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Abstract-By using Lee’s (1969. 1. Appf. hfech. 36, l-6) multiplicative decomposition of the 
deformation gradient into its elastic and plastic part of Hill and Rice’s (1973. SlAbf J. Appf. Math. 
U, 44S-461) constitutive framework. explicit and consistent constitutive analysis of large clasto- 
plastic deformation is given. Both isotropic and anisotropic material behaviour is considered. so 
that some earlier results come as particular cases of this more general formulation. The relationship 
with other related work is also given. 

I. INTRODU~I~N 

The constitutive analysis of elasto-plastically deformed materials by using the multiplicative 
decomposition of the deformation gradient into its elastic and plastic part. introduced by 
Lee (1969). has since stimulated great interest in both kinematic and kinetic aspects of 
elasto-plastic theory. However. :I proper identification of the elastic and plastic contribution 
to the total velocity strain, i.c. their relationship with elastic and plastic parts of the 
dcfo~ation gradient, and their rates, have shown not to bc an easy task. The reason for 
this is because the multiplicative decomposition is not kinematically uniquely defined and 
because, in contrast to pure elasticity theory, the unstressed reference state used to formulate 
the elastic constitutive relation is not fixed, but rotates due to the plastic part of the 
deformation gradient. In the case of assumed (persistent) elastic and plastic isotropy of the 
material, a proper identification of the elastic contribution to the velocity strain was given 
by Lubarda and Lee (198 I). It was shown there that the elastic contribution to the velocity 
strain is linearly refatcd to the Jaumann rate (with respect to total spin) of the Kirchhoff 
stress, via the instantaneous elastic compliance tensor [the inverse of their eqn (54)], while 
the rest of the velocity strain is the plasticcontribution, governed by a potential and obeying 
normality. The rate-type formulation of the theory with strain induced plastic anisotropy 
(anisotropic hardening) has recently been given in the paper by Agah-Tehrani er al. (1987). 
The elastic isotropy, which remains preserved, was still assumed. The formulation given in 
this paper is more general as it uses an arbitrary unstressed reference configuration and not 
a particular one, such as, for example, obtained by destressing without rotation. Of course, 
rtnal results are inde~ndent of the scltzted intermediate configuration, but this fo~ulation 
leads to broader interpretations and to some new expressions, such as the relationship 
between elastic rotation on dcstressing and the corresponding intermediate spin. A com- 
parison with related work (Mandel. 1973. 1981; Asaro. 1983a.b: Nemat-Nasser, 1982. 
I983 ; Dafalias, 1985, 1987) is made. in particular with respect to the definition of elastic and 
plastic strain-rates and formulation ofcorresponding constitutive laws. We alsoconsider the 
case of elastically anisotropic materials. which was treated little in the literature, by using 
the multiplicative decomposition and which caused *me scepticism concerning the extent 
of the decomposition utility. The presented analysis can be of interest in establishing an 
explicit. appropriate constitutive structure capable of reproducing and predicting the com- 
plex inelastic behavior. For example, various specific kinematic and kinetic aspects of plastic 
deformation involving large strains and rotations are extensively studied in the case of 
large-strain shear reponse. on both a continuum-phenomenological and micromechanical- 
crystallographic level (Lee PI al., 1983 ; Lubarda, l988a ; Asaro. 1983a.b : Harren ef nf., 
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1989, etc.). The onset of instability and prediction of various nonuniform deformation 
modes was analyzed by Pierce et al. (1983). Also, Boyce et al. (1989) have recently utilized 
the multiplicative decomposition in the kinematic analysis of large inelastic deformation of 
glassy polymers. 

