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Abstract. Various equilibrium dislocation distributions in finite and infinite media were recently 
analyzed [51 both from theoretical and computational standpoints. In this paper we shed 
further light on this issue, by elaborating on a variational procedure that gives the required 
equilibrium conditions: the glide forces on each dislocation represent a set of self-equilibrating 
forces. The derivation is carried out in a general 3-dimensional setting, with adequate 
specifications for edge dislocations in plain-strain case. 

1. Introduction 

Two alternative superposition procedures are introduced to define the stress and 
strain fields in a dislocated body and to obtain the corresponding, simple 
representations of the elastic strain energy. The associated variational ex- 
pressions are then derived, which give from the stationary energy requirement 
the required dislocation equilibrium conditions, Dislocations are assumed to be 
of fixed type and geometry, so that during variation they can move along their 
slip planes only as rigid entities. In the analysis that follows, two theorems were 
extensively utilized, i.e. the Gauss divergence and the well-known linear 

elasticity theorem [3, 8]: 

"In the expression for the total elastic strain energy of a stressed body, there is no 
cross term between the internal stress (locked-in stresses present when no 
external forces act) and the stress caused by externally applied forces." 
(Theorem 1) 

Indeed, let finite or infinite body V be in the state of initial stress (o °) and 
strain (s v) distributions, such as those resulting from the presence of dislocation 
imperfections within the body (a dislocated body). The corresponding (initial) 

elastic strain energy is 

1 f vao : sodV ,  (1.1) Lro 
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where : denotes the trace. Apply the surface traction t* over the external (or 
imagined internal) surface on such a body, and let o* and ~* be the correspond- 
ing stress and strain fields which would be determined from the elasticity solution 
if there were no dislocations within the body. The additional strain energy 
stored in the dislocated body is 

Yv 6*:E*dV + o°: e* dV, 

(provided that internal stresses are locked-in, i.e. that dislocations do not move 
when applying t*). The second term, which represents the work done by the 
already existing stress o ° on additional strain s*, is, however, equal to zero, since 
equilibrium and the Gauss divergence theorem show 

I v  6 ° : e*dV = fs t ° ' u * d S  = O, (1.2) 

and the bounding surface S of the body V in its initial dislocated configuration is 
traction free (t ° = 0). Therefore, the total strain energy of the body is simply 

lira° 1 fv6* :E*  dV, (1.3) u r = ~  : ~ ° d V + ~  

without the energy cross-term contribution from the two different fields. The 
superposition principle of linear elasticity reveals that total stress and strain are 
(00 + 0*) and (~o + ~,). The strain energy can also be written as 

Uv r = ~ (0 0 + o*):(E ° + ~*)dV (1.4) 

and by incorporating (1.2) and (1.3), we have in addition 

Iv y, :~o dV = 0. (1.5) 

This equation can also follow directly from (1.2) by applying the generalized 
Hooke's law which gives o ° = L: E ° and o* = L : ~*, where L denotes the tensor 
of elastic moduli. 

The results above are often called upon in the following sections, where we 
elaborate on the initial strain energy expression for the dislocated finite body by 
introducing an adequate superposition procedure to evaluate the stress and 
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strain fields, o ° and e °. In dislocation theory, superposition is usually defined 
with respect to infinite medium dislocation solutions, since these are often 
available or can be determined more readily [1, 3, 4]. 

2. The strain energy of a dislocated body 

Consider the body of finite volume V bounded by surface S which contains a 
given number of dislocations. Let the external surface S be traction free, so that 
the stress field ~ comes only from the dislocations within the body. If ~ is the 
corresponding elastic strain, the strain energy is 

Uv = ~ o: l ;dV (2.1) 

(for the simplicity of notation, the superimposed o which indicates initial is 
henceforth omitted). Since ~ and i; are singular at the points of dislocation lines, 
we can suppose that Uv is prevented from diverging by omitting the interior of 
the small-radius tubes embracing the singular lines (dislocation core energies) 
from the integration, [1], or alternatively by using the scheme from [5], where 
the core energies were represented by certain nonvanishing surface integrals. We 
further elaborate on expression (2.1) by introducing an adequate superposition 
procedure to define the required stress and strain fields, and thus obtain the 
corresponding strain energy representation. 

