , ~ )  " 

(2.11) 

F 

Fe K ~  >. 

U e Urn U 
K 

Fig. 2. T h e  f o r c e - d i s p l a c e m e n t  re la t ionship  of the  cons idered  
model .  K is the  initial elastic s t i ffness and  K = K( I  - D)  the  
current (damaged) elastic stiffness, (u e, Ft.) are the coordi- 
nates of the point at which damage commences, while (u m, F m ) 
are the coordinates of the apex point separating the ascending 
and descending parts of the force-displacement curve. The 
dotted area represents the energy g used in the rupturing 
process. 

kUrn P(fr) ! / 

ic~ - 0.5 
:! 

/ "  

0.5 1 I5 

(a) 

f ~  
kum 

0.5 1 15 2 AL 
Urn 

Co) 
Fig. 3. (a) Weibul l  d is t r ibut ion of the  link rup ture  s t r eng ths  
(Eq. (2.10)) plotted for five different values of the shape 
parameter o< (b) the corresponding cumulative probability, 
i.e., the damage parameter D (Eq. (2.11)), in function o1 
displacement u. 

where a > 0 is the shape parameter. The plots of 
(2.10) and (2.11) for several values of a are 
shown in Fig. 3. The corresponding force-dis- 
placement relation is 

F=Ku exp - - -  . (2.12) 

The maximum force is 

( 't  f m = f (Um)  = Ku m exp - -- , (2.13) 
Og 

so that the shape parameter can be expressed in 
terms of macro parameters as a=ln(Kum/ 
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F 
K u m  
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0.2 

1 2 ~ l _  
u m 

Fig. 4. The force-displacement curve corresponding to 
Weibull distribution, plotted for five different values of the 
shape parameter a. For large a, the behavior is of an 
elastic-perfectly brittle nature, while for smaller a behavior 
has a more "ductile" appearance. 

Fm)] -~. The damage corresponding to the maxi- 
mum force is 

D m = l - e x p ( - 1 ) = l  - Fm . (2.14) 
gu m 

The force-d isp lacement  curve, corresponding to 
(2.12), is depicted in Fig. 4 for five different 
values of the shape parameter .  In function of the 
shape paramete r  a the force-displacement  curve 
gives appearances  of ductility or brittleness. For 
very high values of a the curvature of the fo rce -  
displacement curve is very small and the failure 
occurs abruptly. In fact, for t~ ~ 0% the Weibull 
distribution (2.10) becomes in the limit repre- 
sented by a Dirac delta function 

1 
p( fr )  = ~Um6( ~u mf~ - 1 ) ,  (2.15) 

with the corresponding damage given by the unit 
step (Heaviside) function D = H[(u/u m) - 1]. On 
the other hand, for example for a = 2 ,  the 
force-d isp lacement  curve has a shape character-  
istic of ductile deformation. In this case even the 
post-critical, or softening, segment of the curve is 
well developed predicting substantial displace- 
ments well beyond the displacement u m corre- 
sponding to the apex of the force-d isp lacement  
curve. As it is usually the case the actual nature 
of the response cannot be determined observing 
only the loading segment of the force-displace-  

ment  curve. In each of the observed cases the 
unloading segment of the force-displacement  
curve always follows the straight line returning 
through the origin of the coordinate system. 

In a certain number  of cases the experimental 
results are fitted bet ter  with simpler functions. 
For example, micromechanical considerations in- 
dicate that the response of haversian (compact) 
bones are fitted bet ter  (Krajcinovic et al., 1987) 
by a single paramete r  distribution P(fr) = 
(fmax) l =  constant, where fmax is the rupture 
strength of the strongest link. The parameter  
k/fma x can be readily written as a function of the 
macro variables. For example, in the present  case 
fmax/k = 2Urn, where the index m denotes the 
value of the variable at the maximum force. Note 
also that the rupture strength of the link that 
ruptures at the maximum force F = F m is fr = 
fmax/2. Therefore,  all variables and parameters  
are in this case defined by a single, readily meas- 
ured parameter  um. In this case the ensuing 
force-displacement  curve is a quadratic parabola 

F = K u ( 1  ku u ), (2.16) 
- f ~ x  ) = K u ( 1  2Urn 

since the damage evolution law is from (2.4) and 
(2.5) 

k u 
O = - - u =  

fmax 2Um 
k 1 (2.17) 

d D  = ~ d u  = - - d u .  
/max 2u m 

1"1= k F  
Kf~ 

O3 

0.2 

0.1 

0~ 0.4 0.6 0.8 ~ = __ka_ 

fmax 

Fig. 5. The force-displacement curves corresponding to lin- 
early ascending, constant and linearly descending rupture 
strength distributions. 
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Table 1 
Maximum force, corresponding displacement and damage fl)r 
linearly ascending, constant and linearly descending distribu- 
tions of rupture strengths 

Distribution k f ]~  / k u  m / D,~ 

Kf ...... ), ..... 

P~ f r ) = ~ / f , . . . .  ~ " " 
) ,~ 4 ~ ~! 