2. KINEMATIC AND OTHER PRELIMINARIES 

Let a0 be the initial (undisturbed) configuration of the (polycrystalline metal) body 
whose material points are specified by the Cartesian coordinates X, (i = 1,2,3). After 
loading beyond the elastic limit. the body takes on the configuration &?, (at time I). such 
that the corresponding deformation gradient is F. By imagining the body to be destressed 
to zero stress, elastic strains are released and the intermediate (unstressed, relaxed) con- 
figuration $Pt is obtained. This con~gu~tion differs from the initial configuration by pure 
plastic deformation. Let FP denote the corresponding (plastic) part of the total deformation 
gradient, Fe is the elastic part of F. which corresponds to (elastic) stressing from 8, to 
W, and the multiplicative decomposition F = I;;F, holds (Lee. 1969). In Lee’s work the 
nonuniqueness of the intermediate configuration (due to possible superimposed rigid body 
rotation) was eliminated by defining the elastic “defo~ation gradient” F,, to be rotation 
free and hence given by a symmetric matrix. For the sake of generality, however, we assume 
here arbitrary rotation on dostressing, so thut by polar decomposition F, = V,&. On 
superimposing thr: time-d~~nd~nt, rigid-body rotation Q in the current c~n~~uration Ht. 
the deformation gradient Fchangcs to F* = QF, while the elastic and plastic parts F, and 
Fp change to F,*= QF$* and F,? = QF,, (T standing for tmnsposc) ; where the orthogonal 
(rotation) tensor Q depends on sclcctcd rotation R, during elastit dcstrcssing. i.c. on the 
sclectcd intcrmcdistc configuration. (For cxamplc, if R, SE I, then Q zr Q; if R, is such that, 
for example, the spin of intcrmcdiatc configuration is zero, then 8 s 1.) The elastic stretch 
V, and rotation R,. change accordingly to V:== QV,Q’r and R:= Q&Q’, while the left 
and right Cauthy-Grtvn dcfor~tion tensors B, = F,F,” and C, = FZF, = RIf?,R, btvome 
iii: = Q&Q” and C,* = &CcQ’r. We now introduce two spins (Et and a,), firstly associated 
with the current and secondly with the intermediate state, such that under introduced frame 
changes they behave according to : 

with the superimposed dot representing the material derivative and - I for the inverse. The 
following (Jaumann-type) derivatives associated with the spin R and flP, can then be defined 
together with the rules they obey under introduced frame changes: 

(2) 1-7 
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For example, k gives the change of elastic deformation gradient F, observed in the coor- 
dinate systems that rotate with spin R in the current, and Q,, in the intermediate configur- 
ation. To be compatible with introduced frame change rules, S& depends on the selected 
intermediate configuration: for example, if R, z I, then Q,, 3 Q; if R, is such that the 
spin of the intermediate configuration is zero (%‘i = 0), then $, = 0. If the intermediate 
configuration is isoclinic (in the sense of Mandel, 1973). again R, z 0. A more specific 
interpretation and explicit representation of the spin R will be given in Section 3 of the 

paper. 
Next, by using multiplicative decomposition, the velocity gradient can be expressed as 

L = ~?;F;~+F,(~,+W~)F;‘, (3) 

where 22, and 9; are the plastic velocity strain and spin of the intermediate configuration, 
i.e. symmetric and antisymmetric part of p,,F; ‘. respectively. Clearly, 52; = @,&’ and 
jvp’= @-‘+QY#$QT. In view of L = D + W ( W being the total spin), by taking the 
symmetric part of eqn (3). we obtain the velocity strain in the current configuration 

D = (&Fe- ‘), + [F& + -w,)F; ‘I,. 

Identification (separation) of the elastic and plastic contribution in the right-hand side of 
eqn (4) has caused many disagreements in the literature. In the next section we elaborate 
on this issue by using Hill and Rice’s general constitutive framework. 

3. ELASTIC STRAIN-RATE 

Following Hill and Rice (1973). Ict E bc any objtctivc. symmetric strain tensor and T 
its work conjugate (symmetric) stress. such that the Pfaffian T: dE is the increment of work 
per unit volume in the rcfcrcncc state from where E is mcasurcd (: denotes the trace). 
Further. Ict Ye be the corresponding instantaneous elastic moduli tensor, such that 2Zc: dE 
is the stress incrcmcnt that would result if the response on the arbitrary strain variation dE 
wcrc purely elastic. With _I?, = q;’ being the instantaneous elastic compliance tensor, 
,/f,: dT is the strain increment that would result from a purely elastic response cor- 
responding to a stress increment dT, and substruction from the actual strain increment dE 
gives the plastic part 

d,E = dE-IX, : dT, (5) 

which is the residual strain increment in an infinitesimal loading-unloading cycle of stress 
T. This quantity can be shown to be governed by the plastic potential, i.e. codirectional 
with the outward normal to a locally smooth yield surface in stress T space. For example, 
by identifying E as the Lagrange strain, T is the symmetric Piola-Kirchhoff stress and by 
taking the reference state coincident with the current state, we have: dE = D dr and dT = 

