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ABSTRACT 

A COMMON APPROACH used in formulating elastoplastic constitutive equations is to partition the total strain 
rate into its elastic and plastic parts, and then develop the constitutive expression for the plastic strain rate 
using the concept of the yield surFace in stress space. An alternative approach is to partition the stress rate 
into its elastic and plastic parts, and then develop the constitutive expression for the plastic stress rate 
using the concept of the yield surface in strain space. Both of these approaches are used in this paper to 
derive and compare the final structures of the corresponding constitutive equations. It is shown that the 
preferable choice of the yield surface may be in either stress or strain space depending on the selected strain 
and conjugate stress measures utilized to construct the constitutive formulation. 

I. INTRODUCTION 

THE PROCEDURE that is normally used in developing the elastoplastic constitutive 
equations involves decomposing the total strain rate into its elastic and plastic parts, 
and then deriving the constitutive expressions for each part. The elastic part of the 
strain rate is defined as the reversible part of the total strain rate, in the sense that it 
gives a strain increment that is recovered after the loading-unloading cycle of the 
appropriate stress increment. The remaining part of the total strain rate is the plastic 
(residual) contribution which under certain assumptions is codirectional with the 
outward normal to the current locally smooth yield surface in the appropriate stress 
space. 

An alternative but rarely utilized approach is to partition the stress rate into its 
elastic and plastic parts, and then derive the constitutive expressions for each of these 
parts. The elastic part of the stress rate is defined as the stress rate that would 
correspond to a prescribed strain rate if the instantaneous material response was 
purely elastic. The plastic part of the stress rate then gives a residual stress decrement 
in an infinitesimal loading-unloading strain cycle. As discussed in Section 3, this 
part of the stress rate under certain assumptions is codirectional with the inward 
normal to the current locally smooth yield surface in the strain space. 

Although the general constitutive framework which employs both of the described 
approaches has been outlined by HILL (1959, 1967, 1978), IL’YUSHIN (196 1) and HILL 

and RICE (1972, 1973), the second approach has received little attention. It is the 
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purpose of this paper to elaborate on this issue, i.e. to derive explicit representations 
of the elastoplastic constitutive equations using the stress rate decomposition and the 
yield surface in strain space. These results are then compared with those of the 
traditional approach using the strain rate decomposition and the yield surface in stress 
space. It is shown that the preferable choice of the yield surface may be in either stress 
or strain space depending on the selected strain and conjugate stress measures utilized 
to construct the constitutive formulation. 

The formulation of elastoplasticity with the yield surface in strain space has been 
studied during the past two decades by Naghdi and his coworkers, i.e. NAGHDI and 
TRAPP(I~~~),CASEY~~~NAGHDI(I~~~, 1983, 1984),N~~~~1(199O).Thedifferences 
in the structure of the loading conditions that arise in the formulations using the yield 
surface in stress and strain space are examined in the context of hardening, softening 
and perfectly plastic behavior. The plastic strain is regarded as a primitive variable 
defined by its rate through an appropriate constitutive equation. The constitutivc 
equation for the plastic strain rate is then constructed in both formulations, i.c. 
with reference to the yield surface in stress and strain space. A different approach is 
taken by Y~DER and IWAN (1981). By restricting their attention to small strains, they 
obtain the stress response by subtracting the so-called stress relaxation from the 
stress that would arise elastically from the current strain. Here, the increment of the 
relaxation stress is assumed to be normal to the introduced relaxation surface in strain 
space. The relationship with the traditional formulation using the yield surface in 
stress space is then obtained. Constitutive inequalities and normality properties in 
elastoplastic analysis with the yield surface in strain space have been studied by 
LUBLINER (1986). Duality of stress- and strain-based plasticity formulations, as delin- 
eated by HILL (1967), is also discussed by NEMAT-NASSER ( 1992). 

The contents of the present paper are as follows. Section 2 contains kinematic and 
kinetic preliminaries. The finite strain kinematics and the multiplicative decomposition 
of deformation gradient into its elastic and plastic parts (LEE, 1969) are conveniently 
utilized. In Section 3 a kinetic basis for the partition of the stress and strain rates is 
introduced according to the procedure presented by HILL and RICE (I 973). These 
results are then applied to some convenient choices of reference state and cor- 
responding conjugate measures of stress and strain, and their rates. Section 4 gives 
explicit relationships between introduced elastic and plastic parts of the stress and 
strain rates, and constituents of the multiplicative decomposition of the deformation 
gradient. The constitutive equation for the plastic stress rate is derived in Section 5. 
using the concept of the yield surface in strain space. The overall elastoplastic consti- 
tutive equations are derived with an explicit representation of the current elastoplastic 
stiffness and compliance tensors. For the sake of comparison, the elastoplastic consti- 
tutive analysis with reference to the yield surface in stress space is presented in Section 
6. Lastly, the discussion and conclusions are given in Section 7. 

