
Pergamon 
J. Mech. Phys. Solids, Vol. 45, No. 4, pp. 471490, 1997 

0 1997 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

PII : SOO22-5096(96)00113-S 
0022%5096/97 %17.00+0.00 

NEW ESTIMATES OF THE THIRD-ORDER ELASTIC 
CONSTANTS FOR ISOTROPIC AGGREGATES OF CUBIC 

CRYSTALS 

V. A. LUBARDA 

Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, 
AZ 85287-6106, U.S.A. 

(Received 3 September 1996; in revisedform 29 October 1996) 

ABSTRACT 

An improved method, based on an extension of the self-consistent method from the linear theory, is 
proposed to evaluate the effective third-order elastic constants for isotropic aggregates of cubic crystals. 
The calculated constants are compared with the Voigt and Reuss-type estimates, which are currently the 
only other analytical estimates available for these constants. The agreement between calculations and 
experimental data is then discussed. 0 1997 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

At the level of continuum elasticity, the third-order elastic constants (TOEC) appear 
in the cubic representation of an introduced potential function, such as the strain or 
complementary energy. These constants are also important in the solid state physics, 
because their knowledge allows the evaluation of anharmonic properties of crystals, 
e.g. thermal expansion, Griineisen parameters, specific heats, interaction of thermal 
and acoustic phonons, wave mixing and attenuation, defect properties of crystals, 
determination of general equation of state, and phase transition. For example, certain 
ferromagnetic alloys show strong Invar effects in a certain temperature range, includ- 
ing a negative pressure derivative of the bulk modulus, and a negative thermal 
expansion. This unusual behavior requires a study of the TOEC, which quantify the 
first-order anharmonic terms in the interatomic potential (Saunders et aE., 1993). 
Many examples can be given regarding a nonlinear behavior on the atomic scale near 
dislocations or other imperfections in crystals. For instance, a solid spherical inclusion 
forced into a spherical hole of a matrix material has been considered, as a simple 
elastic model of a substitutional or interstitial atom. If the size of the hole is only 
slightly different from that of the inclusion, linear elasticity can be employed to 
calculate relevant features of the stress and deformation behavior. For large differ- 
ences in size, nonlinear effects become important, and thus the use of higher-order 
elastic constants. 
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An early application of the TOEC was in modeling the material response under 
high pressures. The development of ultrasonic techniques increased the interest for 
the TOEC. A theoretical basis for their determination was developed by Toupin and 
Bernstein (1961), and Thurston and Brugger (1964). The experimental technique 
involves measuring the speed of small amplitude sound waves in statically stressed 
specimens. The speeds and propagation modes are different from those in unstressed 
specimens, and the difference can be expressed in terms of the TOEC. An alternative 
procedure is to measure the variation of the second-order elastic constants (SOEC) 
with applied pressure in the loading test, and relate this to the TOEC (Seeger and 
Buck, 1960). However, the calculated values often differed considerably from those 
obtained from the sound velocity measurements. This discrepancy was partly attri- 
buted to experimental accuracy, and to the fact that the TOEC are far more structure 
sensitive than the SOEC. 

At the present time, there are reported measurements of the TOEC for only a few 
polycrystalline materials, and these are given with large margins of error (Wasserbach, 
1990). More experimentation has been done with single crystals of various materials, 
as evidenced by the Landolt-Bornstein (1979) compilations. These results are also 
reported with large error margins. For certain materials, only combinations or incom- 
plete sets of the TOEC are listed. This situation increases the importance of the 
theoretical models for the calculation of the TOEC, particularly for materials for 
which experiments have not been performed, or cannot be easily or accurately perfor- 
med. 

The analytical determination of the TOEC within a continuum elasticity approach 
was mainly devoted to isotropic aggregates of cubic crystals (Bross, 1963; Chang, 
1967 ; Barsch, 1968 ; Hamilton and Parrott, 1968). The Voigt- and Reuss-type averages 
were applied, within a finite strain formulation, to calculate the effective TOEC. 
Except for an application of the Voigt scheme to transversely isotropic aggregates of 
cubic crystals (Johnson, 1982), no further analytical results were reported. This is in 
contrast to the situation with the SOEC, where additional methods were constructed 
to calculate the effective constants, and appropriate theorems were formulated to 
derive the bounds for these constants. 

There has been related work to determine the average moduli for various nonlinear 
isotropic composites. Ogden (1974) considered the overall moduli for a non linear 
isotropic elastic composite, consisting of a dilute suspension of initially spherical 
inclusions, which were embedded in a different matrix. Chen and Jiang (1993) 
developed a method for computing the effective elastic moduli for isotropic nonlinear 
particulate composites by using a perturbation scheme and solutions from linear 
elasticity only. Most recently, Imam et al. (1995) reported a study of the overall elastic 
moduli for a biphase material consisting of a nonlinear isotropic and incompressible 
matrix, and a dilute concentration of spherical inhomogeneities. 

In this paper, the new estimates of the effective TOEC for isotropic aggregates of 
cubic crystals are derived. This is accomplished by introducing a method which is 
based on an extension of the self-consistent method from the linear theory. The 
suggested method is self-consistent with respect to the SOEC, but not the TOEC. It 
is thus referred to as a semi-consistent method. The TOEC are calculated for selected 
materials, and the results are compared with the Voigt- and Reuss-type estimates, 
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which are the only other analytical estimates presently available for these constants. 
Agreement between the calculations and experimental data is then discussed. 