[i+(tr D)a] df. whcrc superimposed IJ denotes the convected derivative, i.e. z = 6-- 
La -aLT = a”- Da-aD. a” being the Jaumann derivative of Cauchy stress with re- 
spect to total spin W. If E is the logarithmic strain (Hill, 1978). then with the current state 
as a refcrcncc: dE = D df and dT = [d+(tr D)a] dr = Idf [Jaumann increment of the 
Kirchhoffstress T = (det F)a at F = I]. so that d,E = (D-J,: s) dr. i.e. 

D, = D-A, : t. (6) 

Of course, ,#, changes with different choice of conjugate variables, i.e. different objec- 
tive stress-rates, and what appears to be the elastic and plastic strain-rates (De and 

D, = D-D,) depends on the chosen stress-rate. We shall most conveniently work with 
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expression (6). i.e. define elastic strain-rate by De = iK, : 5” and express the elastic compliance 
_I, by using the finite elasticity law, which in the case of (persistent) elastic isotropy has 
the form 

(7) 

the strain energy (per unit of unstressed volume) w being an isotropic function of B.. As 
we shall see, even if intended applications are towards problems with small elastic com- 
ponents of strain. for consistent development it is essential to start the rate-type analysis 
from this. finite elasticity law. Indeed. by applying the Jaumann-type derivative introduced 
in Section 2 to both sides of eqn (7). we have 

(8) 

where g = $+(tr D)a. while QD denotes the tensor product. The plastic incompressibility 
assumption has been used in arriving from eqn (7) to eqn (8). i.e. (det V,)’ = (det 
F)’ = (det V,)(tr D). But. from eqn (2),. symmetric and antisyn~metric parts of the matrix 

c V; ’ are : 

an d 

&y), = (r;;v,-‘+v,nv~‘),-R~w-n, (10) 

with the obvious representation of the spin, o. Therefore, by defming Q to be such that 
w I W (total spin), cxprcssion (9) gives the elastic strain-rate 

since, then, substitution of (9) and (IO) into eqn (8) yields 

i.e. the needed relationship between t” and elastic strain-rate Da 

(13) 

In the component form, the elastic moduli tensor Ye is 

with the obvious symmetry and reciprocity properties (S being the Kronecker delta). 
Clearly, D, is objective and independent of the selected intermediate configuration, i.e. 

rotation 0. Indeed. by using eqns (2), and (2)n, from (9) it follows that 
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fl: 1 f( v; I)*(&)*( v; I)* = Q&Q’* (W 

which is also clear from (13), since neither 2 not Ipt depend on 0. If the elastic component 
of the strain is small (V, z I), the elastic moduli tensor reduces to 

as the acting stress is far smatter than the (Lame) elastic moduli 1 and p. 
Finally, in this section, we give the explicit expression for the spin 52. First. we observe 

the identity 

(17) 

hence, since the symmetric part of (k V; ‘) is D,, the antisymmetric part will be 

CkK-9 a = Z,H, +H,Z, -(tr Z,)H,. (18) 

where2, = [(tr V;‘)f- 6’; ‘)-’ and H1 = V; ‘De - Ds V; ‘. [indeed, eqn (I 7) is of the form 
AX = XT,4 ; A being the symmetric matrix, which for a given symmetric part of X, can be 
solved for X; see details, for example. in Agah-Tehrani ef ul., 1987.1 Combining (I 8) with 
(IO). we then obtain 

Notc that R* = QQ I + @QQ“, as it should be, since $2 is indcpcndcnt of the sclcctcd 
intcrmcdiate con~guration. If the elastic com~nent of the strtlin is small, It * W. 