I'(J'~) = 2(fro.× - f~ / ] ~ , ,  e7 ", ,, 

In this case, all system variables and parameters  
are defined by a single, readily measured parame-  
ter um. The linear damage evolution law (2.17) 
was suggested first in Janson and Hult (1977) and 
subsequently applied with a remarkable success 
for flexure of concrete beams (Krajcinovic, 1979) 
and long haversian bones (Krajcinovic et al., 
1987). In the case of haversian bones the linear 
damage law was based on a convincing microme- 
chanical argument.  

Similar expressions can be readily derived for 
the case of a linearly ascending p ( f r )  = 2 f r / f 2 ~ x  

and linearly descending P( f r )  = 2(J'm~ -- f~)/fZma× 
rupture strength distributions. The corresponding 
force-displacement  curves are shown in Fig. 5. 
The maximum force Fro, corresponding displace- 
ment u m and accumulated damage D,, are ar- 
ranged in Table 1. 

While the reason for this exercise will become 
apparent  somewhat later in the text it suffices to 
indicate that none of the computed quantities is 
independent  of the distribution of the link rup- 
ture strengths. In other words, the curvature of 
the force-displacement  curve, existence of the 
post-critical (softening) region, accumulated dam- 
age and secant modulus corresponding to the 
apex of the force-displacement  curve are strongly 
dependent  on the microstructure. This is natu- 
rally to be expected. 

3. T h e r m o d y n a m i c  a n a l y s i s  

The energy g used on the rupture of links is 
equal to the difference between the mechanical 
work of the externally applied tensile force F and 

the energy of elastic deformation, tha¢ woukl bc 
released in the course of subsequent tmloading, 
i.e., 

l¢ 

g ' =  W - U = f ~ F d u  ~ .. - 5/~u. (3.1t 

Geometrically, the energy ~_,,7 is equal to the area 
(dotted in Fig. 2) contained within the loading 
(ascending) and unloading (descending) segments 
of the force-displacement  curve. 

Consider the Helmholtz free energy of the 
entire system ¢b = q'(u, D, T). Using the first law 
of thermodynamics and restricting considerations 
to isothermal processes ( T =  constant > 0), the 
rate of change of the free energy, during loading 
by monotonically increasing tensile force F, can 
be written in the usual form (Rice, 1978; Schapery. 
1990) 

4) = Ffi - TA, ( 3.2) 

where A is called the irreversible entropy produc- 
tion rate. The second law of thermodynamics 
requires that A/> 0. 

Let the free energy be equal to zero in the 
initial, unruptured and unloaded state (D = 0, F 
= 0). The free energy of a state defined by load 
F > 0 and damage D > 0 is then equal to the 
work done in transforming the body from its 
initial to current state along an imagined re- 
versible and isothermal path. Following argu- 
ments analogous to those in Rice's (1978) related 
thermodynamic analysis of the quasi-static growth 
of Griffith cracks, a loaded state in which at least 
some of the links are ruptured (D > 0), can be 
created by an imagined sequence of two steps: 
first, n = D N  links are ruptured quasistatically 
pulling against the cohesive forces keeping to- 
gether two adjacent layers of atoms, and second, 
stretching elastically the extant links until the 
requested state of deformation u is arrived at. 
The work associated with this sequence is 

@ = E~ + U, (3.3) 

where 

E~ = 2A f ~' Y r P ( Y r )  dYr, (3.4) 
"Ymm 
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is the energy of free surfaces created by rupturing 
n links, and 3', is the link dependent specific 
surface energy. A denotes the initial unruptured 
cross-sectional area of the whole system. The 
linear elastic fracture mechanics suggests that the 
surface energy is a quadratic function of the force 
in the link at its rupture 

"}1 r = a f  2 ,  ( 3 . 5 )  

where a is a proportionality constant. Since 
P('/r) dyr = p(f~) dfr ,  (3.4) becomes 

Ev= 2aA fL=kUfrZP(fr) df~. (3.6) 
- fmin i  

The assumed quadratic relationship between y~ 
and fr, Eq. (3.5), is readily justified. Consider the 
deformation u at which a link, with the strength 
f~, is at incipient rupture. The elastic energy of 
the link at incipient rupture is 1 2 $ku . Assuming 
that, after rupture, A part of this energy goes into 
the newly created surfaces, 

1 2 asku  = 2AL"/r, (3.7) 

where 2A L is the ruptured surface area of the 
link. Since ku = f~, from (3.7) it follows 

1 a 
-- - f ~ ,  ( 3 . 8 )  

Y~ 4 k A  L 

from which the parameter a in (3.5) is a = 
A / 4 k A  L. 