2.1. The strain energy representation 

Consider dislocations from body V to be submerged (in the same relative 
configuration) in an infinite medium, and denote the corresponding stress field 
by ~. Introduce an auxiliary problem in which a dislocation free infinite medium 
is loaded over the internal surface S, coinciding with the bounding surface of V, 
by traction l, which sets up the stress field # such that, on superimposing two 
solutions, we have within the volume V: fi + # = ~ (Fig. 1). The strain energy of 
the resulting, dislocated infinite medium, loaded by traction I, is simply the sum 
of the strain energies due to dislocations and traction alone, U~o = [7~o + U~, 
i.e. 

U~ = ~  6 : g d V + ~  i-ridS. (2.2) 

Here ~ is the infinite medium dislocation strain field and fi displacement on S 
due to traction i in the undislocated infinite medium. As discussed in the 
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Fig. 1. Superposition of: (a) dislocated infinite medium, and (b) undisloeated infinite medium loaded 
by traction ~; the stress and strain distributions within V of the resulting configuration (c) are those 
of the traction-free dislocated body V. 

Introduction, by Theorem 1 there is no energy cross-term resulting from the 
interaction of two different fields. But, the stress distribution o within the 
volume V does not give rise to any traction t on the bounding surface S, hence 
the volume V on Fig. lc can be taken out from the infinite medium, such that 
all traction i acts on the surface S bounding the hole in the remaining part of 
(dislocation free) infinite body. The strain energy can, consequently, be also 
expressed as 

l f s  U~ = Uv + ~ I" u dS, (2.3) 

with u being displacement field on the surface S. Note that the surface integral 
on the right-hand side of (2.3) is, by Gauss's theorem, the strain energy 
U(~o-v) = ½S(oo-v)e:g dV. Equating (2.2) and (2.3), we then obtain the following 
expression for the strain energy of the traction-free dislocated body 

1 1 
Uv=~ f 6:~dV-~ fsi'fldS, (2.4) 

where fi = u - fi is the displacement over S caused by dislocations in the infinite 
medium. 

2.2. An alternative representation 

We now derive an alternative expression for U v by considering, as in [51 the 
stress and strain fields (~, t) of the dislocated body V to be obtained by 
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superposition of the infinite medium dislocation fields (6, ~:) and (~, ~) fields 
resulting from the traction t = - I  which is applied on the surface S of the 
auxiliary, dislocation free body V (Fig. 2). Here, ~ is the traction set up on the 
surface S by dislocations in the infinite medium, which needs to be canceled by 
the traction i of the auxiliary problem in order to obtain the traction free 
boundary condition of the condition of the dislocated body V. Hence, since 
tt = 6 + 6 and ~ = ~ + ~, the strain energy is 

Uv = ~  6 : ~ d V + ~  6 : ~ : d V + ~  6 : ~ d V +  (~:~:dV . 
(2.5) 

But, by the Theorem 1 we have 

6:~:dV = 0 and 6 : e d V  = 0, (2.6) 

so that the reciprocal relation holds, 

which, of course, also follows from the generalized Hooke's law which gives 
6 = L:~ and 6 = L:~. Substituting (2.7) into (2.5), we then have 

Uv = ~  6 : ~ d V - ~  | ' r idS,  (2.8) 

(~) (b) (c) 

Fig. 2. Superposition of: (a) dislocated infinite medium, and (b) undislocatcd finite body V loaded by 
traction t = --t, to obtain solution (c) of the traction-free dislocated body V. 
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utilizing Sv 6: [ d V = Ss t .  fi dS. The volume integral on the right-hand side of 
(2.8) is the portion of the infinite medium dislocation energy contained within 
the volume V (Uv), which can be related to U~o by 

~7® = ~  6 : ~ d V = ~  6 : a d V + ~  t 'fidS. (2.9) 

The surface integral in (2.9) is obtained by applying the Gauss theorem to the 
dislocation free (oo - V) portion of the infinite medium obtained by taking out 
the dislocated volume V (Fig. 2a); the surface of the hole is under the traction 
t = - t ,  and by Gauss's theorem 

#:~:dV = fs t ' f idS.  (2.10) 
oo-V) 

Substitution of (2.9) into (2.8) therefore gives 

Uv=~ 6 : ~ d V - ~  t ' udS ,  (2.11) 

where u = ~ + fi is the displacement over the boundary S of the dislocated body 
V, measured from its undislocated (stress and strain free) initial configuration. 

