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A new method for determining the hexagonal direction indices is introduced,

which is more practical than other commonly used methods. The relationship

between the crystallographic directions and hexagonal direction indices for face-

centered cubic crystals is derived. Different sets of hexagonal indices for

equivalent crystallographic directions are discussed.

1. Introduction

The hexagonal direction indices are well known and routinely

applied to designate the crystallographic directions in hexa-

gonal close packed (h.c.p.) crystals. They can also be used to

designate the crystallographic directions in face-centered

cubic (f.c.c.) crystals, although these are commonly, and more

conveniently, labeled by using the standard crystallographic

direction indices (e.g. Askeland, 1994; Smith, 1999). In this

paper, we describe a new method to determine the hexagonal

indices in f.c.c. and h.c.p. crystals, which is more practical and

easier to apply than other commonly used methods. We then

elaborate on the relationship between the hexagonal direction

indices and the crystallographic directions for f.c.c. crystals,

and derive two different but related four-index notations for

equivalent crystallographic directions. The results may be of

interest in the geometric analysis of the faults in stacking

sequences, diffraction patterns, and related problems in the

theory of crystalline lattices and their defects (Barrett &

Massalski, 1980; McKie & McKie, 1986; Kelly et al., 2000).

2. Geometric preliminaries

Consider a unit cell of an f.c.c. crystal with the lattice para-

meter a. The stacking sequence ABC . . . of the close-packed

(111) planes of interplanar spacing a/(31/2) is shown in Fig. 1.

The unit vectors along the edges of the cubic cell are i1, i2 and

i3. The crystallographic direction indices for a lattice direction

parallel to the vector x = x1i1 + x2i2 + x3i3 are the set of integers

[m1 m2 m3], where

x1 � m1a ; x2 � m2a ; x3 � m3a : �1�

The hexagonal atomic packing within the (111) plane through

the origin at one of the atoms, A, is shown in Fig. 2. The

directions along the cell edges project in the (111) plane along

the unit directions e1, e2 and e3. These vectors are at the angle

2�/3, so that

ei � ej � 1 if i � j,

ÿ1=2 if i 6� j.

�
�2�

The projected axes �1, �2 and �3 do not pass through the ®rst-

nearest neighbors to A, but through the second-nearest

neighbors. Denoting the unit vector normal to the octahedral

(111) plane by n = (i1 + i2 + i3)/(31/2), the direction vector x can

be decomposed into the component n within the (111) plane,

and the orthogonal component �x � n� n, such that

x � n� 1

31=2
�x1 � x2 � x3�n: �3�

If a1, a2 and a3 are the components of n along the edges of the

cubic cell,

n � a1i1 � a2i2 � a3i3; �4�
it readily follows that

a1

a2

a3

24 35 � 1

3

2 ÿ1 ÿ1

ÿ1 2 ÿ1

ÿ1 ÿ1 2

0@ 1A � x1

x2

x3

24 35; �5�

and

Figure 1
A unit cell of an f.c.c. crystal with the lattice parameter a. The ABC . . .
stacking sequence of close-packed (111) planes is indicated.
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e1

e2

e3

24 35 � 1

61=2

2 ÿ1 ÿ1

ÿ1 2 ÿ1

ÿ1 ÿ1 2

0@ 1A � i1

i2

i3

24 35: �6�

The constraint conditions are

a1 � a2 � a3 � 0; e1 � e2 � e3 � 0: �7�

Note that the coef®cient 1/(61/2) in equation (6) appears in

crystalline plasticity as the Schmid factor in f.c.c. crystals for

uniaxial loading along the [001] direction. Indeed, the product

�n � i3��m � i3�, where m is the vector in the close-packed

direction �0�11�, is equal to this value.

3. New method for determining the hexagonal
direction indices

The in-plane hexagonal decomposition of the vector n along

the three axes e1, e2 and e3,

n � �1e1 � �2e2 � �3e3; �8�
is de®ned such that �1 is the projection of the vector compo-

nent a1i1 onto e1, and similarly for �2 and �3, i.e.