Assuming the uniform distribution of link rup- 
ture strengths with finite band-width A f  

1 
P ( f r ) -  A f '  Af---fmax--fmin' (3.9) 

from (2.4) the damage-displacement relationship 
is 

k u  --  f m i n  
D (3.10) 

af 
Denoting by u e the displacement at the begin- 
ning of damage accumulation, so that fmi, = kue, 
(3.10) can be rewritten solely in terms of macro- 
parameters as 

/~ - - U  e 
D - (3.11) 

2u m - u e 

The energy needed to form the free surfaces is 
derived substituting (3.9) into Eq. (3.6) and per- 
forming integration 

E:, = 2aA[ f2mi.D + fmin(Af) D2 + ½( A f ) 2 D3] • 

(3.12) 

Consequently, the Helmholtz free energy is ob- 
tained by substituting (3.12) into (3.3)  

qb = ½K(1 - D ) u  2 + 2aA[ f2min D + fmin(Af) D2 

A 2D~ + 3 ( f )  ]. (3.13) 

The rate of change of the  free energy is therefore 

~ =  [ K ( l -  D)u]t i  

+ {-- ½Ku2 + 2aA[fmi n + ( A f ) D ] 2 } / ) .  

(3.14) 

Comparing (3.14) and (3.2), it follows that F = 
K(1 - D)u and 

T A = { ½ K u  2 -  2aA[fmi n + ( A f ) D ] 2 } / ) .  (3.15) 

In view of (3.10) the above expression can be 
written as 

TA = ( ½Ku 2 - 2aAk2u2)/5, (3.16) 

i.e., since ku =f~ and af  2 = Yr, 

TA = (½Ku 2 - 2Ayr) / ) .  (3.17) 

In (3.17) 'Yr is the surface energy of the link 
rupturing at the displacement level u. 

Introduce 

OU 
_ _ _ =  1 2 

F = OD 5Ku , (3.18) 

i.e., the energy release rate associated with the 
damage progression /5, as the driving force 
needed to rupture the links causing the damage, 
and 

R = 2AYr,  (3.19) 

as the current resistive force. Equation (3.17) and 
the requirement of a non-negative entropy pro- 
duction rate (A > 0) consequently give 

( F -  R)L)  >~ O. (3.20) 
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Therefore,  for continuing damage ( / )  > 0), it lol- 
lows that F - R  >~ 0, i.e., in order to continue 
damage, the damage driving force I" must exceed 
the damage resistive force R. Expression (3.20) 
places a restriction on the constant A, appearing 
in (3.8), requiring 

A K 1. (3.21) 

..:;! 

S 
F= LKu z 

2 

If the entire energy used in the rupturing process 
is transformed into the surface energy, A = 1 and 
F = R .  

(a) 

II 

VdD 

' ~ , ~  K(1-D-dD)(u+du) 

/ /  : :~," K(I-D)u 

i i  , .  

du u 

(b) 

4. Conjugate measures of damage and associated 
affinities 

The rate of energy used in the rupturing pro- 
cess is from (3.1) 

~ = I ~ - / _ ) = ( F -  O V l u -  aU / )  ~ u ]  ~-~ . (4.1) 

Since F = tU/Ou, 

OU.  
- D = FD,  (4.2) 

0D 

where F is the thermodynamic force or affinity 
conjugate to damage variable D. In view of 

U= ½Fu = ½K(1 - D ) u  2, (4.3) 

it follows that 

F 1 2 ~Ku , (4.4) 

as already established in (3.18). Geometrically, F 
is numerically equal to the area of the triangle 
doted in Fig. 6a. Physical interpretation of F 
becomes clear from the following argument. The 
quantity F dD  is numerically equal to the dotted 
area of the small triangular strip shown in Fig. 
6b, which is easily calculated to be 

F d D =  i 2 ~ 2 ~Ku d D =  7ku dn. (4.5) 

Hence, if d D corresponds to a single additional 
ruptured bar (dn = 1), F dD  is equal to the 
elastic energy of an individual link (½ku ~) re- 
leased at the instant of its rupture. 

FJ 

m= Lgu: 
2 

F; 

_ _  ),,- 
U U u 

(C) (d) 

Fig. 6. (a) The thermodynamic force (affinity) l '  conjugate to 
damage variable D is represented by the area of the dotted 
triangle; (b) increment of the energy used in the rupturing 
process F dD is equal to the area of the dotted triangular 
strip; (c) the thermodynamic force (affinity) , ')  conjugate to 
logarithmic damage variable ~ is equal to currently available 
elastic energy equal to the area of the dotted triangle; (d) the 
thermodynamic force (affinity) 1" a conjugate to damage vari- 
able d is equal to the strain energy associated with the elastic 
component of displacement u E (area of the dotted triangle). 

If the affinity F is expressed as a function of 
the damage variable D = n / N ,  given by (3.10), it 
follows 

rm 
F(D)  = 4-7T- [ fmi n + ( A f ) D ]  2. (4.6) 

fn lax  

The quantity 

Fm = ,  z (4.7) 7KUm 

denotes the value at the apex u = u m, i.e., I m = 
F(Dm). In (4.7), u m =fmax/2k is the displace- 
ment corresponding to the maximum force, while 
D m = 0.5 (1 - f , , i ° / A f )  is the associated damage. 
Note also that (4.6) can be expressed solely in 
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terms of macrovariables  using fmin/ fmax = 
Ue/2Um, where u e is the deformation at the onset 
of damage evolution. 

The total energy used in the rupturing process 
from the initial state (D = 0) to the current state 
(with damage D) is 

~= £°F( D) dD 

fmin D + f m i n ( A f ) D  2 + I ( A f ) 2 D 3 ]  . 