2. THE STRAIN AND COMPLEMENTARY ENERGY 
REPRESENTATIONS 

The strain energy per unit initial volume of an elastic solid can be expanded in a 
Taylor series about the state of zero strain and stress as 

where Eii are the components of the Lagrangian strain, and C,,m,,.. are the elastic 
stiffness constants or the elastic moduli. The elastic constants of the nth order are the 
components of the tensor of the order 2n. Since they are appropriate strain gradients 
of @ evaluated at zero strain, they possess the obvious basic symmetries. For example, 
the TOEC satisfy C,,, = Cjiklmn, and Cij,_,,,,” = Cklijmn = Cmnklij Following the Voigt 
notation : 11 - 1, 22 - 2, 33 - 3, 23 - 4, 13 - 5, 12 - 6, and the recipe 
E,, = (1+6&~~/2 (9 = 1,2, . . ,6), (2.1) can be rewritten as (Brugger, 1964) 

(2.2) 

For a material whose symmetry group consists solely of the identify transformation, 
there are (5z”) independent nth order elastic constants (i.e. there are at most 21 
independent SOEC, and at most 56 independent TOEC). In the presence of material 
symmetry, fewer independent constants are involved, since they must be invariant 
under the symmetry group of transformations. Tables for the independent TOEC in 
crystals for all crystallographic groups are well known (Brugger, 1965). For a cubic 
crystal belonging to the Laue group CI (point groups 0, Oh and Td), there are at most 
three independent SOEC and six independent TOEC. Written with respect to the 
principal cubic axes, the corresponding strain energy is 

+ ;c,44hh +?:yl2+dv3)+ ~c244ls:(?2+sl)+~i(~3+~l) 
+d(rl +~2)1+C123~l~2~3+C4561]4~5~6r (2.3) 

to the third-order terms in strain. Equation (2.3) can be rewritten with respect to an 
arbitrary coordinate system as 



III -3~,,*+2~123+4~144-4~244), 86 = 4(c,,,-c,,,+~cM,). (2.5) 

The invariants incorporated in (2.4) are 

J, =~:l, J* =fV:-E:E), Jo =&J:+~J,J,+E~:E), (2.6) 

K2 =(a*E*a)(b*E*b)+(b*E*b)(c-E*c)+(c*E*c)(a*E-a), (2.7) 

K3 =(a*E*a)(b*E*b)(c*E*c), L3 =(a*E-b)(b*E-c)(c-E*a). (2.8) 

Here, 1 denotes the second-order unit tensor, and the vectors a, b and c are the 
orthogonal unit vectors along the principal cubic axes. The tensors obtained by a 
dyadic products of these vectors are sometimes referred to as the structural tensors. 
The function Q in (2.4) is an isotropic function of all its arguments (strain and 
structural tensors), thus satisfying the requirement of the frame indifference. 

The symmetric Piola-Kirchhoff stress is the gradient of the strain energy with 
respect to the Lagrangian strain 

SzJ = g = Cijk,Ek, + i Cijk,mEk,Em” + . . . (2.9) 
‘J 

If this is an invertible stress-strain relationship, then 

(2.10) 

where 

y (Sij) = Sk,Ek, - @(E,) = i Dijk,SijSk, + $ Dijk,m,S,Sk,Sm, + . . . (2.11) 

is the complementary strain energy, the Legendre transform of Q. The elastic constants 
D,,.. are the elastic compliances. 

Since aS,/aS,, = Z,,, (fourth-order unit tensor), and a2Sij/&aS,,,, = 0, it follows 
that the second- and third-order elastic moduli and compliances are related by 
D,, = C,$, and 

Dijk/mn = - Dijpq Cpqrsuu DlsklDuDmn 

For a cubic crystal, the complementary energy can be written as 

(2.12) 
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+6(~, +~z)l+d,z~~,~,~,+8d,,,~,~,~,, (2.13) 

to the third-order terms in stress. Note that the coefficients in front of the constants 

du, dld4, dza and d456 are appropriately adjusted, since in the Voigt notation, the recipe 
rg=S,,(9= 1,2 )... ,6) is used for the stress components. Consequently, an invariant 

form of Y is exactly equal to that given by (2.4) with the constants ciik replaced by 

d+ in the expressions defining the constants CLS and /k, and with the tensor E replaced 
by S in (2.6))(2.8). 

3. SECOND- AND THIRD-ORDER ELASTIC CONSTANTS OF CUBIC 
CRYSTALS 

The components of the fourth-order tensor C,, of the second-order elastic moduli 

with respect to an arbitrary rectangular basis, can be identified by comparing (2.1) 
and (2.4). This gives 

c,jk1 = cl,6,j6k,+2c44z~~kl+(c, 1 -cl2 +2C44)Atjkl~ (3.1) 

where Aiikl = a,qa,a,+ bib,bkb,+ c,cjckc,. The non-dimensional anisotropy factor 

(3.2) 

is usually introduced as a measure of the degree of anisotropy at the second-order 
level, so that in the case of isotropyf, = 0. 