�1 � a1�i1 � e1� ; �2 � a2�i2 � e2� ; �3 � a3�i3 � e3�: �9�
Since i1 � e1 = i2 � e2 = i3 � e3 = (2/3)1/2, it follows that

�1

�2

�3

264
375 � 2

3

� �1=2 a1

a2

a3

264
375

� 2

3

� �1=2
1

3

2 ÿ1 ÿ1

ÿ1 2 ÿ1

ÿ1 ÿ1 2

0B@
1CA � x1

x2

x3

264
375; �10�

with the redundancy condition

�1 � �2 � �3 � 0: �11�
The following equalities are observed

�1 �
2

3
n � e1� �; �2 �

2

3
n � e2� �; �3 �

2

3
n � e3� �: �12�

To prove the ®rst, for example, it is enough to observe that

n � e1 � �1 ÿ
1

2
�2 ÿ

1

2
�3 �

3

2
�1; �13�

because �1 + �2 + �3 = 0, and similarly for n � e2 and n � e3. The

formulae (12) have simple but convenient geometric inter-

pretations, shown in Fig. 3. The orthogonal projections of the

vector n onto the axes e1, e2 and e3, scaled by the factor of 2/3,

de®ne the hexagonal components �1, �2 and �3. The simple

recipe (12) is probably the most convenient method to

determine the hexagonal in-plane indices, although it is

surprisingly not mentioned in any of the standard texts on the

subject (e.g. Askeland, 1994; Smith, 1999). There, instead, the

vector n is ®rst decomposed into the directions e1 and e2 as

n � �̂1e1 � �̂2e2; �14�
so that comparison with equation (8) establishes the connec-

tions

�̂1 � �1 ÿ �3 � 2�1 � �2; �̂2 � �2 ÿ �3 � 2�2 � �1; �15�
with the inverse relationships

�1 �
1

3
2�̂1 ÿ �̂2

� �
; �2 �

1

3
2�̂2 ÿ �̂1

� �
: �16�

These formulae are clearly not needed if the simple recipe (12)

is used.

As an illustration, consider a unit direction (jnj = 1) at an

angle of 30� to the �1 axis. From Fig. 4 it immediately follows

that (3/2)�1 = cos30� = 31/2/2 and �2 = 0 (because n is ortho-

gonal to �2). Thus, the hexagonal indices are [10�10�. On the

other hand, if the classical method is used, we ®rst need to

calculate the components �̂1 = 2/(31/2) and �̂2 = 1/(31/2), then

apply equations (16) to obtain �1 = 1/(31/2) and �2 = 0, which

®nally yields �10�10�. The advantage of the former method is

clear.

Figure 3
Geometric interpretation of the vector decomposition n = �1e1 + �2e2 +
�3e3, subject to the constraint �1 + �2 + �3 = 0. The components �1, �2, �3 are
de®ned by the orthogonal projections on the axes e1, e2, e3, with the
appropriate sign and the scaling factor of 2/3.

Figure 2
The hexagonal atomic arrangement within a (111) plane. The directions
along the cubic cell edges project in this plane along the directions e1, e2,
e3. The interatomic spacing is a0 = a/(21/2).



3.1. Trigonometric relations

Several useful trigonometric expressions are derived as

follows. From Fig. 3 it is recognized that

n � e1�� cos
�

3
ÿ �

� �
; n � e2�� cos

�

3
� �

� �
; n � e3�ÿ� cos �;

�17�
where � = jnj is the length of the vector n. Consequently, the

following relationships hold:

cos � � ÿ 3

2

�3

�
; cos

�

3
ÿ �

� �
� 3

2

�1

�
; cos

�

3
� �

� �
� 3

2

�2

�
:

�18�
Similarly,

sin � � 31=2

2

�1 ÿ �2

�
�19�

and

sin
�

3
ÿ �

� �
� 31=2

2

�2 ÿ �3

�
; sin

�

3
� �

� �
� 31=2

2

�1 ÿ �3

�
: �20�

Since cos 3� = 4 cos3 � ÿ 3 cos �, and sin 3� = 3 sin � ÿ 4 sin3 �,

we also have

cos 3� � ÿ 27

2

�1�2�3

�3
;

sin 3� � ÿ 3�31=2�
2

��1 ÿ �2���2 ÿ �3���3 ÿ �1�
�3

: �21�

The length of the vector n can be calculated from

�2 � 3

2
�2

1 � �2
2 � �2

3

ÿ � � 1

2
��1 ÿ �2�2 � ��2 ÿ �3�2 � ��3 ÿ �1�2
� �

:

�22�
The identity

x1 ÿ x2 � a1 ÿ a2 �
3

2

� �1=2

��1 ÿ �2�; �23�

with similar identities for �2 ÿ �3 and �3 ÿ �1 are noted, in

addition to

�2
1 � �2

2 � �2
3 � ÿ2 �1�2 � �2�3 � �3�1� �: �24�

Analogous expressions in terms of the principal deviatoric

stress components are well known from the theory of plasticity

and geometric representation of the yield locus in the devia-

toric � plane (e.g. Kachanov, 1971; Lubarda, 2002).