(4.8) 

In terms of macroparameters  this can be rewrit- 
ten as 

Ue(ue) Ue ] 2 D + -  2 - -  D 2 
~-~=/-'rn[~ Urn ] Um U m 

1( .)2°3] 
+-~  2 - - -  . 

N m 

From (4.6)-(4.8), for fmin  = 0: 

(4.9) 

4 3 r = 4Fm D2, g" = 5FmD . (4.10) 

Introduce now a new damage variable by 
defining its rate of change relative to the current 
number  of the unruptured links ( N  - n) 

h 
(4.11) 

N - n  

Integrating (4.11) from the initial (n = 0) to the 
current state (n > 0), it follows that 

N 
= - - .  ( 4 . 1 2 )  2 In N - n  

The logarithmic measure  (4.12) was first used by 
Janson and Hult  (1977). In analogy with the strain 
measure commonly used in the theory of plastic- 
ity, damage variable (4.12) can be referred to as a 
logarithmic damage. Since 0 ~< n ~< N, it follows 
that 0 ~<2 ~< ~. Recall that the previous damage 
variable D = n / N  is defined in the interval 0 ~< D 

1. The relations between the two measures of 
damage 2 and D are evident from 

1 2 1 3 2 = - I n ( 1 - D ) = D + T D  + 3 D  + - . . ,  

(4.13) 

1 2 1 3 
D = 1 - e x p ( - 2 )  = 2  - 572 + 572 . . . .  

(4.14) 

Their  rates are related as: 

1 
-@ = 1 - D / 5 ,  b = exp( - 2 ) ~ .  (4.15) 

Using the initial unruptured area A and cur- 
rent unruptured area ~z~= ( 1 -  D ) A ,  the intro- 
duced damage variables and their rates can be 
expressed as 

A - X  X 
O ~ ,  /5--- A '  (4.16) 

A 2 
2 = In -=  _4~ = - - -  (4.17) 

A'  X" 

For infinitesimally small accumulated damages 
(n <<N, D << 1), the distinction between two 
damage measures disappears, i.e., 2 = D  and 
_+=D. 

The thermodynamic force (affinity) 3-  conju- 
gate to damage variable (flux) 2 is obtained from 

~" = F/5 = J -@,  (4.18) 

such that 

~ = e x p ( - 2 ) F = ( 1 - D ) F  , -  2 = 7Ku . (4.19) 

In (4.19) 

g = e x p ( - 2 )  K = (1 - D)  K,  (4.20) 

is the current elastic stiffness of the system, re- 
flecting the already recorded damage. Geometr i -  
cally 5 r is the area of the dotted triangle shown 
in Fig. 6c. It is, in fact, identically equal to cur- 
rently available elastic energy U, i.e., 3 - =  U. 

The entropy inequality (3.20) can now be ex- 
pressed in terms of the damage variable .~ as 

( .Y--# i ' )_~  = (½Ku 2 - 2X3,r)-~, (4.21) 
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where 3 = 2A-y,. is the corresponding resistance 
lorcc, while A is the cross-sectional area cur- 
rently available to carry the external applied ten- 
sile force. For continuing damage ( ~  > 0), (4.21) 
therefore requires J>~,~2. If the entire energy 
used in the rupturing process is transformed into 
the free surfaces, J - = J .  

Other  measures of (large) damage and conju- 
gate affinities can be introduced, similarly as in 
large strain continuum mechanics (Hill, 1978). 
For example, the "Lagrangian type" damage can 
be defined by 

A 2 _ A  -2 N 2 _ ( N _ n )  2 

D L = 2A2 2N 2 

n l ( tl )2 
- ~_D. N 2 N = D -  ~ 2 (4.22) 

force if no damage was produced (u v -: t : / K ,  Fig 
6d), then 

II : tl E -~- ll 1)' 

u E = ( 1 - D ) u  

and 

u D = D u .  ( 4.26 ) 

The affinity F d can then be expressed as 

/~d 1 2 = 7 K u  E, (4.27) 

representing the accumulated strain energy asso- 
ciated with the elastic component  of displace- 
ment u E, Geometrically, I~l is equal to ~ the dotted 
triangle shown in Fig. 6d. 

Similarly, introduce a damage variable 

, , (  /423, 
d -  , ~  N - n  1 - D  " 

as the number  (n) of ruptured bars per current 
number  of unruptured bars ( N  - n). The "Euler-  
Jan type" damage parameter  can be then defined 
as 

A 2 _4--2 N 2 _ ( N - n )  2 

D E =  2/~2 = 2 ( N _ n ) 2  

n 1 /  n ] 2 
- + = d + ld2. (4.24) 

The affinities conjugate to D L and D E follow 
from (4.18): 

1 
F L - - / ' ,  

1 - D  

1 

/ 'E 1 + - d-Fd, (4.25) 

where F a = (1 - D ) Z F  is the affinity conjugate to 
damage variable d. If the total displacement u is 
decomposed into its elastic and damage part by 
defining elastic component  of displacement as 
displacement that would correspond to current 

5. Stabil i ty  ana lys i s  o f  d a m a g e  growth 

It is of interest to examine the stability of the 
damage growth for displacement and force-con- 
troled tension tests. Assume, for simplicity, that 
energy used on the rupture process is trans- 
formed into the surface energy associated with 
newly formed surfaces, i.e., A = 1 in (3.21). In this 
case the expression (3.12) for the entire surface 
energy acquires the following form 

E ~ =  2k 2K [ f , ~ i , D + f m i , ( A f ) D z + ~ ( A f ) 2 D 3 ]  

(5.1) 

This expression is identical to (4.8) and can be 
rewritten solely in terms of macroparameters  as 
in (4.9). 