2. KINEMATIC’ AND KINETIC PRELIMINARIES 

Consider the current elastoplastically deformed configuration of the material 
sample cd,, whose initial undeformed configuration is ,a”. Let F be the deformation 
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gradient that maps an infinitesimal material element dX in gO to dx in a,, i.e. 
dx = FdX. Both the initial X and current x locations of the material particle are 
referred to the same fixed set of the rectangular coordinate axis. Let g’, be the 
intermediate configuration obtained from gr by elastic distressing to zero stress. 
Such a configuration differs from the initial configuration by a residual (plastic) 
deformation, and from the current configuration by a reversible (elastic) deformation. 
By introducing F, and F, as deformation gradients associated with transformations 
.Yt -+ g, and go + g,, respectively, the multiplicative decomposition of deformation 
gradient follows (LEE, 1969) 

F = F,F,. (2.1) 

F, and F, are customarily called the elastic and plastic parts of the total deformation 
gradient F. For inhomogeneous deformations only F is a true deformation gradient, 
whose components are the partial derivatives ax/ax. In contrast, the mappings 
9, -+ 9, and !A?,, + PI are not, in general, continuous one-to-one mappings, so that F, 
and F, are not defined as the gradients of the respective mappings (which may not 
exist), but as the point functions (local deformation gradients). In the case when 
elastic distressing to zero stress ($8, + 9,) is not physically achievable due to the onset 
of reverse inelastic deformation before the zero stress is reached (which often occurs at 
advanced stages of deformation due to anisotropic hardening and strong Bauschinger 
effect), the intermediate configuration can be conceptually introduced by virtual 
distressing to zero stress, locking all inelastic structural changes that would occur 
during the actual distressing. 

The Lagrangian strains corresponding to deformation gradients F, and F, are 

E, = + (FTF, - I), E, = $ (F;F, - I) (2.2) 

where I denotes the second-order identity tensor and ( )? the transpose. The total 
Lagrangian strain can consequently be expressed as 

E = ;(FTF-I) = E,+F;E,F,. (2.3) 

The elastic and plastic strain measures E, and E, do not sum to give the total strain 
E, because E and E, are defined relative to the initial configuration 5?!. as a reference 
configuration, while E, is defined relative to the intermediate configuration 9, as a 
reference configuration. Consequently, it is the strain FrE,F,, induced from elastic 
strain E, by plastic deformation F,, that sums up with plastic strain E, to give the 
total strain E. 

The work conjugate stress to the Lagrangian strain E is the Piola-Kirchhoff stress 

S = F-‘tFmT. (2.4) 

In (2.4), ( )-- ’ designates the inverse, and t = IF(a is the Kirchhoff stress, i.e. the 
Cauchy stress u multiplied by the determinant of deformation gradient F. We also 
introduce the stress tensor 

S, = F, ‘z,F,-~, (2.5) 

where z, = IF&r. In what follows the plastic deformation will be assumed to be 
incompressible, so that lFpl = 1, and t, = r. 
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The deformation gradients F, and F, are not uniquely defined because arbitrary 
local material element rotations superposed to the unstressed state give alternate 
intermediate configurations. However, if material is elastically isotropic and remains 
such during inelastic deformation (preserving its elastic properties), then the elastic 
strain energy I/I per unit unstressed volume is an isotropic function of the Lagrangian 
strain E,, i.e. $(QEcQ’) = I//(E,), where Q is an orthogonal tensor corresponding to 
arbitrary rigid-body rotation superposed to the unstressed state. The elastic stress 
response from I/p, -+ &?‘r is, therefore, not influenced by the non-uniqueness of inter- 
mediate configuration and is given by the well-known finite elasticity expression 
(TRUESDELL and N0~~,1965) 

(2.6) 

For the sake of clarity, the main issues discussed in this paper and the subsequent 
analysis will be restricted to isotropic elastic behavior. This can also be extended to 
include anisotropy along the lines presented in other papers on the related subject 
(LUBARDA, 1991, 1993). 

2. I. Strain and stress rate measures 

Consider the velocity gradient in the current configuration at time t, as defined by 
L = PF ‘, where the dot designates the material time derivative. By introducing the 
multiplicative decomposition (2.1) of the deformation gradient F, the velocity gradient 
becomes 

L = i;,F, ’ +F,(k,F, ‘)F, ‘. (2.7) 

The strain rate D and spin W are given by the symmetric and antisymmetric parts of 
L as 

D = (c,F, ‘),+[F&F, ‘)F, ‘1, (2.8) 

W = (i;,F, ‘);,+[F,(l$F, ‘)F, ‘I<,. (2.9) 

The following relationships can be easily derived for the rates of the Lagrangian 
strains 

B=F’DF (2.10) 

I$ = F;(i;,F, ‘),F, (2.11) 

I?, = FU’(p,F, ‘),F, = F,’ {D- [F,&Fp ‘)F, ‘I\) F,. (2.12) 

The rate of the PiolaaKirchhoff stress (2.4) is 

S=F ‘iF ‘. (2.13) 

where 

i = t-Lz-TL’ (2.14) 
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is a convected type stress rate that is observed in the frame that deforms with the 
material in the current configuration. Furthermore, the rate of stress (2.5) is 

$, = F; ’ i’ FL-~. (2.15) 

The convected derivative i’, in the case of plastic incompressibility, is given by 

i’ = i- (~,F;‘)z-z(i;,F,‘)T. (2.16) 

In view of (2.7), (2.16) can be written in terms of the convected stress rate (2.14) as 

‘z’ = ; + [F&F; ‘)F, ‘]z+ r~,(E’,F, ‘)F; ‘I’. (2.17) 

2.2. Rate-type elasticity equation 

If the current increment of deformation is purely elastic (as during elastic unloading 
or loading within the elastic range), one has 

E:, = F:DF,, s, = F, ’ i F,T. (2.18) 

By differentiating (2.6) 

(2.19) 

where 0 denotes the outside tensor product, and ( : ) denotes the trace product. Using 
(2.18) with (2.19) gives 

F, ’ i FCmT = A, : (FTDF,). 