4. Transformation rules under rotation within the (111)
plane

For the derivation of the relationship between the crystal-

lographic directions and hexagonal direction indices for an

f.c.c. crystal, it is useful ®rst to derive the general formulae for

the transformation of coordinates (�1; �2; �3) under the rota-

tion of the coordinate system within the (111) plane. If ' is the

angle of counterclockwise rotation (Fig. 5), it can be readily

veri®ed that

�1 �
2

3
� cos

�

3
ÿ �

� �
; �2 �

2

3
� cos

�

3
� �

� �
;

�3 � ÿ
2

3
� cos �; �25�

and

��1 �
2

3
� cos

�

3
ÿ ��

� �
; ��2 �

2

3
� cos

�

3
� ��

� �
;

��3 � ÿ
2

3
� cos ��: �26�

where �� = � + '. By expanding the right-hand sides of

equation (26) and by using equations (18), (19) and (20), it

follows that
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Figure 4
The unit direction at an angle of 30� relative to the �1 axis. Two types of
projections on the coordinate directions are shown, both of which can be
used to determine the corresponding hexagonal indices.

Figure 5
The coordinate system (��1 ; �

�
2 ; �
�
3 ) is obtained from the coordinate system

(�1; �2; �3) through a counterclockwise rotation by an angle '. The vector
n makes an angle � with the negative �3 axis.
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��1
��2
��3

264
375 �

2

31=2

sin
�

3
ÿ '

� �
0 ÿ sin '

ÿ sin ' sin
�

3
ÿ '

� �
0

0 ÿ sin ' sin
�

3
ÿ '

� �
0BBBB@

1CCCCA �
�1

�2

�3

264
375:
�27�

The same transformation relates the unit direction vectors e�1,

e�2 , e�3 and e1, e2, e3. A text by Sands (1982) can be consulted

for further analysis of the transformation rules for vectors and

tensors in crystallography.

5. Relationship between crystallographic and
hexagonal direction indices

If the angle of rotation discussed in the previous section is ' =

�/6, we obtain the hexagonal coordinates �o
1, �o

2 , �o
3 within the

(111) plane, which are shown in Fig. 6. The transformation

rules for the unit vectors in this case reduce to

eo
1

eo
2

eo
3

264
375 � 1

31=2

1 0 ÿ1

ÿ1 1 0

0 ÿ1 1

0B@
1CA � e1

e2

e3

264
375

� 1

21=2

1 0 ÿ1

ÿ1 1 0

0 ÿ1 1

0B@
1CA � i1

i2

i3

264
375; �28�

and similarly for the two sets of coordinates �0
1, �0

2, �0
3 and �1, �2,

�3. By using the expressions (10) for the components �1, �2, �3

in terms of the rectangular components x1 = m1a, x2 = m2a,

x3 = m3a, it follows that

�o
1

�o
2

�o
3

24 35 � 2a0

3

1 0 ÿ1

ÿ1 1 0

0 ÿ1 1

0@ 1A � m1

m2

m3

24 35; �29�

where a0 = a/(21/2) is the atomic distance between the ®rst

neighbors in the close-packed (111) plane. Thus, the projected

vector n can be written as

n � 2

3
a0 �m1 ÿm3�eo

1 � �m2 ÿm1�eo
2 � �m3 ÿm2�eo

3

� �
: �30�

On the other hand, the component of the vector x orthogonal

to n is

1

31=2
�x1 � x2 � x3�n �

1

3
�m1 �m2 �m3�c0n; �31�

where c0 = 31/2a = 61/2a0 represents the interplanar spacing

between the A-type planes. This scale in the n direction is

chosen so that the spacing between the A, B and C planes is

equal to c0/3. Therefore, the direction vector x can be

decomposed as

x � 2

3
a0��m1 ÿm3�eo

1 � �m2 ÿm1�eo
2 � �m3 ÿm2�eo

3 �

� 1

3
�m1 �m2 �m3�c0n: �32�

This representation de®nes the hexagonal indices [ho ko io lo]

for the considered direction, which are

ho � 2�m1 ÿm3�; ko � 2�m2 ÿm1�;
io � 2�m3 ÿm2�; lo � m1 �m2 �m3;