Consider first the displacement-controlled test. 
The potential energy of the system is then 

I I . ( U ,  D )  = U ( u ,  D )  + E v (  D ) ,  (5.2) 

where 

U ( u ,  D)  = ½K(1 - D ) u  2 (5.3) 

is the macroscopically available elastic energy 
corresponding to state of deformation u and 
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damage D. The stationarity condition for the 
potential H,  requires 

0H u 
= 0 ,  

0D 

K 1 2  [ 2  ] + f i.+2fm .(af)D+(AffD 2 

= 0 .  ( 5 . 4 )  

Equality (5.4) can be solved for D leading to the 
equilibrium condition 

ku --fmin 
D - (5.5) 

a f  
Expression (5.5) is identical to the previously 
derived damage evolution law (3.10). To examine 
the stability nature of the equilibrium, it is neces- 
sary to derive the second derivative of the poten- 
tial H,  with respect to D 

02H. K 
0D 2 k2 (A f )  [fmi" + ( A f ) D ] .  (5.6) 

Substitution of (5.5) into (5.6) leads to 

02//,, K 
0D 2 k ( A f ) u ,  (5.7) 

which is clearly positive for any positive value of 
the displacement u. Hence, in a displacement- 
controlled test the equilibrium damage growth is 
always stable. The plot of the potential energy H,  
(u, D) in function of the damage variable D, 
corresponding to several fixed values of displace- 
ment u, is shown in Fig. 7. For illustrative pur- 
poses it was assumed that fmi. = 0, allowing sim- 
pler representation 

, 2[( I I , (u ,  D) = 7Ku m 1 ( U ) 2 - b  4D3] ] - D ) -  , .  

U m 

(5.8) 

Consider next a force-controlled test. The po- 
tential energy in this case contains additionally 
the load potential term, i.e., 

HE= U( F, D) + E~,( D) - F u (  F, D) 

= - ½Fu(F, D) + Ev(D ). (5.9) 

0.8 ~ 

I I t I F 
o.2 0.4 0.6 o.s 

Fig. 7. Potential energy //, in a displacement-controlled test 
(Eq. (5.8)), plotted for three typical values of fixed displace- 
ment. The corresponding damage growth is always stable. 

Substituting expression (5.1) for the surface en- 
ergy and the relationship 

F 
u(F,  D) = K  - 1 -  (5.10) 

1 - D  

into (5.9) and performing requisite differentia- 
tion, the stationary condition requires 

OH F 
- - 0 ,  

OD 

F 2 
1 --1 - T K  

(1 - D )  2 

K 
-+- " ~ [  f2in + 2fmin ( A f ) D  + ( A f ) 2 D  2 ] =0 .  

(5.11) 

The equilibrium relationship between the force 
and corresponding damage is derived simplifying 
(5.11) to a form 

K 
F =  ~-(1 -D)[ fmin  + ( A f ) D ] .  (5.12) 

identical to the previously obtained expression 
(5.5). For given F, (5.12) is a quadratic equation 
for D. If 

2 K fm2ax u m 
F < F  m = , ( 5 . 1 3 )  

k 4 A f  K 2 u m - U  e 

(5.12) has two real positive solutions, i.e, there 
are two equilibrium configurations. To examine 
the stability of two solutions, it is necessary to 
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evaluate the second derivative of the load poten- 
tial with respect to the damage variable, 

OZHF F z 
K-I 

c)D2 ( 1 - D) 3 

K 
+ ~ ( A f ) [ f m i "  + ( A f ) D ] .  (5.14) 

using equilibrium condition (5.12), (5.14) can be 
conveniently written in the following form 

O2HF K 
c3O 2 k 2 ( 1 - D ) - l [ f m i n + ( A f ) D ]  

× [fmi, + ( A f ) ( 2 D -  1)]. (5.15) 

I-IF__ 

2 " ~  - m  

-1 

-2 

-3" 

02  0.4 0.6 0.8 D 

16K-aF~ 0 

-0.2 

-0.4 

-0.6 

-0.8 

J 

I 
0,2 0.4 Din 0.6 0,s "D 

(a) 

(b) 

Fig. 8. (a) Potential energy H r in a force-controlled test (Eq. 
(5.17)), plotted for three typical values of the fixed force. For 
F <  F m, the potential energy has one minimum and one 
maximum, corresponding to the stable and unstable equilib- 
rium configuration of the damaged state. For F = F,, 1 a single 
equilibrium state exists (D = D m = 0.5) corresponding to the 
inflection point of the potential energy. For F > F m, potential 
energy has no stationary value, since the force larger than F m 
cannot be transmitted by the considered system. (b) The plot 
of the second derivative of the potential energy (H/~) in 
function of the the equilibrium values of damages variable D. 
For D < D m = 0.5, ///~ > 0, indicating stable equilibrium con- 
figurations, while for D > D m = 0.5, H,g < 0, indicating unsta- 
ble equilibrium configurations. 