The fourth-order tensor of the second-order elastic compliances has the components 

Dijk, = d, 2hi$kl+2d441i,k/ + (d, I -d, 2 - 2d44)Az,kl, (3.3) 

with the connections 

d,, = 
Cl1 +c,2 1 

(C,,-C,Z)(C,,f2C,2)’ d12 = - (c,,-c,2;;f,,+2c,2)’ d44 =4c,,. 

(3.4) 

If the symbols c and d are interchanged in (3.4), the relationship expressing the 
second-order moduli cij in terms of the second-order compliances dij are obtained. 
Other base tensors for the fourth-order tensors with cubic symmetry can be used in 
(3.1) and (3.3). A particularly convenient choice, which enables easy determination 
of the inverse tensors, has been utilized by Walpole (1984). 

Further comparing (2.1) and (2.4), it is found that the components of the sixth- 
order tensor Ci,k,mn are 



~1 = ~123 -Ps, ~2 = 6~144, ~3 = 2fl,>Y, = -384,~5 = 6Ps,~, = 686. (3.6) 

The coefficients /?i through /I6 are defined by (2.5). The tensors appearing on the right- 
hand side of (3.5) are the base tensors for the sixth-order elastic stiffness tensor with 
cubic symmetry. The notation such as aCiajbkb,c,c,) designates the symmetrization 
with respect to i and j, k and I, m and n, and ij, kl and mn. For example 

d,ik6,6, = $6,1,,, + Si,Zjk, + ati J/clrt, + hinZ/c,mj)- (3.7) 

Other base tensors could be selected, such as those used by Toupin and Rivlin (1960). 
For isotropic material /I4 = z!& = & = 0, i.e. c, ,, = cl23 + 6c,+, + 8a456, 

Cl12 = Cl23+2C~ and c244 = c,~+~c~~~. The components Cijk,mn are then the com- 
ponents of an isotropic sixth-order tensor 

The tensors 6,6,,6,, a(ijZkklmn) and 6~ik&,J,,,, constitute an integrity basis for the sixth- 
order isotropic tensors. If a Cauchy-type or Milder symmetry Cijkrmn = C,,,, would 
apply, then c 123 = cl44 = c456. 

The anisotropy factors for the TOEC of a cubic crystal can be introduced in various 
ways. One convenient definition is 

(3.9) 

so that in the case of isotropyf, =f2 =f3 = 0. 
The components of the sixth-order elastic compliance tensor D,,m are given by the 

right-hand side of (3.5), with the constants cijk replaced by diik in (2.5) and (3.6). 
Having in mind (2.12), rewritten for convenience in the Voigt notation as 

dikm = -dipcprudrkdum, and in view of tables for independent SOEC and TOEC (Brug- 
ger, 1965), the relationships between the third-order elastic moduli and compliances 
are (Barsch, 1968) 

d 111 =(d:, +2d:,)c 1,1-6d,,(d:, +dl,d,2+d:2)c,,2_6d,,d:2c123, (3.10) 

d 112 = -~12~~:1+~11~12+~:2~~~,~1+~~123~ 

-(d:,+3d:,d,,+9d,,d:,+5d:,)c,,,, (3.11) 

d 123 = -3dlld:2clll- 6dl2(d:l+dl,d,2+d:2)cll2 

-(d:l+3d,,d:2+2d:2)c123, (3.12) 

d 144 = -4d:4(dl1~144+2d,2c244), (3.13) 

d 244 = -4d:4[dl2cl44+(dll +&kd (3.14) 

d 456 = -8d:,c456. (3.15) 
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If the symbols c and dare interchanged in (3.10)-(3.15), we have the inverse relation- 
ships expressing ciik in terms of dijk. 

Cousins (1968) observed that certain linear combinations of the third-order elastic 
moduli and compliances are proportional to each other. For example, for isotropic 
material it can be shown that 

9diz3+ 18&+8&6 = -(3d,z+2d44)3(9c1z3+ 18~144+8c.&, (3.16) 

3d, 44 + 4& = -4&+(3&z +2d,,)(3c,,, +4c.&. (3.17) 

These equations will be conveniently used to compare the Voigt- and Reuss-type 
estimates of the TOEC in the subsequent section. 

4. VOIGT- AND REUSS-TYPE ESTIMATES OF THE ELASTIC 
CONSTANTS OF AN ISOTROPIC AGGREGATE OF CUBIC 

CRYSTALS 

For the sake of comparison with the results presented in Section 5, we list in this 
section relevant results for the Voigt- and Reuss-type estimates of the SOEC and 
TOEC. According to the Voigt assumption, when a polycrystalline aggregate is 
subjected to the overall uniform strain, the individual crystals will all be in the same 
state of applied strain. It follows that the effective elastic moduli of a polycrystalline 
aggregate are directional averages of the single crystal moduli 

(4.1) 

(4.2) 

Equation (4.1) gives, upon integration 

1 
c$/r,=5(c11 +4c~~~2c~~~6ij~~~+~~c~l~clZ+3c~~~zij~~~ (4.3) 

The well-known Voigt estimates of the effective second-order elastic moduli for a 
polycrystalline aggregate are thus 

CT2 = $c, 1 +4c 12 -2d, 

1 
e.4 = $‘,I -c1*+3c44). (4.4) 