2.3. The equivalence demonstration 

The two obtained expressions for the strain energy, (2.4) and (2.11), are of course 
equivalent, as the identity which is formally shown in this subsection, 

fs i'~dS = fs | ' u d S ,  (2.12) 

must hold. We start with the obvious equality 

fs~'adS= fsff + t)'adS- fst'adS. (2.13) 

The physical meaning of the traction (i + t) is illustrated in Fig. 3, which shows 
the superposition of two solutions that give the dislocation free infinite body 
loaded by traction t over the internal surface S, as previously introduced in Fig. 
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lb. As in the (0o - V) portion of the body in Fig. la, the displacement fi is 
continuous, the Gauss formula gives 

f( 8:~dV = fs ~ + i)-fidS. (2.14) 
m - V )  

Since by Theorem I we have So~8:~dV = 0, (2.13) becomes 

fs t'fidS = - fva:g:dV- fs i'fidS. (2.15) 

But, within the volume V, 8 = 8, hence by the reciprocity and Gauss theorems 

and substitution into (2.15) establishes the identity (2.12). 
Note that the superposition sketched in Fig. 3 also gives the condition for 

explicit determination of the traction t: displacements over the surface S on Figs. 
3b and 3c must be the same, i.e. 

-i -~+~ (2.17) 

/ \ 
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Fig. 3. Undislocated infinite medium (a) loaded by traction i, as a superposition of: (b) finite body V 
loaded by traction t = - | ,  and (c) the remaining (00 - V) body loaded by traction t + ~ over the 
hole surface. 
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However, to determine the stress and strain distributions 6 and ~:, it is easier to 
solve the auxiliary problem with the traction t on the surface S of V. An explicit 
evaluation of t is, in fact, not needed. Its significance is in the simplicity that 
results in the derivation leading to the equilibrium conditions for the disloca- 
tion distribution, as discussed in the body of the paper. 

3. Expressions involving dislocation slip 

Consider again the configuration in Fig. lc, i.e. the infinite medium which 
contains dislocations within the volume V and which is loaded by traction i over 
the surface S. This configuration can be imagined to be obtained in two 
alternative sequences. First, introduce dislocations into the undislocated infi- 
nite medium, and then apply the traction i. The strain energy of the final state 
is by Theorem 1 

U® = ~  O:~dV + ~  i.fidS. (3.1) 

Obtain now the final state in the reverse order, i.e. first apply i, and then 
introduce dislocations; the strain energy is 

U ~ = ~  I.OdS + ~ 6 : ~ d V +  i.fidS - Y' (n" ~" b) dAslip. 
disl sup 

(3.2) 

The third integral on the right-hand side of (3.2) is the work done by the already 
existing traction I on displacement ~ of S, which is caused by the introduction of 
dislocations. The last term is carried out by traction I_, = - n "  ~, which acts 
over the areas within the dislocation loops Aslip on the (discontinuous) slip 
displacements of the amount b, the Burgers vector (n stands for the normal to 
Aslip , s o  that the material above Aslip is slipped in the direction of b; note also 
that within V: # = 6). Therefore, since in linear elasticity the order in which we 
load the body does not influence the final state, (3.2) is the same as (3.1), and 
therefore 

~s i ' f idS = ~ fa (n'6"b)dAs~lP" (3.3) 
disl slip 
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This also can be deduced by applying the Gauss theorem to the following 
integral 