Consequently, equilibrium damage growth un- 
der the force-controlled test is stable as long as 
fmi. + (A f ) (2 D  - 1) < (), i.e., if 

D < D .... 

Dm= 9~ 1 -  Af  ] ~,1 2u, ,-Ue . 

The other solution of (5.12) for which D > D m, 
corresponds to unstable equilibrium, as the Hes- 
sian (5.15) becomes negative definite. This condi- 
tion is satisfied along the descending (softening) 
part of the force-displacement curve. The plot of 
the potential energy I1F(F, D) as a function of 
the damage variable D, for several fixed values of 
the force F, is shown in Fig. 8a. ~Again, for 
illustrative purposes it is assumed that fmm = 0, 
allowing the simple representation for I1F 

HE(F , D)= - + -~-D . 

(5.17) 

As seen in Fig. 8a, for F < F  m the potential 
function H F has two stationary values. One is 
minimum and corresponds to stable configura- 
tion, while the other is maximum and corre- 
sponds to unstable configuration. For F > F m the 
potential energy H F has no stationary value, since 
forces larger than F m cannot be transmitted by 
the considered system. The plot of the second 
derivative (5.15) versus equilibrium values of 
damage D is shown in Fig. 8b. 

6. Damage  resistance curve (R-curve) 

An alternative way to examine and interpret 
the stability of damage growth is by introducing 
the notion of the damage resistance curve, analo- 
gous to the well-known resistance (R) curve of 
fracture mechanics (see, for example, Kanninen 
and Popelar (1985)). Consider the force-con- 
trolled test. Expression (5.17) can be rewritten as 

IIF( F, D)='n'F(F, D)+E~(D)  

F2m( F ) 2 1 F ~  16 
- -  _ _  - -  - - O 3  

2K ~ 1 - D  + 2K 3 
(6.1) 
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2K GD 
K -  

10 

5 

2K o / / / /  

~ F=I'5Fm 
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2K Gd 
F~ 

2K Rd 

1/ 
0.5 

F=I.2F m 

F=V m 

F=0.8Fm 
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Co) 
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F~ F~ 

l 
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(c) 

where  ~-e(F, D)  represents  the sum of  the elastic 
strain energy and load potential ,  while Er(D) is 
the surface energy (5.9). The  energy release rate 
due to the damage  growth can be defined as 

G ( F , D ) -  ~Trr F m 2 ( F )  2 1 

aD 2 K  ~mm ( l - D )  2 '  

(6.2) 

while the damage  resistance force is 

dE~ Fm 2 
R ( D )  dD 2 K  16D2" (6.3) 

For  a given force F, the accumula ted  damage  
is obta ined from the equilibrium requi rement  

G(F,  D ) = R ( D ) ,  (6.4) 

which leads to F = 4 F m ( 1 -  D)D, in agreement  
with (5.12), when fmin  = 0. The  corresponding 
state is the state of  stable damage  growth if, for a 
given force level, the rate of  damage  resistance 
force exceeds the rate of  the energy release 

OG d R  
- -  < - -  ( 6 . 5 )  
3D d D  ' 

i.e., if the slope of  the R-curve is greater  than the 
slope of  the G-curve at the point  of  their inter- 
section. In the opposite case, damage  growth is 
unstable.  In analogy with the fracture mechanics,  
the R-curve can be referred to as the damage  
resistance curve. The  R- and G-curves plot ted for 
several values of  applied force F are shown in 
Fig. 9a. As seen f rom this figure at the force 
value F = F m there  is only a single equilibrium 
damage  value D = 0.5. At  this point  the G- and 

Fig. 9. (a) Energy release rate (G) versus damage resistance 
(R) curve, plotted by heavy solid line. For F < Fm, the curves 
intersect at two points, corresponding to the stable and the 
unstable equilibrium configuration, respectively. For F = F m, 
the G-curve is tangent to the R-curve at the point of stability 
transition D = Dm. For F > F m, the curves do not intersect, 
since there is no equilibrium damage state at that level of the 
applied force; (b) same as in (a), but with (G, R)-curves 
expiessed relatively to damage variable d; (c) same as in (a), 
but with (G, R)-curves expressed relatively to damage vari- 
able .@'. 
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R-curves touch each other, sharing the common 
tangent. For F >  F m, curves do not intersect, 
which means that there is no equilibrium damage 
growth for that level of force. For F </;~,,, curves 
intersect at two points, one with damage D < 0.5, 
the other with damage D > 0.5. However, at the 
point D < 0.5, the slope of the R-curve is greater 
than the slope of the G-curve, hence condition 
(6.5) is fulfilled, and the damage growth is stable. 
For D > 0.5, the slope of the R-curve is smaller 
than that of the G-curve. The rate of resistance 
torce cannot balance the rate of energy release 
rate, and the corresponding equilibrium state is 
characterized by unstable damage growth. 