Similarly, Equation (4.2) yields 
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Comparing (4.5) with the general isotropic structure of (3.8) the effective third-order 
elastic moduli for a polycrystalline aggregate are found to be 

Cl23 =~(c,,,+18c,,~+16r,,3-30C,44-12C241+16C45h), 
* (4.6) 

ch4 = $c,,, +4c ,,2-5c,23+19c,44+2~244-12~456), (4.7) 

C&6 = 35 L(c,,, -3~,,,+2c,,,- 9c,44 +9c244 +9%5). (4.8) 

These relationships can also be obtained without the involved integration (see Appen- 
dix), from the system of three algebraic equations for three unknowns cTz3, cFd4 and 
c&, obtained by equating the linear invariants of the sixth-order tensor of a single 
cubic crystal, with the corresponding invariants of the isotropic sixth-order tensor of 
a polycrystalline aggregate (Bross, 1963 ; Barsch, 1968). Johnson (1982) has extended 
the Voigt-type averaging to derive expressions for the nine TOEC of transversely 
isotropic aggregates of cubic crystals. 

When a polycrystalline aggregate is subjected to the overall uniform stress, Reuss 
assumed that the individual crystals are also in the same state of applied stress. 
The effective elastic compliances of a polycrystalline aggregate are then directional 
averages of the single crystal compliances 

(4.9) 

(4. IO) 

From (4.9), the Reuss estimates of the second-order elastic compliances are 

d:z = $I,, +4d,,-2d,,), d& = ;(d,, -d,2+3d& (4.11) 

From (4.10) we obtain the third-order elastic compliances c$ in terms of d,ik. The 
resulting equations are (4.6)-(4.8), with the constants ciik replaced by the constants 
drlk. The corresponding elastic moduli are 

~723 = -(3c:2 +2c:a)3dTz3 - 6c:, (3~72 + 2&)(3& + 4cq*)d:di44 

-24(c:I +2c&)cfz2 d&e, (4.12) 

c:44 = -4~?;4~[(3cT2 +2c&)dL~ +W,dM, (4.13) 

c& = -8~$z,~ d&,. (4.14) 

To compare the Voigt- and Reuss-type estimates, it is helpful to use (3.16) and (3.17). 
The linear combination 9~7~~ + 18c* ,44 + 8c& is associated with a pure hydrostatic 
response, and is the same for both, Voigt- and Reus-type estimates. However 
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1 
(3c:~(44+4&)” = ,[(c,,, -c,,,)+3(c,44+2c244)], (4.15) 

(3C4*,+4cq*56)R = &[(c,,, -c,23)+3(1 -fo)(c,44+2c*44)1, (4.16) 
0 

and 

(c&d” = ; [Cc lll --~c,,,+~c,,,)-~(c~,,-c~~~)+~c~~~I, (4.17) 

+9(1 -Ad3~d (4.18) 

Thus, the smaller the magnitude of anisotropy factorf, for the SOEC, the smaller the 
difference between the Voigt and Reuss estimates of the TOEC. If f. = 0, the two 
estimates coincide. They can also coincide, or can be close to each other, for certain 
crystals with large magnitude off,, such as niobium (see Section 6). There are materials 
that are nearly isotropic in their SOEC, but strongly anisotropic in their TOEC 
(Chang and Graham, 1968). For example, aluminum is nearly isotropic at the second- 
order level, but strongly anisotropic at the third-order level. As discussed by Johnson 
(1986), the degree of anisotropy found among the SOEC does not give any infor- 
mation on the degree of anisotropy to be expected at the third-order level. Further- 
more, the coincidence of the Voigt- and Reuss-type estimates does not imply that 
they represent the exact values of the TOEC (as would be the case with the SOEC), 
because there is no proof that some, or any, of the Voigt and Reuss estimates of the 
third-order elastic moduli are the upper or lower bounds for these constants. 

5. SEMI-CONSISTENT ESTIMATES OF THE ELASTIC CONSTANTS 
FOR AN ISOTROPIC AGGREGATE OF CUBIC CRYSTALS 

An improved method to determine the effective TOEC for an isotropic aggregate 
of anisotropic cubic crystals is presented. This method is an extension of the well- 
known self-consistent method used to calculate the effective SOEC in linear theory. 
In the first approach, we assume that the Lagrangian strain within a single crystal, 
embedded in an isotropic effective matrix, is proportional to the corresponding far- 
field strain in the matrix. This is adopted from the linear theory, where the infinitesimal 
strain within a crystal is exactly proportional to the far-field applied strain. In the 
second approach, we assume that the symmetric Piola-Kirchhoff stress within a 
crystal is proportional to the corresponding far-field stress in the matrix. When applied 
to calculate the effective elastic properties, the two approaches are self-consistent with 
respect to the SOEC, but not the TOEC. The method is thus referred to as a semi- 
consistent method. 
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5.1. Elastic moduli approach 

V. A. LUBARDA 

Denote the symmetric Piola-Kirchhoff stress in an arbitrary cubic crystal of a 
polycrystalline aggregate by St. This is a gradient of the strain energy with respect to 
the corresponding Lagrangian strain Ei,, i.e. to within the second-order terms in 
strain 

The constants C,, are defined by (3. l), and C,,,, by (3.5). The average stress in a 
polycrystal is 