In (2.20), the fourth-order tensor 

(2.20) 

(2.21) 

is the corresponding instantaneous elastic stiffness tensor. Expression (2.20) can be 
rewritten as 

where 

i = SC:D, (2.22) 

ZC = F,F,A,F:F:. 

In the component form (2.23) reads 

(2.23) 

2;~ = r;;‘mFjX,,,F~PF~. (2.23’) 

Note that the instantaneous elastic moduli tensor zG?~ is independent of a superposed 
rotation to the reference state, which follows by inspection of (2.23’), or directly from 
(2.22), because neither D nor i depends on such a rotation. Of course, in general, the 
tensor A, in (2.21) does depend on the rotation of the reference state. Recall that 
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under superposed rotation Q of the reference state, F, changes to F,Q’, while E, 
changes to QEeQT. 

By introducing the complementary elastic strain energy by a Legendre trans- 
formation d, = S, : EC- $, one has 

E, = “!! 
?S, ’ 

(2.24) 

so that by differentiation 

F;DF, = M,:(F? ‘fF, ‘). 

In (2.25), the fourth-order tensor 

is the corresponding instantaneous elastic compliance tensor, which is the inverse of 
the instantaneous elastic stiffness tensor AC. Expression (2.25) can be rewritten as 

D = r/tic:;, (2.27) 

where 

r&c = F, ‘F, rM,F, ‘F, ’ (2.28) 

is the inverse of the stiffness tensor zZ’~. In the component form (2.28) reads 

A@‘;,~, = F;,, IF;, ’ M;, ,,,, ,F;; IF;, ’ (2.28’) 

By using the Jaumann corotational derivative of the Kirchhoff stress 

3 = i-WT+TW = f +Dr+zD. (2.29) 

(2.22) can be alternatively written as 

i = @C: D. (2.30) 

In (2.30), 

9?,=9C+c, (2.31) 

where Z: is the fourth-order tensor with the rectangular components 

z ,,A/ = &r,, + k,r,, + r&d,, + T&i. (2.32) 

The inverse of (2.30) is 

D = .A& : t, . $ = L?“,- ’ . (2.33) 

For small elastic deformations of metals, when the elastic moduli are far greater than 
the applied stresses, it follows that &‘, z 9, z A,, with the components 

A$, % p(6,16,,+6,,6,,) +A@,,. (2.34) 

where i and p are the Lame elastic constants. The computational advantages of using 
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the rate-type elasticity equation (2.30) or (2.33), associated with a truly hyperelastic 

response (2.6) or (2.24), are discussed by SIMO and ORTIZ (1985). 

3. PARTITIONING OF STRAIN AND STRESS RATES 

Following HILL and RICE (1973), let e be any objective symmetric strain tensor 
that measures deformation from an arbitrary reference state. Let t be the symmetric 
conjugate stress such that the Pfaffian t : de represents the work per unit volume of 
the adopted reference state in any deformation increment de. Further, let A and M 
be the corresponding instantaneous elastic moduli and compliance tensors, such that 
for purely elastic increment of strain 6e and corresponding stress increment 6t 

St = A : de, 6e = M: 6t. 

If the increment of strain de is elastoplastic, its plastic part is defined by 

(3.1) 

dPe = de-M:dt. (3.2) 

In a hardening material (i.e. when the yield surface in stress space moves locally 
outwards), dPe corresponds to the residual strain increment after an infinitesimal 
loading-unloading stress cycle dt. Applying the Il’yushin postulate (IL’YUSHIN, 1961) 

to certain finite and infinitesimal strain cycles (HILL, 1968 ; HILL and RICE, 1973), it 
follows that the plastic strain increment dPe is codirectional with the outward normal 
to a locally smooth yield surface in stress t space. Indeed, for any increment of stress 
6t emanating from the same stress state t on the yield surface f and directed inside 
the yield surface [Fig. 1 (a)], 

hence 

6t: dPe < 0, (3.3) 

(4 (b) 
FIG. 1. (a) Plastic strain increment dPe is codirectional with the outward normal to the yield surface j’ in 
stress space; 6t is the stress increment directed inside the yield surface. Cb) Plastic strain increment dPt is 
codirectional with the inward normal to the yield surface g in strain space; 6e is the strain increment 

directed inside the yield surface. 
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Likewise, the plastic stress change dPf is defined as a residual stress decrement in an 
infinitesimal strain cycle, i.e. 

d”t = dt-A:de. (3.5) 

Comparing (3.2) and (3.5), clearly : 

dPt = -A:dPe, d!‘e = -M:dQ. (3.6) 

Consider next the yield surface y in strain space e. For any increment of strain cSe 
emanating from the same strain e on the yield surface 9 and directed inside the yield 
surface, it follows that 