2K GD ~ 2K RD 
F~ ' F~ / i F=F~ 

10 

T % ' / 

8 ~ / 

i / 
6 T 

i / ! 
~i T / . 

2--! ~ F=0.5F m 

0.2 0.4 0,6 0.8 D 

(a) 

2K Go 
F~ 

2" 

1.5 ¸ 

I 

0.5 ¸ 

, , % 
0.6 0.8 

2K RD 

c ~ = ~  

/ 
. ~ = 0 . 5 F m  

02 0.4 

Co) 
Fig. 10. (a) (G, R)-curves corresponding to Weibull distribu- 
tion of rupture  strengths. Two R-curves plotted correspond to 
two different values of the shape parameter  a. (b) As ot ---,o0, 
the R-curve becomes nearly horizontal, as in the case of the 
well known Griffith criterion for homogeneous  perfectly brit- 
tle solids. 

It should be noted that in the considered 
model, the damage resistance curve is analytically 
determined because of known (assumed) rupture 
strength distribution, leading to corresponding 
expression for the surface energy of ruptured 
links (see (3.4) and (3.12)). Also, the shape of the 
R- and G-curves depends on the selected damage 
variable utilized in the analysis. For example, if 
the damage variable d was used instead of D. thc 
(G, R)-curve is as shown in Fig. 9b. For a given 
force level, the energy release rate Gj  turns out 
to be independent of d, so that Gd-Curves be- 
come straight horizontal lines. Indeed: 

F;/, 
G,,( F, d) = 

Ra(d ) = F ~ 1 6 _ _  
2K 

m ] 

1 + d )  4 ' 
(6.6) 

In this case the damage growth is stable below 
the damage value of d = 1, and is unstable above 
that value. Figure 9c shows (G, R)-curves ex- 
pressed relative to the logarithmic damage vari- 
able :~. 

If the Weibull distribution (2.10) was used 
instead of the constant rupture strength distribu- 
tion, it readily follows that 

H F (F ,  D) = ~-F(F, D) +Er (D  ) 

2K 1 - D  

+ 2K (e 

× f / ) ( - I n ( 1 - D ) )  2/" dD,  

(6.7) 

which replaces the previous expression (6.1). Since 
only the surface energy term E r is changed, the 
energy release rate is still given by (6.2), while the 
damage resistance force becomes 

R(D)  = dE~ _ F,~,(e a )  2/" In 
dD 2K 1 - D  

(6.8) 



D. Krajcinovic et al. / Effective continua models 113 

For example, for the shape parameters a = 2 and 
a = 5, corresponding R-curves are shown in Fig. 
10a. Two typical G-curves (of course, both inde- 
pendent  of a )  are also shown. The damage value 
at which the damage growth ceases to be stable is 
D = Din, given by (2.14). Clearly, as a becomes 
large, the Weibull distribution (i.e., in the limit, 
the Dirac delta function (2.15)) becomes more 
typical of the perfectly brittle behavior. The cor- 
responding R-curve becomes similar to the Heav- 
iside function (Fig. 10b), in agreement with the 
well-known Griffith criterion of the linear elastic 
fracture mechanics. 

7. Tangent stiffness and system compliance 

The work of the externally applied force done 
during the deformation process can be conve- 
niently written as 

W(u) = fo"F(u) du 

i 1( ;1 =Wm-Fmum " 3 -  ~m -t- ~ ~m ' 

(7.1) 

where 

[2 1( o/31 
Wm= W(Um) =Fmum 5 - 6 ~ U m  ] ] (7.2) 

Subscript m refers again to the point at which the 
force F = F m attains maximum, while index e 
refers to the point at which the force F = F~ 
initiates the damage accumulation. In the case 
when all energy used in the rupturing process (g')  
transforms into the surface energy (Er) ,  the work 
W is exactly equal to corresponding free energy 
q~, given by (3.3). The force-displacement rela- 
tion is 

dW 
F =  

du 

b/ ~Ue, 

U m ] ]  

(7.3) 

with the corresponding tangent stiffness 

KT du e u m 

u >/u e. (7.4) 

At u = u e there is a discontinuity in the value of 
the tangent stiffness (modulus), from K during 
U<Ue, to K - A K  e immediately after u = u e ,  
where 

/~e 
A K  e = K 2 u  m _ Ue , (7.6) 

is the jump discontinuity due to initiation of the 
damage. Likewise, the jump discontinuity be- 
tween the unloading (secant) modulus K" and 
current tangent modulus K T is AK=Ku/(2u m 
-u~).  Note also that for F = 0, (7.3) gives the 
corresponding displacement u = 2Um, i.e., u = 
fm~x/k, as it should be, since the last link that 
ruptures has the strength fmax" 

The complementary work of the externally ap- 
plied force (F  < F m) is likewise 

W*(F) 

= f0Fu(F) d F  

I F 2( FI3j21 
=Wm*-Fmum 1 F m 3 1 - F m ]  ]' 

(7.7) 

where 141" = FmU m - W  m is the Legendre trans- 
form of W m. The displacement-force relationship 
is 

dW* 

u -  d F  /dm 

F>~F e. 