S, = & S;dQ. 
s n 

(5.2) 

where dR = sin Odq dt?d$, and cp, 8 and II/ are the Euler angles. Denoting by C& 

and C&,,, the effective elastic constants of a polycrystalline aggregate, we have 

(5.3) 

In his well-known paper, Eshelby (1957) has shown, through an equivalent inclusion 
method, that the strain in an ellipsoidal inhomogeneity within a matrix subjected to 
far field uniform strain is also uniform. Linear elasticity and small deformations 
were assumed. Since an ellipsoidal inclusion under uniform deformation remains an 
ellipsoidal inclusion, the result also applies in the case of nonlinear elasticity and finite 
deformations. This can be considered as a sequence of infinitesimal increments. For 
each increment of applied strain there is a uniform increment of strain within the 
inhomogeneity, and thus the total strain in the inhomogeneity is also uniform. The 
relationship between this strain and the applied strain is, however, difficult to find 
due to mathematical complexities in handling the corresponding nonlinear boundary 
value problem. We shall accordingly assume that the Lagrangian strain in a single 
crystal of a polycrystalline aggregate is proportional to applied strain, i.e. 

EFJ = Jfij/c/Ekl, (5.4) 

where Xijk, is the same tensor as in the corresponding linear elasticity problem. This 
is an improvement relative to the Voigt-type assumption Ei = E,, although it is still 
a simplification, since a nonlinear relationship between Et and Eij should hold in the 
nonlinear elastic domain. (Addition of the quadratic terms c%‘~,~~~E~,E,,, to the right- 
hand side of (5.4) would be the next order of approximation, provided that the sixth- 
order tensor Xijklmn can be appropriately constructed.) Adopting (5.4), the tensor 
$4Yijk, can be obtained by a self-consistent method originally introduced by Hershey 
(1954) and Krdner (1958). If an individual cubic crystal of a spherical shape is 
considered to be an anisotropic inhomogeneity surrounded by an effective isotropic 
matrix of the polycrystalline aggregate, it can be shown that 



where 
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xi,kl = ~j~l+h(8ijskl+2Zi,k(- 5Aj,k,), (5.5) 

h= 
(~,,+2~12+6~4*4)(c,, -c12-2d:4 

3P-%~2+9c,,&+(c,, -c,*)(c,, +2c,,)l’ 

(5.6) 

The tensor components A,, are given by the expression following (3.1). Substituting 

where 

cijkl = Cijpqxpgk19 eij!ihn = Cijpqrs~pqkl~wnn~ 

For example, in an expanded form 

C,,k/ = Ci,k, + h { ( cI, -c12)8ij8kl+4C44z~jkl-[3(C11 -c12)+4C441Aijkl} 

Thus, in view of (5.2) and (5.3), it follows that 

(5.7) 

(5.8) 

(5.9) 

(5. IO) 

(5.11) 

By equating the linear invariants of C$, and C,,(C& = C,,,, C$, = e,,,), we obtain 

3cTz+2c4* = c,, +2~,~, and 

8~4*4~+(5c,, +4C,&$z,2-c~z,(7~,, -4c,&& 

-cz,d(c,, -c,z)(c,, +2c,z) = 0. (5.12) 

This cubic equation for c& was originally derived by Kroner (1958). 

In view of (3.5), (5.5) and (5.8), the three linear invariants of the sixth-order tensor 

ezj!flmn are 

^ 

Cii,,~ = 3(c,,, +6~,,,+2c,z,), (5.13) 

CiiNkl = 3(c,,,+2~,,,+2~,,,+4~244)+12h(-c,,,+c,23+2c,44+4C244) 

+6h2(3c,, , -3c ,z,+~C,N+~C~U), (5.14) 
1 

C;,jk,, = 3(c, 11 + 6~244 + 2~45,) + 12h( - c III +c,,2+c,44+3c244+2c456) 

+6h2(2c,,, -3c ,,2+C,23+4~,44+4C456). (5.15) 

Making these equal to the corresponding invariants of the isotropic sixth-order tensor 
of a polycrystalline aggregate 

C,r,kk = 3(9C:2, + 18cTbz, +8C$,,), (5.16) 

C%,N = 3(3C:,, + 16c:,, + 16c:,,), (5.17) 
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C&i = 3(CTz;, + 12Cr4, +22C4*5.5), (5.18) 

and solving for the three unknowns, we obtain 

c:z3 = &(16j, -3Oj, + 16j,), (5.19) 

~744 =&(-5j,+19j,-12/,), (5.20) 

c&j = &(2j, - 9j, + Sj,). (5.21) 

In (5.19)-(5.21), the abbreviations used werej, = eiijjkk/3, j, = &,&3 and j, = ciikki/3. 

5.2. Elastic compliances approach 

The stress state in an ellipsoidal inhomogeneity within a matrix subjected to the far 
field uniform stress is also uniform. In a dual formulation to that presented in the 
previous subsection, we assume that 

si’ = yijklskl, (5.22) 

where Yijki is the same tensor as in the corresponding linear elasticity problem. The 
tensor components $Fiik[ are 

yijk/ = 916ij6u+g,~j~,+g3Aij~,, (5.23) 

where 

1 d* 1 d* 
91 =y 1+2(wd,,yd,* , g2 =(1+2g)-$ g3 = l-3g,-g, 

and 

[2&+3(d,i +2&)1[2&-(d,, -d,,)] 

‘=3[4~~‘+9(dl,+d,,)d~~+2(d,,-d,,)(d,,+2d,,)]. 