Ioo#:~dV=~sI'fidS--d~i~l~A,,i(n'~'b)dAs,lp, (3.4) 

which by Theorem 1 is equal to zero. Hence, we again obtain (3.3). Similarly, 
the Gauss theorem gives 

fv6: .dV=fsi'UdS- f,, (n'8" b)dA~,ip; (3.5) 
disl sllp 

and since by Theorem 1 the left-hand side is zero, we have 

fs t ' u d S =  ~ fA (n'6"b)dAslip' (3.6) 
disl slip 

so that (3.3) and (3.6) again establish the identity (2.12). Using (3.3) and (3.6), 
the strain energy representations (2.4) and (2.11) therefore become 

l fA Uv=-~ # : ~ d V - ~  ~ (n '8" h)dA~z~p. (3.7) 
disl snp 

4. Variational expressions 

In the next section, which deals with dislocation equilibrium conditions, we need 
to express the strain energy variation corresponding to changes in dislocation 
positions. In this section we first elaborate on the variation of the surface 
integrals appearing on the right-hand sides of the energy expressions (2.4) and 
(2.11). 

4.1. Evaluation of the variation 6(S s t" fi dS) 

We first consider the surface integral in (2.4), whose variation is 

(4.1) 
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From Fig. lc, we have 

fo o:a~dV= fv~:a~dV + fs i'audS, 

f a":~dV=fvaO:~dV+fsal'udS, 
as by the Gauss theorem, for example, 

(4.2) 

(4.3) 

o:~EdV = fs t" gadS. (4.4) 
oo-V)  

The left-hand sides, as well as the volume integrals on the right-hand sides of 
(4.2) and (4.3) are by reciprocity equal, and therefore 

fs t'audS = fs a~'udS. (4.5) 

But 

fsi',~fldS=fo #:~.dV=fc~ t~:~dV=fs6i'fJdS, (4.6) 

and from (4.5) we also have 

fsi.aadS = fs ai.adS, (4.7) 

so that the variation (4.1) becomes 

,4.8, 

We can express this in terms of the dislocation slip variation, by again using the 
Gauss theorem 

f~,:6,de=fsl'6~,dS-Lf ~ (u" 6" b) d(6Aal,p), (4.9) 
dial Ash p 
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which gives 

fs I ' S f i d S =  ~, f~ (n'8"b)d(6A~,p), (4.10) 
disl Asu v 

since the left-hand side of (4.9) is by Theorem 1 equal to zero. Similarly 

fs6i'.dS= fA (n • c$6 • b) dAsllp, (4.11) 
disl sUp 

so that, in view of (4.7), we also have 

~f~ (n'~'b)d(6A,,ip)=~f A (n" ~ "  b) dAs,ip. (4.12) 
disl Aslip disl sup 

Finally, since the element of the slip variation increment d(JAslip ) can be 
expressed as Js dl, where 5s is the perpendicular advance in the slip plane of the 
infinitesimal dislocation segment of length dl, substitution of (4.10) into (4.8) 
gives 

(~(fs['fldS) :2 ~-~disl ~ ( n ' o " b ) ( ~ s d l .  (4.13, 

4.2. Evaluation of the variation 5(S s t" u dS) 

We now consider the variation of the surface integral appearing in (2.11). 
Although it is clear that, in view of identity (2.12), the variations must be the 
same as well, it is of interest to establish this independently, with recourse only 
to the auxiliary loading [. Therefore, we start with 

Then 

f ,:5~:dV=fv6:5,dV+fsi.SfidS , (4.15) 
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since by the Gauss theorem 

f(~_v) 6:6~'dV = fs " 6fidS, 

and similarly 

(4.16) 

f~ 66:[:dV = ~v 56:~dV + ~s 6t'fidS. (4.17) 

But, the corresponding volume integrals in (4.15) and (4.17) are equal because of 
the reciprocity and generalized Hooke's law (6 = L:~ and 66 = L:6~). 
Consequently, 

fst.3fldS=fsri'fidS and fsi'3udS=fsri'ndS, (4.18) 

since 

fs, ,4,9, 

On the other hand, from 

O=I 6:rr.dV=fsi.rudS-~f ~ (n'6"b)d(rAalip), (4.20) 
17 disl Ash p 

we have 

Is t ' rudS = ~ f~ (n'~'b)d(6A.,,,), (4.21) 
dial Asu p 

and, in view of (4.18)2, (4.14) becomes 

6(fs J - u d S ) = 2  disl ~ fl (n'6"b)fsdl' (4.22, 

which is in agreement with the already established variation (4.13). 