[1  l mtJ2] 
(7.8) 

The system tangent compliance, being the second 
derivative of the complementary work 

1 d2W * Um ( F )  -'/2 

K1 d F  2 2F  m 1 -  ~mm ' 

F>~Fe, (7.9) 
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becomes singular at the apex F =  ki~ 1 of the 
force-displacement curve, indicating zero tan- 
gent stiffness and infinite compliance there. The 
descending segment of the force-displacement 
curve, beyond F = F m corresponds to a distinctly 
different behavior on the microscale. The simple 
analysis, adequate to describe the ascending part 
of the force-displacement curve, cannot be suc- 
cessfully used for the descending part. The inter- 
action of the microdefects during the descending 
(softening) part of the response significant ren- 
dering the assumption of the equal forces in all 
links unjustified. To account for the microdefect 
interaction it becomes necessary to introduce 
statistics of the spatial distribution of defects so 
that neither (7.3) nor (7.4) are likely to be appro- 
priate. 

In the case of the Weibull distribution of link 
rupture strengths (2.10), the force-displacement 
relation is given by (2.12). The corresponding 
stiffness is 

K'r = u ~  [1 - ( u-~)'~] exp{ 1 

(7.10) 

Clearly, K x = O  at u : u  m. Also, for u < u  m, K v 
--* K = F m / u r ,  when a -* 0% leading to elastic- 
perfectly brittle behavior with the linear force-  
displacement relation F = K u.  

8. Discussion and conclusions 

The tenor of this study is derived from the 
major premise of micromechnical modeling. All 
micromechanical parameters must have a well- 
defined physical meaning. The macroparameters 
should be derived as volume averages of the 
corresponding microparameters. Transport  pa- 
rameters on the macroscale should reflect appro- 
priately averaged kinetics of the irreversible 
changes in the microstructure. Complex mathe- 
matical structures needed to replicate inelastic 
behavior of solids can often obfuscate some of 
the essential features of the considered phenom- 
ena. While the simplicity is not a merit in itself, a 

carefully selected simplification is useful in gain- 
ing a valuable insight into the physics of the 
phenomenon. Despite, or perhaps because, of iis 
deceptively simple mathematical structure, thc 
parallel bar model provides a wealth of informa- 
tion revealing some of the fundamental aspects of 
the macro deformation of brittle solids reflecting 
the cooperative phenomena on the microscale. It 
is, therefore, interesting to summarize some of 
the results which might prove useful in transition 
to more sophisticated, and computationally more 
intensive, analytical models. 

In this study damage growth on the microscale 
is understood as a continuous and gradual in- 
crease in the number n of ruptured links. Macro- 
scopically the same process is observed as the 
decrease of the specimen stiffness, or as sug- 
gested, diminution of the secant modulus. At a 
certain density of the gradually evolving damage 
on the microscale, the macro compliance be- 
comes singular, resulting in an abrupt and quali- 
tative change of the specimen response (from 
hardening to softening). 

The simple artifice considered in this study 
indicates that the damage evolution law is a di- 
rect reflection of the distribution of rupture 
strengths (or fracture energy y) characterizing 
energy barriers which define the microcracking 
pattern on the microscale. The peril associated 
with judging the extent of the ductility of a speci- 
men by the curvature of the loading segment of 
force-displacement curve is apparent. Varying 
the distribution of fracture strengths p ( f .  ) it was 
possible to replicate an entire range of curves, 
some of which appear ductile. 

It is true that the curvature of the force-dis- 
placement curve translates into energy dissipated 
on inelastic changes of the microstructure. How- 
ever, the energies consumed in brittle (micro- 
cracking) and ductile (slip) phenomena have a 
different effect on the mechanical response and 
an even more disparate consequence on the me- 
chanical failure. The ductile changes of the mi- 
crostructure can be eliminated by cycling or an- 
nealing while the brittle damage is, in most cases, 
of a more permanent nature. 

The present study suggests a plethora of dam- 
age parameters. Each of these in a physically 
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justifiable manner defines the state of damage on 
the macroscale. All of these damage parameters 
are averaged over the volume of the system and 
are, therefore, useful only within the self-con- 
sistent regime of the deformation process. In 
other words, the selection of the most suitable 
damage parameter cannot be made solely on the 
basis of the investigation of the effective continua 
(see, for example, Kunin (1983) and Nemat- 
Nasser and Hori (1990)). 

A conjugate thermodynamic force is derived 
for each of the suggested damage parameters. Its 
magnitude was related to measurable macropa- 
rameters such as force and/or displacement. The 
stability criteria are derived in form of the Grif- 
fith's criterion with resisting force R computed 
from the distribution of microstructural tough- 
nesses. 

It is important to emphasize the limitations of 
the study. By assuming that each extant link 
carries equal force, the present self-consistent 
model neglects the influence of the stress concen- 
trations on the evolution of damage. Conse- 
quently, the present model is adequate for homo- 
geneous materials and low to moderate defect 
concentrations. The sequel to this study ad- 
dresses the effect of the unequal distribution of 
forces to define the limits of applicability of the 
effective continua models. 
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