Consequently, 

E$ = Bijklsk[ + i dijk/m,sk,smn, 

with 

Bijk/ = DijpqgMkl, fiijkhn = Dijpqrs~ppqk~~wnn. 

The effective elastic compliances of the polycrystalline aggregate are then 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 



Estimates of third-order elastic constants 483 

By equating the linear invariants of D$., and fi,,(D& = dii,,, Dzij = B,,), we obtain 

3dy2 + 2d& = d, , + 2d, 2, and 

4dLi+(7d,, +11d,,)dL2-d,,(5d,, +d,&% 

-2d44(d,, -d,,)(d,, +2d,z) = 0. (5.30) 

This cubic equation for dz4 is a dual equation to (5.12) for cq*4. One equation follows 
from another by direct substitution of the relationships (3.4) between the elastic 
moduli and compliances. Hence, the SOEC c;l; and c& (or, dr2 and d&) are identical 
in both types of calculation, and the method is self-consistent with respect to them. 

In view of (5.23) and (5.27), the three linear invariants of the sixth-order tensor 
d slklmn are 

~ir,~kk=27yI+9Y2+3Y3+9Y4+YS, (5.31) 

6.. r&/k/ = 91(1+&)(27Y, +9y, +3y, +9Y,+Y,)+@z +s293 +s:> 

~(9y,+5y2+3~,+5y,)+3g2@r--g,)(y,+y,)-g,g,(6y,-y,), (5.32) 

d- r/,kkr =9:(27Y,+9Y2+3Y3+9Y,+Y,)+2g,g2(9Yl +8Y2+6Y3+5Y,) 

+2g1g3(9Yl+5Y2 +3y3 +5y,)+2g,g, 
( 

3y, +4y, + iy3 +3y, 
) 

+s: 3~,+6~2 + 7~3 +3~4+ ;:.d 
( 

+3d(y, +y2 +Y3 +Yd. (5.33) 

In the above equations, the constants yl to y6 are given by (3.6), where j3, to /I$ are 
defined by (2.5), with the constants cijk replaced by the constants djjk. The first invariant 
fiji,,kk is identically equal to D,,. The right-hand sides of (5.32) and (5.33) can be 
rearranged in various ways, but for the known compliances dijk and calculated g,, g2 
and g3, they represent two easily determined numbers. By equating them to the 
corresponding invariants of the isotropic sixth-order tensor of a polycrystalline aggre- 
gate, and solving for the three unknowns, we obtain 

82, = &(16k, -3Ok, + 16/Q (5.34) 

844 = +k,+19k2-lzk,), (5.35) 

d* 456 = &(2”, -9k2 +9k,), (5.36) 

where k, = fi,&3, k2 = 6iik[kl/3, and k, = fii,&3. The corresponding elastic moduli 

423, cYJ4 and CL are determined from (4.12)-(4.14). The calculated values are 
different from those obtained in the previous subsection. Hence, while the two pro- 
cedures are self-consistent with respect to the SOEC, they are not with respect to the 
TOEC, and we refer to the method as a semi-consistent method. 
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Table 1. Experimental values for the SOEC Cij (in 
GPa) of selected cubic crystals, listed in Landolt- 
Bornstein (1979). The parameter f, is the cor- 
responding anisotropy factor, calculated from 
(3.2). The constants cJ are the experimental values 

for isotropic polycrystalline aggregates, cal- 
culated from the data reported by Hertzberg 

(1976) 

Material CII Cl2 G‘l “fYl CT2 CZ4 

Al 108 62 28.3 0.19 58.1 26.1 
CU 169 122 75.3 0.69 105.5 48.3 
Nb 245 132 28.4 -0.99 144.5 37.5 
Fe 230 135 117 0.59 115.5 81.6 

6. NUMERICAL RESULTS AND DISCUSSION 

Experimental values for the SOEC of selected cubic crystals are listed in Table 1. 
The table also contains experimental data for the polycrystalline aggregates. The 
accuracy of the data is high at both single crystal and polycrystalline levels. Table 2 lists 
the Voigt, Reuss and the self-consistent estimates of these constants. The agreement 
between the self-consistent estimates and the experimental data are good. 

The accuracy of analytical estimates of the TOEC, based on the presently available 
experimental data, can only be assessed to a limited extent. This is because there is 
substantial uncertainty about the accuracy of the measured values of the TOEC for 
most single crystals. An inspection of the Landolt-Bornstein (1979) compilations 
reveals a large margin of error for the constants c,*~, cIU and c456, which is in some 
cases in the range from 100 to 300%. This is also evident from the values for the 
TOEC of aluminum, copper, niobium and iron, listed in Table 3. Furthermore, while 
the data for the TOEC of single crystals and single-crystalline alloys are available in 
the literature, the data for isotropic polycrystals are rather rare. Table 4 lists the 

Table 2. Voigt, Reuss and self-consistent estimates of the second- 
order elastic constants for isotropic polycrystalline aggregates 
(in GPa). Note that cTZv < cyz < crZR and cf4R < ct4 < ctdv 