6e:d”t = 6e:(-A:d”e) = -6t:dPe > 0. (3.7) 

Hence, dPt is codirectional with the inward normal to a locally smooth yield surface 
in strain space e [Fig. l(b)], i.e. 

d”t - - E. (3.X) 

In retrospect, if the material is in a hardening range, i.e. if the yield surface in 
stress space locally expands during plastic deformation dPe, the corresponding stress 
increment dt is directed outside the current yield surface, and dt: dPe > 0. If the 
material is in a softening range, i.e. if the yield surface locally shrinks during plastic 
deformation dPe, the corresponding stress increment dt is directed inside the current 
yield surface, and dt : dPe < 0. However, as discussed by PALMER et al. (1967). in both 
cases dPe is codirectional with the outward normal to a locally smooth yield surface 
in stress space t. In the formulation based on the yield surface in strain space e, when 
the yield surface moves locally outwards during plastic loading regardless of the 
hardening or softening features in the corresponding stress space, the actual strain 
increment de is always directed outside the current yield surface, and de : dPt < 0. It 
should be remembered, however, that hardening and softening are relative terms. and 
depend on the strain and conjugate stress measures that are employed. A material 
that is judged to be strain hardening with one choice of the measures may be strain 
softening relative to another choice (HILI., 1967. 1978 ; PALGEN and DRUC'KER, 1983). 

3. I . Partitions corresponding to Lqrangiim .Ttruin md its conjq!ycrtr strrss 

Let e be the Lagrangian strain E and t its conjugate Piola-Kirchhoff stress S. 
Adopting the reference state for these measures to always coincide with intermediate- 
unstressed state Y,. it follows that 

e = E,. t = s, (3.9) 

&=F;DF,. i=F, ‘iF, ‘. (3.10) 

During purely elastic response (3. I) holds. In the case of the measures defined by (3.9) 
and (3.10), this is 

F;IDF, = M,: (F, ’ i F, ‘-). F, ’ i F, r = AC : (F;IDF,) (3.1 I) 



Elastoplastic yield surface in strain space 939 

where AC and M, are defined by (2.21) and (2.26). Denoting by D” and DP the elastic 
and plastic parts of the total strain rate D, corresponding to the above choice of the 

stress and strain measures, (3.2) gives 

From here, 

(F:DF,)” = FgDF,-M,:(F,‘iF,-=). (3.12) 

DP = D-de:;, (3.13) 

with the elastic compliance && defined by (2.28). The plastic strain rate (3.13) cor- 
responds to the selection of the Lagrangian strain and its conjugate stress, and the 
corresponding rate measures, defined relative to the current state as a reference. 

Likewise, from (3.5) it follows that 

i.e. 

(F,‘iF,T)P=F,‘iF;T-AC:(F:DF,), (3.14) 

(i)p = i -Ye: D, 

with the elastic moduli tensor 5Ze defined by (2.23). Observe that 

(3.15) 

(;)p = -Z’,:DP, DP = -&MC: (;)“. (3.16) 

As will be seen in Section 5, the selection of the Lagrangian strain and its conjugate 
Piola-Kirchhoff stress is most suitable in the development of the elastoplastic consti- 
tutive analysis using the stress rate decomposition into its elastic and plastic parts, 
and the concept of the yield surface in strain space. 

3.2. Partitions corresponding to logarithmic strain and its conjugate stress 

Hill’s general constitutive formulation employing arbitrary conjugate stress and 
strain measures, has been frequently utilized by adopting the reference configuration 
to always coincide with the current configuration. With this choice of reference state, 
a particularly convenient selection of the strain and stress measures is the logarithmic 
strain and its conjugate stress (HILL, 1978). In this case 

e=O, t=a (3.17) 

i: = D, i- = IF(-‘i, (3.18) 

where 4 is the Jaumann corotational derivative of the Kirchhoff stress. Denoting by 
D and Dp the elastic and plastic parts of the total strain rate D, corresponding to the 
above choice of stress and strain measures, (3.2) gives 

Dp = D-&5. (3.19) 

The elastic compliance tensor Ae is the inverse of the elastic moduli tensor 5?‘,, 
explicitly given by (2.31). 

Likewise, from (3.5) it follows that 
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(t)” = &&‘,,:D, (3.20) 

(;)” = --&:lY. iY = -.Z<:(?)“. (3.21) 

As described in Section 6, the selection of the logarithmic strain and its conjugate 
stress, with the reference configuration always being the current configuration. is 
most suitable to derive the elastoplastic constitutive equations using the strain rate 
decomposition into its elastic and plastic parts, and the yield surface in stress space. 