�33�

then

3x � a0 hoeo
1 � koeo

2 � ioeo
3� � � loc0n: �34�

The reduction to lowest integers usually needs to be made in

equation (33). In the matrix notation, the transformation

between the two sets of indices is

ho

ko

io

lo

2664
3775 �

2 0 ÿ2

ÿ2 2 0

0 ÿ2 2

1 1 1

0BB@
1CCA � m1

m2

m3

24 35: �35�

The inverse relations are

m1 � ho ÿ ko � 2lo; m2 � ko ÿ io � 2lo; m3 � io ÿ ho � 2lo

�36�
with the matrix counterpart

m1

m2

m3

24 35 � 1 ÿ1 0 2

0 1 ÿ1 2

ÿ1 0 1 2

0@ 1A � ho

ko

io

lo

2664
3775: �37�

The clearing of fractions was used in the above derivation, so

that in this case m1 + m2 + m3 = 6lo. In general, an additional

reduction to lowest integers is needed.

As an example which illustrates the use of the transfor-

mation formulae (35) and (37), consider the direction �12�1� in
the crystallographic direction notation. From equation (35) it

follows that ho = 4, ko = 2, io = ÿ6 and lo = 2, so that upon the

Figure 6
The coordinate system (�o

1 ; �
o
2 ; �

o
3 ) is obtained from the coordinate system

(�1; �2; �3) through a counterclockwise rotation by an angle �/6. The new
axes �o

1, �o
2 , and �o

3 are aligned along the close-packed atomic directions of
interatomic spacing a0.



reduction to lowest integers the hexagonal indices become

�21�31�. On the other hand, for the direction with the hexagonal

indices �2�201�, equation (37) gives m1 = 6, m2 = m3 = 0, which

yield the crystallographic direction indices [100].

5.1. Transformation to three-axis hexagonal indices

Returning to equation (32), the substitution of eo
3 = ÿ�eo

1 +

eo
2� yields

3x � 2a0��m1 �m2 ÿ 2m3�eo
1 � �ÿm1 � 2m2 ÿm3�eo

2 �
� �m1 �m2 �m3�c0n: �38�

Thus, the transformation rule between the crystallographic

direction indices �m1 m2 m3� and the three-axis hexagonal

direction indices �h0o k0o l0o� is

h0o
k0o
l0o

24 35 � 2 2 ÿ4

ÿ2 4 ÿ2

1 1 1

0@ 1A � m1

m2

m3

24 35: �39�

The inverse transformation (after clearing the fractions) is

m1

m2

m3

24 35 � 1 ÿ1 2

0 1 2

ÿ1 0 2

0@ 1A � h0o
k0o
l0o

24 35: �40�

The well known connections between the two sets of indices

�h0o k0o l0o� and �ho ko io lo� are

h0o � 2ho � ko; k0o � ho � 2ko; �41�

ho �
1

3
�2h0o ÿ k0o�; ko �

1

3
�2k0o ÿ h0o�; �42�

io � ÿ�ho � ko� � ÿ
1

3
�h0o � k0o�; lo � l0o: �43�

6. An alternative set of hexagonal indices

The hexagonal direction indices �ho ko io lo� were derived in the

previous section by using the coordinate axes �o
1, �o

2 , �o
3 that

pass through the ®rst-nearest neighbors relative to an atom A

at the origin. Another set of four hexagonal indices �h k i l� for

the same crystallographic direction can be obtained by using

the coordinate axes �1, �2, �3 that pass through the second-

nearest neighbors (Fig. 7). The direction �2 is a reciprocal

direction to �0
1, in the sense that e2 � e0

1 = 0. The distance

between the second-nearest neighbors is â0 = 31/2a0 = (3/2)1/2a.