Material 

Al 
cu 
Nb 
Fe 

*v 
Cl2 

*v 
c44 

*R 
Cl2 

*R 
c44 CT2 CL 

59.88 26.18 60.06 25.91 59.96 26.06 
101.28 54.58 110.99 40.02 105.58 48.13 
143.24 39.64 146.03 35.45 144.61 37.58 
107.20 89.20 117.46 73.80 111.90 82.15 
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Table 3. Experimental values for the TOEC of single crystals (in GPa); Landolt- 
Biirnstein (1979) 

Material CIII Cl12 Cl23 Cl44 c244 C456 

Al -1080+30 -315+10 36f 15 -23+ 15 -340flO -30+30 
CU -1271+22 -814k9 -5O+ 18 -3*9 -780&-S -95+s7 
Nb -2564+25 -1140+25 -467+25 -343+10 - 168+5 137*5 
Fe -2705+5 -626+_5 -575+5 -836k 13 -531+7 -721k12 

Table 4. Experimental values for the TOEC (in GPa). Values for CM 
and Fe are calculated from the reported values of the Murnaghan 

constants 1, m, n 

Material c:23 CT44 CT56 Reference 

Al 
cu 
Nb 
Fe 

-39+ 17 - 124&4 -86+1 Wasserbach (1990) 
-670+180 175f207 -398f5 Seeger and Buck (1960) 
-480+120 -370+20 75&5 Graham et nl. ( 1968) 
-320fllO -1Of15 -380+3 Seeger and Buck (1960) 

values of the TOEC for polycrystalline materials that we were able to find in the 
literature. The margin of error is small for the constant cfs6, but rather pronounced 
for the remaining two constants. Smith et al. (1966) and Wasserbach (1990) discussed 
the error in cTz3, and pointed out that it is large because the final stage of calculating 
this constant from the experimental data involves the difference between approxi- 
mately equal quantities. 

The Voigt and Reuss estimates of the TOEC for isotropic polycrystalline aggregates 
are given in Table 5. They are calculated according to expressions of the type given 
by (4.6)-(4.8) (without the error margins from Table 3). The difference between these 

Table 5. Voigt and Reuss estimates of the TOECfor isotropicpolycrystalline aggregates 
(in GPa) 

Material * v 
cl23 

* v 
Cl44 

* v 
c456 

* R 
c123 

* R 
Cl44 

* R 
C456 

Al - 53.83 - 93.63 -91.03 -49.37 -98.32 - 85.48 
cu -251.23 - 135.83 - 193.63 44.95 - 392.77 51.34 
Nb -458.80 - 379.60 78.00 -416.22 -415.98 111.99 
Fe - 93.06 - 303.66 - 163.46 -231.14 -213.96 -209.94 
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Table 6. Two types of semi-consistent estimates of the TOEC (in GPa) for isotropic 

polycrystalline aggregates 

Material * (1) 
Cl23 

* (1) 
Cl44 

* (1) 
C456 

* (2) 
Cl23 

* (2) 
Cl44 

* (2) 
C4Sh 

Al - 55.73 - 93.09 -90.11 - 52.49 -95.51 - 88.29 
CU - 304.33 - 124.85 - 158.60 - 172.40 -223.79 -84.39 
Nb - 464.97 - 380.64 87.28 -433.52 - 404.23 104.97 
Fe -144.11 -283.54 -151.29 - 206.42 -236.80 - 186.35 

estimates is rather small for aluminum, because a single crystal of aluminum is mildly 
anisotropic at the level of the SOEC (fO = 0.19). The estimates are also close for 
niobium (columbium), although its single crystals are very anisotropic at the second- 
order level (fO = -0.99). This is because the TOEC of a single crystal of niobium 
happen to be such that the right-hand sides of (4.17) and (4.1 S), for example, do not 
differ appreciably, in spite of the large magnitude off,. More often, however, the 
difference between the Voigt and Reuss estimates is more pronounced, the higher the 
magnitude of the anisotropy factory,. For example, the Voigt estimate of the constant 
cT13 for copper (fO = 0.69) is about -251 GPa, while its Reuss estimate is positive 
and equal to about 45 GPa. 

Table 6 lists the two estimates of the TOEC, based on the proposed semi-consistent 
method. A common feature of these results is that for each TOEC, the two semi- 
consistent estimates are closer to each other, than the Voigt and Reuss estimates are. 
For example, the two estimates of the constant cyz3 for copper are about - 304 and 
- 172 GPa. The difference is equal to - 132 GPa, i.e. about 55% of - 238, which is 
the arithmetic mean between - 304 and - 172. The difference between the Voigt and 
Reuss estimates is more than twice that high, about -296 GPa, i.e. 287% of - 103, 
which is the arithmetic mean between - 25 1 and 45. A similar situation is found with 
constants cTd4 and cTjh. 