Observe from (3.20) and (3.15) that the plastic parts of the Jaumann and convected 
stress rates are equal to each other, since 

(t)” = I;-&:D = i -TPC:D E (;)P. (3.72) 

4. RELATIONSHIPS BETWEEN ELASTIC ANII PLASTIC STRAIN RATES AND 

CONSTITUENTS OF F = F,F, DECOMPOSITION 

If the current increment of deformation is elastoplastic, substitution of (2.12) and 
(2.15) into 

s, = A, : k, (4.1) 

gives 

7 = ZP,:D-Zc: [F,(k,F, ‘)FC ‘I,. (4.2) 

In (4.1) and (4.2). A, and ZC are elastic stiffness tensors defined by (2.21) and (2.23). 
Substituting (2.17) to express i” in terms of i. (4.2) becomes 

i = 9,: D-Zc: [F&F, ‘)Fc ‘I,-[F&F, ‘)F, ‘]~--T[F&,F~ ‘)F, ‘I’. (4.3) 

Since, according to (3.19, 

(3)’ = -Yc: D (4.4) 

is the elastic part of the stress rate i, from (4.3) it follows that the plastic part is 

(;)” = - (PC : [F&F, ‘)Fc ‘],+[F,(@,F, ‘)F, ‘]z+z[F,(i$F, ‘)F, ‘I’ ;. (4.5) 

Comparing (4.5) with the first of the expressions in (3.16), the plastic strain rate 
expression is identified as 

DP = [F,(fi,F; ‘)F, ‘],+.&./c: ;[F,(~;,F, I)F, ‘]z+t[~,(P,~, I)F, I]‘; (4.6) 

Using the strain rate decomposition D = D’+ DP, the expression for the elastic strain 
rate follows from (4.6) and (2.8) as 

D’ = (p,F, I),-.dd: ([F&F, ‘)F, ‘]r+t[F,(&Fp ‘)F, ‘I’;. (4.7) 
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If, instead of the convected derivative i, the Jaumann derivative S is used, it follows 
from (4.3) and (2.9) that 

S = L& : D -& : [F&F; ‘)F, ‘1, - [F&F, ‘)F, ‘1,~ +rF,(&F; ‘)F; ‘Ia. (4.8) 

Therefore, since according to (3.20), 

(i)e = 9, : D (4.9) 

is the elastic part of the stress rate +, from (4.8) it follows that the plastic part is 

(+)I’ = - {& : [F&F, ‘)F, ‘1, + [F&F; ‘)F, ‘1,~z[F,@,F, ‘)F; ‘la). (4.10) 

Comparing (4.10) with the first of the expressions in (3.21), the corresponding 
plastic strain rate expression is 

D” = [F&F; ‘)F, ‘Is+&: j[F,(i;,F,‘)F,‘],z-zF,(~,F,‘)F,‘],}. (4.11) 

By using the strain rate decomposition D = D,+D,, the expression for the elastic 

strain rate follows from (4.1 I) and (2.8) as 

DC = @,F, ‘),- Ac : {p&F, ‘)F, ‘];lr- t[F,(&,F, ‘)F, ‘I,}. (4.12) 

Note that De does not depend on the superposed rotation of the intermediate con- 
figuration, since in 

se = &:+, (4.13) 

neither L&Z nor + depend on such rotation. In contrast, the constituents of DC, namely 
the strain rate (p,F,- ‘)\ and spin 

o = [F&F, ‘)F, ‘Ia, (4.14) 

do depend on the choice of an intermediate configuration. Similar remarks apply to 
Dp and its representation (4.11) (LUBARDA and SHIH, 1994). As discussed in the 
context of crystal plasticity by HILL and RICE (1972), HILL and HAVNER (1982) and 
ASARO (1983), the plastic strain rate Dp does not come from the slip deformation 
alone, which is the first term on the right-hand side of (4.11). There is a further net 
elastic contribution from the lattice, which is caused by the slip-induced rotation of 
the lattice relative to the material, given by the Ae: (W--TO) term in (4.11). 

Observe from (4.6) and (4.11) that 

_Pc:DP = p’,: [F,(fi,F,-‘)F, ‘],+wr--to E .$: Dp, (4.15) 

as it should be, because (;)” = (+)“. Since (;)” = - LYe : DP, from (4.15) one has 

[F,@,F;‘)F;‘], = -.&: (i)“-&: (or-~), (4.16) 

which is a useful relationship used in the next section of this paper. 
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5. ELASTOPLASTIC CONSTITUTIVE EQUATIONS WITH THE YIELD SURFACE 

IN STRAIN SPAW 

5. I. Constitutitle equation for the plastic stress rutr 

In deriving a constitutive equation for the plastic stress rate, a convenient choice 
of the strain and stress measures is the Lagrangian strain and its conjugate Piola 
Kirchhoff stress, defined relative to the reference state that always coincides with the 
intermediate-unstressed state, as defined by (3.9) and (3.10). The plastic part of the 
stress rate, given by (3.14), is then codirectional with the inward normal to the yield 
surface in strain E, space, i.e. 

(5.1) 

In (5.1), y is the yield function and i > 0 the loading index. From the expression (5. I ) 
the plastic part of the convected stress derivative is 

(5.2) 

where &:, = F,~7 E,F, ’ is the elastic Eulerian strain. 
Consider the simplest case of isotropic hardening for which 

MG) = E(V). (5.3) 

The yield function y is an isotropic function of the strain E,, and K is a scalar function 
of the parameter 47. This parameter can be defined as a dual of the plastic work per 
unit initial volume 

(5.4) 

where p,, and pr are the mass densities in the initial and reference states. Alternatively, 
the equivalent (generalized) plastic stress can be used, i.e. 

(5.4’) 

These are the analogous definitions to corresponding definitions of plastic work and 
equivalent plastic strain, used in a familiar plasticity formulation with the yield surface 
in stress space. 