Thus, considering a direction x with the crystallographic

direction indices �m1 m2 m3�, such that x = m1ai1 + m2ai2 +

m3ai3, from equation (10) it follows that

�1

�2

�3

24 35 � 2

3

� �1=2
a

3

2 ÿ1 ÿ1

ÿ1 2 ÿ1

ÿ1 ÿ1 2

0@ 1A � m1

m2

m3

24 35 �44�

and

x � 2

9
â0��2m1 ÿm2 ÿm3�e1 � �ÿm1 � 2m2 ÿm3�e2

� �ÿm1 ÿm2 � 2m3�e3� �
1

3
�m1 �m2 �m3�c0n:

�45�
This de®nes the four indices

h � 2�2m1 ÿm2 ÿm3�; k � 2�ÿm1 � 2m2 ÿm3�;
i � 2�ÿm1 ÿm2 � 2m3�; l � 3�m1 �m2 �m3�;

�46�

i.e.

h

k

i

l

2664
3775 �

4 ÿ2 ÿ2

ÿ2 4 ÿ2

ÿ2 ÿ2 4

3 3 3

0BB@
1CCA � m1

m2

m3

24 35; �47�

such that

9x � â0 he1 � ke2 � ie3� � � lc0n: �48�
On the other hand, if the direction indices �h k i l� are known,

the corresponding crystallographic direction indices are

determined from

m1 � 3h� 2l; m2 � 3k� 2l; m3 � 3i� 2l; �49�
with the matrix counterpart

m1

m2

m3

24 35 � 3 0 0 2

0 3 0 2

0 0 3 2

0@ 1A � h

k

i

l

2664
3775: �50�

For example, for the previously considered direction �12�1� in

the crystallographic direction notation, from equation (47) we

have h = 2, k = 8, i =ÿ10, l = 6, so that upon reducing to lowest

integers the set of four indices becomes �14�53�. Similarly, for

the direction with the indices �h k i l� ' �2�201�, from equation

(50) we have m1 = 8, m2 = ÿ4, m3 = 2, which is equivalent to

the �4�21� crystallographic direction. It can also be easily veri-
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Figure 7
The coordinate axes �o

1, �o
2 , �o

3 are aligned along directions of the ®rst-
nearest atoms to the atom at the origin A. The coordinate axes �1, �2, �3

are along directions of the second-nearest atoms to the origin at A. The
corresponding six atoms form the hexagon (indicated by dashed lines) of
interatomic spacing â0 = 31/2a0, where a0 is the interatomic distance
between the ®rst-nearest neighbors.
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®ed that the crystallographic direction [100] corresponds to

�h k i l� ' �4�2�23�.

7. Discussion

It is of interest to establish a transformation rule between the

two sets of indices �h k i l� and �ho ko io lo�. This can be

accomplished by equating the expressions for x from equa-

tions (34) and (48), i.e.

a0

3
hoeo

1 � koeo
2 � ioeo

3� � � c0

3
lon � â0

9
he1 � ke2 � ie3� � � c0

9
ln:

�51�
In view of â0 = 31/2a0 and the relationship (28) between the two

sets of unit vectors, it follows that

h

k

i

l

2664
3775 �

1 ÿ1 0 0

0 1 ÿ1 0

ÿ1 0 1 0

0 0 0 3

0BB@
1CCA �

ho

ko

io

lo

2664
3775: �52�

The inverse relations are

ho

ko

io

lo

2664
3775 � 1

3

1 0 ÿ1 0

ÿ1 1 0 0

0 ÿ1 1 0

0 0 0 1

0BB@
1CCA �

h

k

i

l

2664
3775: �53�

For instance, the direction �ho ko io lo� ' �21�31� is equivalent to

�h k i l� ' �14�53�, while �ho ko io lo� ' �2�201� is equivalent to

�h k i l� ' �4�2�23�, in agreement with earlier calculations. The

fact that the equivalent directions have different indices is a

natural consequence of different hexagonal axes used for two

sets of indices. It is well known that innumerable different sets

of axes can be chosen for any crystal, with the corresponding

direction indices related by appropriate transformation

matrices [e.g. rhombohedral versus hexagonal axes for hexa-

gonal crystals (see Barrett & Massalski, 1980; Hahn, 1995;

Kelly et al., 2000)].
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