5. Dislocation equilibrium conditions 

On assuming that a given population of fixed type and shape dislocations has 
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its equilibrium configuration within the finite body V, the dislocation distribu- 
tion is such that it minimizes the strain energy U v (if equilibrium is stable), or 
maximizes it (if it is unstable). Since in general there may not be a unique 
equilibrium configuration, these minima or maxima can be local or absolute. 
In any case, the condition for equilibrium is the stationary value of the strain 
energy, 6U v ---- 0, which from (2.4) and (4.13), or (2.11) and (4.22), gives 

6Uo0 - ~ fl (n" 6" b) 6s dl = O. (5.1) 

We can express the infinite medium dislocation energy/700 as the sum of the self 
energy t.7~ If, resulting from the (infinite medium) stress and strain fields of all 
dislocations individually, and interaction energy ~~,t Uo0, resulting from the 
interaction of the stress and strain fields of various dislocations, i.e. 

/70o ~, foo ~ : ~ d v : /'ys©lf q- /'~int ~o0 ~o0 • (5.2) 

Indeed, let ~ and t~ be the stress and strain fields of dislocation i in an infinite 
medium (i = 1, 2 . . . . .  n-number of dislocations); then 

~s©lf ~ lyoo ~ l f ov ( j ~  ) ® = U0o = ~ oj : t / dE  (5.3) i=1 2 oi:e.idV and ~i~t i=1 i 

Since we consider dislocations to be of fixed size and shape, they can move along 
their slip planes only as "rigid" entities, and if the medium is elastically isotropic, 
~ l f  is constant regardless of dislocation positions, so that 6 ~ l f  = 0. (Note also 
that divergence of/7o 0 which comes from the dislocation core energy is present 
only in the _o0t~ self part of the energy; and since vv~,s~self = 0, the variational 
expressions here developed do not depend on the scheme by which the core 

6Uo0 can be energy is represented). Variation of the interaction energy ~i,t 
expressed as 

6Uo0 = oj : rtidV,, (5.4) 
i=1 i 

which, by using Gauss's formula can be rewritten in short as 

~int ~Uo0 = -- Z (n'°'int'b) ~sd/" 
disl 

(5.5) 

Here ~int= Ej~ioj is the stress along dislocation i, caused by all other 
dislocationsj (interaction stress), while as before 6s dl is the infinitesimal element 



32 V.A. Lubarda 

of the slip increment 6As]ip along a dislocation of length l, and 6s the 
corresponding perpendicular advance of a dislocation point. This, of course, can 
also be deduced from the Peach-Koehler representation I6, 7] of the dislocation 
interaction force and associated expression for the interaction energy. Introduc- 
ing (5.5) into (5.1) therefore yields 

~ fl[n'(~int+~)'b]6sdl=~, fi dfg~fs=O, 
disl disl 

(5.6) 

in which dfgl = In" (~int + ~). b] dl is the magnitude of the glide force on a 
dislocation element dl (which is normal to dislocation line), resulting from the 
interaction of dislocation with all others, as represented by interaction stress ~int, 
and from the auxiliary stress field 6. 

We note that at each infinitesimal segment dl of the dislocation line, there is 
also a contribution to the glide force resulting from the interaction of that 
segment with other segments of the same dislocation (a self-glide force). Since we 
here consider variations in dislocation positions which preserve dislocation size 
and shape, the self-glide forces are constant during the variation, and therefore 
do not participate in the stationary condition (5.6). This is also clear since we 
have already taken ~U~f = 0, and it is the change in G~ ~f that is associated with 
the self-glide force. For more details on this issue, we refer to [2]. 