Using, for example, the definition (5.4), and substituting e = E, and expression 
(5. I) for the stress rate ip, the rate of ye becomes in the case of plastic incompressibility 

(PC = PO) 

(5.5) 

If y is a homogeneous function of E, of degree n. the above is also equal to I’. 
From (5.3) the consistency condition for the continuing plastic deformation is 
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In view of the expression (2.12) for the rate of strain I?:,, (5.6) can be written as 

A,: {D-[F&F,‘)F;‘],} = $$I. 

(5.6) 

(5.7) 

Using (4.16). the second part on the left-hand side of (5.7) is 

A, : [F&F, ‘)F; ‘J5 = -A, : J& : (i)“. (5.8) 

Observe that due to elastic isotropy, the strain rate .I& : (m-m) has parallel principal 
directions to those of the associated stress rate (or-~). Because the direction of the 
above stress rate is normal to r, and since A, is codirectional with z for isotropic 
function g, it follows that 

A,:J~~: (wz-rzo) = 0, (5.9) 

which was used in arriving at (5.8). 
Substituting (5.2) into (5.8) and this into (5.7), the loading index is found to be 

j =;(A,:D). (5.10) 

The hardening parameter h is given by 

(5.11) 

Since during continuing plastic deformation j > 0, the plastic loading condition is 
given by the positiveness of the right-hand side of (5.10). 

For example, if the yield function is defined by 

g = :E:.:E:, 

where EL is the deviatoric part of the strain E,, it follows that 

(5.12) 

ag - = E’ 
aE, ” 

(5.13) 

If the elastic component of strain is small (E, = E,), the strain-space yield function 
(5.12) corresponds to von Mises stress-space yield function f= &’ : d, where 
6’ = 2p.s: is the deviatoric part of the Cauchy stress, and p the elastic shear modulus. 

Substituting (5.10) into (5.2), the constitutive structure for the plastic stress rate is 

(i)p= -~(A,oA,):D. (5.14) 

Note from (5.14) that 
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D:(+‘= - ;$A,:D)‘< 0, (5.15) 

for II > 0. 

5.2. Elastoplastic constitutive equations 

Summing the elastic and plastic stress rates according to 

i = (iy+(;)P, (5.16) 

where the elastic stress rate (i)’ is given by (4.4) and plastic stress rate (i)p by (5.14), 
it follows that 

i= A?-;l(A;OA;:) (5.17) 

This can be rewritten in terms of the Jaumann derivative as 

-2= P,-;r(a,@a,) 
[ 1 

:D. (5.18) 

This is the final elastoplastic constitutive structure obtained by using the stress rate 
decomposition in its elastic and plastic parts. and the concept of the yield surface 
in strain space. 

To obtain the inverse relationship. we first form a trace product of (5.18) with the 
elastic compliance tensor .,&$ to obtain 

&; = D- ;r(&:A,)(A,:D). (5.19) 

Applying to (5.19) the trace product with A,, it then follows that 

:I(A,:D) = ;(Ac: .dl.: 9), 

where 

(5.20) 

(5.21) 

Substituting (5.20) back into (5.19) and solving for the strain rate D, the inverse 
constitutive relationship to (5.18) is obtained as 

.btt:(A,@A,):.dc :t. 
1 

(5.22) 

The self-adjoint and other symmetries of the elastoplastic stiffness and compliance 
tensors appearing in (5.18) and (5.22) arc evident. Note also that the first part on the 
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right-hand side of (5.22) is the elastic strain rate corresponding to 9, while the 
remaining part is the plastic strain rate. 

5.3. Additional analysis with the yield surface in strain space 

If the Lagrangian strain E relative to initial (fixed) reference configuration is used, 
with its conjugate Piola-Kirchhoff stress S, the yield function g is defined in the strain 
space E. According to (3.5) and the normality condition (3.8), the plastic part of the 
stress rate is given by 

where A0 is the corresponding instantaneous elastic stiffness tensor. The plastic part 
of the strain rate is by (3.6) 

(E)” = -MO: (&p = jM,:$, (5.24) 

where MO is the instantaneous elastic compliance tensor, the inverse of A”. 
By an analogous derivation to that of Subsection 5.1 it then follows that the loading 

index can be written as 

(5.25) 

The explicit representation of the expression for the hardening parameter h, depends 
on the specific structure of the introduced yield condition in strain space E. Combining 
(5.23) and (5.25) gives the overall rate-type elastoplastic constitutive structure as 

From (5.26) it can be shown that 

where 

H,,=h,,-$M,:;. 

Hence, the inverse of (5.26) is found to be 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

The elastoplastic constitutive equations (5.26) and (5.29) are identical to those 
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given by expressions (2.45) of HILL (1978). Observe that the instantaneous elastic 
stiffness tensor A, can be expressed in terms of the tensor A, defined in (2.21) as 

A0 = F, ‘F, ‘A,F, ‘F,> .‘, (5.30) 

This follows by partial differentiation from the definition A0 = ?‘$/(JE @ i?E), and 
the expression for the work potential t/j (per unit initial volume) in terms of the 
total strain E, i.e. $ = $(E,) = rl/[F, ‘r(E- E,)F, ‘1. The stress response is given by 
S = &j/LJE, which is equivalent to (2.6). 