Since the Voigt averaging procedure assumes that the material is in the state 
of homogeneous strain, and the Reuss procedure assumes it to be in the state of 
homogeneous stress, these assumptions correspond to two extreme situations. It is 
reasonable to expect that a real polycrystalline aggregate will be somewhere in- 
between these extremes. Consequently, we give in Table 7 the values of the third- 

Table 7. Average estimates of the third-order elastic mod& based on the arithmetic 

mean of the Voigt and Reuss estimates, and on the arithmetic mean qf' the tu!o semi- 

consistent estimates (in GPa) 

Material * VR 
c123 

* VR 
Cl44 

* VR 
C456 

* SC 
Cl23 

* SC 
Cl44 

* SC 
C45h 

Al -51.60 -95.98 - 88.26 -54.11 - 94.30 - 89.20 
cu - 103.14 - 264.30 -71.14 - 238.37 - 174.32 - 121.49 
Nb -437.51 - 397.79 94.99 -449.25 - 392.43 96.13 
Fe - 162.10 -258.81 - 186.70 - 175.26 -260.17 - 168.82 
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Table 8. Average estimates of the third-order elastic mod& for jive additional- 
polycrystalline materials, based on the arithmetic mean of the Voigt and Reuss estimates, 

and on the arithmetic mean of the two semi-consistent estimates (in GPa) 

Material * VR 
Cl23 

* VR 
Cl44 

* VR 
C456 

* SC 
Cl27 

* SC 
Cl44 

* SC 
c456 

Ag 111.04 - 242.03 - 35.23 3.00 - 168.69 - 78.69 
Au - 286.63 - 249.62 -81.85 - 390.82 - 182.41 - 115.97 
Si -210.98 -61.09 - 77.07 -221.83 - 53.82 -81.22 
Ge - 121.55 - 82.09 -61.04 - 134.62 - 73.40 - 65.90 
Ni - 227.94 -314.74 - 124.15 - 334.76 - 245.29 - 160.25 

order elastic moduli calculated from the arithmetic mean of the Voigt and Reuss 
estimates. For the second-order elastic moduli, such an estimate is sometimes referred 
to as the Voigt-Reuss-Hill estimate, since Hill (1952) observed that it often makes a 
good agreement with experimental observations. Table 7 also contains the third- 

order elastic moduli calculated from the arithmetic mean of the two semi-consistent 
estimates. Finally, we give Table 8 which lists the estimates of the TOEC for five 
additional polycrystals. No comparison with experimental data is given here, since 
all reported laboratory investigations on these materials were done in their single 
crystal form. 

An unambiguous judgement of the accuracy for either of the presented estimates 
must await more accurate experimental measurements for both, single crystals and 
polycrystalline aggregates. For the data presented in Table 3, we find the best agree- 
ment between theoretical estimates and the experiment in the case of niobium. This 
is partly because niobium is a BCC refractory metal with a high yield strength, so 
that measurements under uniaxial stress are less effected by a possible dislocation 
motion. Agreement in the case of iron is far less satisfactory, particularly for the 

constant cTd4, even though iron is also a BCC metal, with a high yield strength, and 
with dislocations usually pinned by impurities such as nitrogen and carbon. Agree- 
ment with experimental data for aluminum appears to be rather good for all analytical 
estimates. There is a pronounced disagreement for copper, albeit the semi-consistent 
estimates are closer to experimental values. Disagreements may be partly attributed 
to the precision of experimental techniques, and to the fact that analytical estimates 
are based on the assumption that grains are negligible in size compared to the 
specimen, and oriented in a completely random manner. Johnson (1986) indicated 
that ultrasonic measurements can be considerably affected when the number of grains 
within the acoustic beam of the transducer is not large (less than 1000). The exper- 

imental data from such tests cannot be in close agreement with theoretical estimates 
considered in this paper. The TOEC are also sensitive to small variations in a poly- 
crystalline microstructure. Graham et al. (1968) reported large differences in the 
measured TOEC for two samples of polycrystalline columbium, one of which had 
more elongated grains than the other. In contrast, the measured values of the SOEC 
were only slightly influenced by this grain structure. The presence of grain boundaries 
and voids between grains also affects the ultrasonic measurements and resulting values 
for the TOEC. 
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7. CONCLUSION 

Several extensions of the presented analysis should be undertaken. One is a deri- 
vation of the sixth-order tensors %+,,,,,, or yijklmn, which appear in (5.4) and (5.22), 
when the quadratic terms in strain and stress are included there. If this is accomplished, 

the calculation of the corresponding average TOEC proceeds with no further diffi- 
culties, in an analogous manner to that described in Section 5. However, the estimates 
of the TOEC based on the elastic moduli and the elastic compliances approach will still 
be different, because the quadratic approximations of the strain and complementary 

energies are not exact Legendre transforms of each other. The second effort should 
address the variational estimates and derivation of possible bounds for the TOEC. 
The existing results for nonlinear heterogeneous solids, already considered in the 

literature (Willis, 1990), may in that respect be of significant help. An extension of the 
analyses also needs to be undertaken to determine the effective TOEC for transversely 
isotropic and orthotropic aggregates of cubic crystals. The corresponding results for 
the SOEC are the well-known self-consistent calculations by Kneer (1965) and Morris 
(1970) and, more recently, by Walpole (1987) regarding additional estimates and the 

bounds for the overall moduli. 
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APPENDIX 

To derive the effective third-order polycrystalline elastic constants by integration from (4.2) 
the following three integrals were evaluated 
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(A.11 

where da = sin 8 dy, de d$, and q, B and $ are the Euler angles. 
The three-dimensional averages of the type given by (A. l)-(A.3) occur in the study of many 

other physical and chemical processes (Andrews and Thirunamachandran, 1977). 