On returning to (5.6), since variations of dislocation positions among 
dislocations are independent, (5.6) gives the equilibrium condition for each 
dislocation individually, 

Ii dfg~ 6s = 0. (5.7) 

For example, if the variation of a dislocation position is defined by its ("rigid 
body") translation 6r = 6r to, where 6r is the magnitude of translation and ro its 
direction, then df~6s = dfgl'6rro; and since 6r is constant along the dislocation 
line, (5.7) gives 

ft dfsl'ro = O, (5.8) 

which means that the sum of the glide force projections in the translation 
direction r o is equal to zero. Since ro can be any direction in the slip plane, (5.8) 
in fact gives 

fi d f g ,  = O, (5.9)  
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i.e. the vector sum of all glide forces is zero for each dislocation. Similarly, by 
assuming that the dislocation in its slip plane instantaneously rotates about  
an arbitrary point P, 6r = &pn x x, hip being the virtual rotation and x the posi- 
tion vector of the dislocation point relative to P, we have dfg~6s = 
d fg  I " (n x x)&p = n-(x x d fg l )0 tp ,  and (5.7) gives 

ft x x dfgl = O, (5.10) 

which means that the resulting moment of the glide forces is zero for every 
dislocation. Together, (5.9) and (5.10), therefore indicate that the glide forces of 
each dislocation represent a balanced set of self-equilibrated forces. 

Appendix 

A slight modification in some of the derivation is needed when we consider the 
plane strain situation and edge dislocations which do not form the loops within 
the body V (pairs of opposite-sign dislocations on the same slip plane). In that 
case there is a jump of displacement fi not only within V, but also within 
( ~  - V), because Aslip extends along the slip plane from each dislocation to 
infinity (Fig. 4). Therefore, in applying the Gauss theorem to the (oo - V) body, 

I A v ~ A~-v )  ! \\\ v I ! / I  t 
k x _ _  i / I 

j 
Fig. 4. Edge dislocations in plane strain: slip surface consists of the portion within the body V, As~ip , 
and the remaining part which extends to infinity, n~o-v), when dislocations move within V, only ~slip 
As~ip changes, so that ,~a~o-v) O. ~ s l i p  
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we have, for example, 

= - (n o" b)dAsn p , 
oO - -  V)  disl ~ p -  v) 

(A.1) 

and therefore, in place of (4.2), the strain energy within V is given by 

l f o  ° l l s  1 ;A Uv=~ ~ : ~ d V - ~  I ' f idS + ~  a~ ~°-~) (n "~" b) dA~iP v)" 
t i p  

(A.2) 

Similar modifications are needed in the variational analysis. Since 5A~li°°p - v) _= 0, 

because during the variation of their positions dislocations remain within V, 
(4.2) holds unchanged, while (4.3) is replaced by 

foo 6¢¢: ~ d V =  fv 5 a : e d V  + Is 5i'udS-~"di,, fa,®-v, (n'5°'b)dA~pV)" 
slip 

(A.3) 
Consequently, the variation of (A.2) becomes 

6Uv=6(~foor:~.dV)-fsi'rfidS, (A.4) 

which is exactly as previously shown. The rest of the analysis remains as 
presented in the paper. Of course, if all dislocations are pairs of opposite signs 
forming the loop structures, no modification is needed at all, since -~s,pa¢°°-v) = 0. 
Similar remarks apply to the formulation which uses the auxiliary problem 
with traction i on S. 

Therefore, (A.4) leads to (5.6) and (5.7), and since 5s is independent among all 
individual dislocations, we have fgl = 0 for each dislocation. By denoting the 
shear stress over the slip plane of dislocation in the direction of its Burgers 
vector by ~, the resulting glide force on a dislocation can be expressed as 
l(P"' + ~)b, where l is the (infinite) length of dislocation, and therefore for 
equilibrium 

~i., + ~ = 0, (A.5) 

i.e. the shear stress in the slip plane of a dislocation, resulting from its interaction 
with other dislocations and auxiliary applied traction, is zero for every 
dislocation. For application of this result and determination of some character- 
istic equilibrium distributions of large number of dislocations, we refer to [5]. 
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