Assuming that during plastic deformation the yield surface in strain space moves 
locally outwards, from (5.25) it follows that 11,) is necessarily positive, while from 
(5.28) it follows that H,, is not necessarily one-signed. Three types of stress response 
may, therefore, occur, i.e. strain hardening, strain softening and perfect plasticity, 
depending on whether Ho is positive, negative or equal to zero. In the case of strain 
hardening, the stress rate s is directed inside the yield surface in stress space. The 
inverse of (5.26) is then not unique, since either (5.29) or the elastic unloading 
expression I? = M. : f% applies. In the case of perfect plasticity, the plastic part of the 
strain rate becomes indeterminate to the extent of an arbitrary positive multiple. 

The yield condition in the strain space E, corresponding to isotropic yield condition 
in elastic strain space E, is suggested to be 

g(E-a) = X((P), (5.31) 

where the second-order tensor a represents the current center of the yield surface in 
the strain space E. Within the context of small strain theory, an analogous structure 
of the yield condition was used by YODER and IWAN (1981). Similarly to the model 
of kinematic hardening in stress space, it can be assumed that the yield surface in 
strain space instantaneously translates in the direction of the plastic part of the stress 
rate, i.e. 

^ 
& = _ /&)P = /+G “Y ,?E. (k >O). (5.32) 

A more general evolution expression for a can be used, which is similar to the 
generalizations of the evolution expression for the back stress in the plasticity theory 
with the yield surface defined in the stress space. For example, the right-hand side of 
(5.24) can be used to represent the evolution of a. The scalar K in (5.31) defines 
the size of the yield surface. The hardening parameter h,,, appearing in (5.25) and 
corresponding to the yield surface (5.31). is found to be 

(5.33) 

If /I” is positive, the yield surface in strain space E moves locally outwards during 
plastic deformation, regardless of whether the yield surface in the corresponding stress 
space (and the elastic strain space) moves locally outwards (hardening). inwards 
(softening) or is stationary (perfect plasticity). It is because of this that some authors 
prefer elastoplasticity formulation with the yield surface in strain space (CASEY and 

NAGHDI, 1981, 1983, 1984). 
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6. ELASTOPLASTIC CONSTITUTIVE EQUATIONS WITH THE YIELD SURFACE 
IN STRESS SPACE 

947 

6.1. Constitutive equations with the yield surface in Cauchy stress space 

To make a comparison with results from the previous section, the well-known 
procedure of deriving the constitutive expression for the plastic strain rate is presented. 
To that goal it is convenient to introduce the logarithmic strain and its conjugate 
stress measure defined relatively to the reference state that always coincides with the 
current state, which gives (3.17) and (3.18). The plastic part of the strain rate, defined 
by (3.19), is then codirectional with the outward normal to the yield surface in Cauchy 
(or KirchhofQ stress space, i.e. 

(6.1) 

where j’ is the yield function and 9 the loading index. Consider again the simplest 
case of isotropic hardening, for which 

f(r) = k(9). (6.2) 

The yield function f is an isotropic function of the stress z, and k is a scalar function 
of the parameter 9, such as the plastic work per unit initial volume 

9 = 
s 

‘z:l%‘dt. (6.3) 
0 

In view of (6. I), the rate of 9 is 

9=j r:;. ( > 
Substitution of (6.4) into the consistency conduction 

gives the expression for the loading index 

In (6.6), the hardening parameter I? is equal to 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

Because f is an isotropic function of z, the Jaumann derivative 3 was conveniently 
used in (6.5), in place of the material derivative +. 

Substituting (6.6) into (6.1) gives the well-known constitutive structure for the 
plastic strain rate as 
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(6.X) 

Clearly, 

(6.9) 

for fi > 0, which is the counterpart of the condition (5.15) from the previous section. 
Summing the elastic and plastic strain rates according to 

D = @+&‘, (6.10) 

where elastic strain rate p is given by (4.13) and plastic strain rate i?F’ by (6.8), it 
follows that 

(6.1 I) 

This is the final elastoplastic constitutive structure obtained by using the strain rate 
decomposition in its elastic and plastic parts, and the notion of yield surface in 
stress space. 

Since 

where 

the inverse relationship to (6.11) is found to be 

(6.12) 

(6.13) 

(6.14) 

The corresponding plastic loading condition is given by the positiveness of the right- 
hand side of (6.12). When specialized to small elastic components of strain, the 
constitutive equations (6.11) and (6.14) reduce to the well-known elastoplastic consti- 
tutive equations, given by MCMEEKING and RICE (1975), LUBARDA and LEE ( I98 I ). 
and others. 

6.2. Constitutiw equations w’ith the yield swficce in Piolu -Kirchhqf stress .sp~ct~ 

If the yield surface f’ is introduced in the PiolaaKirchhoff stress space S, the plastic 
part of the Lagrangian strain rate is, according to (3.2) and (3.4), 

(6.15) 



Elastoplastic yield surface in strain space 949 

where M, is the instantaneous elastic compliance tensor. The loading index can be 

expressed from the consistency condition as 

I af. 
‘j==z z:s >o, 

0 ( > 
so that the overall rate-type elastoplastic constitutive structure is 

(6.16) 

(6.17) 

In (6.17), fi, is the hardening parameter which depends on the specific structure of 
the introduced yield condition in stress space S. The same comments as those given 
in the paragraph following (5.30) apply to (6.17) regarding hardening, softening or 
ideally plastic behavior. 

The inverted form of (6.17) is 

s = [“‘o-Q6”“: (;;dj;):*o]:G, 
where A0 is the instantaneous elastic stiffness tensor, and 

h^ 0 =fi+?c* 3 
0 as O'as 

(6.18) 

(6.19) 

As seen, the formulation with the yield surface in the Piola-Kirchhoff stress space S 
and the constitutive structures (6.17) and (6.18) are in complete duality with the 
formulation using the yield surface in the Lagrangian strain space E and the consti- 
tutive structures (5.26) and (5.29). The formulation with the yield surface in strain 
space may be preferred because an explicit representation of the yield condition in the 
Piola-Kirchhoff stress space appears to be more involved than the yield condition in 
the Lagrangian strain space. The elastoplastic constitutive theory with the yield surface 
in the Piola-Kirchhoff stress space has been studied by GREEN and NACHDI (1965), 
MANDEL (1973), NAGHDI and TRAPP (1974), LUBLINER (1986) and others. 

7. DISCUSSION AND CONCLUSIONS 

To compare the elastoplastic constitutive equations derived using the yield functions 
in stress and strain spaces, we consider the common case of metal plasticity for which 
the elastic component of strain is infinitesimally small. The components of elastic 
compliance tensor A&. appearing in (6.11). are then approximately given by 

(7.1) 

which is the inverse of the elastic stiffness tensor (2.34). With the von Mises type yield 
condition in stress space 
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s I 

;T’ : 2’ = k(3). :3 = z:D”dt 
0 

the constitutive structure (6.1 I) becomes 

D= 

where k = d(k’)/dY. 
On the other hand, when the yield surface is introduced in strain space. 

s i ;e;: EL = ti((p), cp = - E, : (i)p dt, 
0 

(7.2) 

(7.3) 

(7.4) 

the constitutive structure (5.22) becomes, to within the same order of approximation, 

D = M,+ ;M,: (E; @ EL) : M, 
I 

: S. 

Using EL = M, : z’, (7.5) can be rewritten as 

I I 

16~1~ H 

(7.5) 

(7.6) 

Since k = 4~%, and 

cp=- ’ 
j 

, i 
E,: (i)P dt = - 

s 
E, : ($)” dt = E, : (&“, : D”) dt = z: D” dt = 3, 

0 0 s 0 s n 

(7.7) 

from (5.21) it follows that the hardening parameter His equal to fi/16pJ. Substituting 
this into (7.6) makes the constitutive expressions (7.3) and (7.6) identically equal. 
This was expected to be the case, because the utilized stress and strain yield conditions 
(7.2) and (7.4) physically represent the same yield condition. 

In the case of the yield surface in strain space E, such as (5.31), the corresponding 
elastoplastic constitutive structure (5.26) is most easily compared with those of (5.17) 
and (6.14) by substituting into (5.26) the expression (2.10) for the strain rate l?. and 
(2.13) for the stress rate s. In view of the relationships (2.23) and (5.30). it follows 

that 

(7.8) 

where 6 = F TEF ’ is the Eulerian strain. Clearly, (7.8) is an analogous structure 
to (5.17), obtained by using the yield surface in the elastic strain space. With an 
appropriately specified evolution equation for a. (5.17) and (7.8) predict the same 
material response. 

In conclusion, we have demonstrated in this paper that the elastoplastic constitutive 
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analysis can be performed by using either the yield surface in stress or strain space. 
If the yield surface is introduced in stress space, the strain rate is partitioned into its 
elastic and plastic parts. The plastic part of the strain rate is under certain kinetic 
assumptions codirectional with the outward normal to the locally smooth yield surface 
in stress space. If the yield surface is introduced in strain space, the stress rate is 
partitioned into its elastic and plastic parts. The plastic part of the stress rate is then 
codirectional with the inward normal to the locally smooth yield surface in strain 
space. Which of the two approaches to use, i.e. whether to introduce the yield surface 
in stress or strain space, depends on the analytical and computational conveniences 
that result from the particular choice of the conjugate stress and strain measures that 
are used to cast the constitutive formulation. For example, if the Lagrangian strain 
and its conjugate Piola-Kirchhoff stress are used, it is easier to construct and use the 
yield surface representation, such as (5.31), in the strain space. On the other hand, if 
the logarithmic strain and its conjugate stress are used, the structure of the yield 
surface in stress space, such as (6.2), is a preferable choice. Furthermore, by comparing 

the formulations corresponding to the two different choices of the conjugate measures 
of stress and strain, one using the yield surface in stress space and another using the 
yield surface in strain space, it is found that the structure of the yield condition in 
stress space will be most likely simpler in form, as exemplified by the structures (5.3 1) 
and (6.2). The results are also more readily compared with available experimental 
data, customarily reported in terms of stress components. However, an advantage of 
the formulation with the yield surface in strain space is that it directly leads to a 
single loading condition and corresponding constitutive equations, regardless of the 
hardening or softening features observed in the description with the yield surface in 
stress space. 
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