4. PLASTIC STRAIN-RATE 

After substructing the elastic contribution 0, = 4,: i from the total velocity strain, 
we obtain the plastic strain rate D,. which obeys the normality rule. Indeed, by applying 
the Ii’yushin postulate to certain limiting types of infinitesimal strain cyctcs, HilI (1968) has 
shown that the inequality GT:d,E c 0 in conjugate variables (E, 7”). holds for any stress 
increment ~Temanating from the same Tand directed inside the yield surface. Hence d,E 
is codirectional with the outward normai to the yield surface in Tspacc. By taking E to be 
the logarithmic strain and by choosing the current state as a reference. the above inequality 
gives r”: D, > 0, i.c. a positive scalar product of the plastic strain-rate D, and corresponding 
(associated) Jaumann rate f. The normality of D, can then be expressed as 

where d is a loading index and f a yield function, dependent on the current stress state 
and some measures of prior plastic deformation. As an illustration of the procedure for 
establishing a constitutive expression for the plastic strain-rate, consider a model of com- 
bined isotropic-kinematic hardening with the Mises-type yield condition 

~V,,K,,%,, = 0: [:(Tb-a,):(Tb-a,)],,,- jc? = 0, m 

where 0” is the equivalent (yield) stress, the prime denotes the deviatoric part, while Ta is 
the work conjugate to logarithmic strain (E,, = In U), as discussed in Section 3, which can 
be expressed (Hill, 1968, 1978) as 
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To = (det F)RraR+ Of E’), (221 

R being the rotation tensor in the polar decomposition F = RU. If the current state is taken 
as a reference (F = I), then To = B, but t ,, LF: 9. SimiIarly, via the analogous formula to 
(221, we define xg back stress in terms of the (deviator@ back stress z (in the Cauchy stress 
spap), so that at F = I: a0 = a and do = a”+ (tr D)a, which will subsequently be denoted 
by @. The consistency condition q = 0) ac~ordin~y becomes 

To proceed further, we introduce the evolution law for the back stress in the form 
(~ardshisheh and Onat, 1974; Agah-Tehrani er al,, 1987) 

where A is an isotropic symmet~c tensor function of both Q and Dr. Sy using the rep- 
resentation theorem, A can be represented in terms of certain basic functions (Spencer, 
1971), which, in view of the rate independence, can be written as 

40,) =~~(a):l)pfAO(a)(j~p:DP)"2t (251 

A0 and tit being second and fourth-order tensor functions of the back stress and its 
invariants. Introducing then, the strain-hardening hypothesis : 

(26) 

substitution into thcconsistcncy condition (231, gives, in view of{20) and (24). the fo[~owing 
cxprcssion for the loading index 

A = ;(d-a):C (271 

where 

h = $a2 -g “I- [&#‘(a) : (d -a)+ :sA,(a)] : (d-a). 
P 

Therefore, the plastic strain-rate is 

D, = dr,:f, A,= -a) 09 (a’-a), (29) 

with the obvious symmetry and recipr~ity properties of the plastic compli;~n~e tensor ,N,,, 
This, combined with expression (I 3) for the elastic strain-rate, gives the well known structure 
of the rate-type c&to-plastic constitutivc law D = &+ : f, -4 = ,I’/, + Jlp being tho instan- 
taneous elastic-plastic compliance (associated with the Jaumann stress rate r+. The usual 
inversion provides the (self-adjoint) elastic-plastic moduli 0 and the constitutive structure 
i=Y:D. 

5. RELATIONSHIP BE7WEEN PLASTIC STRAIN-RATES IN THE CURRENT AND 
I~~RMERIATE CON~tGU~~~ONS 

ft is of interest to derive the relationship between the plastic strain-rate DP in the 
current configuration and the plastic strain-rate ZPP in the intermediate configuration. To 
this goal, from eqn (6), in view of F, = V,&, we have 



where from, on using (9) and (10) to eliminate r’, V; ‘, 

(31) 

(32) 

(33) 

(34) 

holds, and by using expression (32) as in Section 3, we obtain the antisymmetric part 

Substitution of eqns (33). (35) and (36) into eqn (31) then gives the relationship between 
D, and .Eit, 

with Z,, = [(trC,)I-CT,]-‘. Since F,*= QF,@, C$= &+,OT, DP+= &9&' and Z. = 
SZ,Q’. we have D,'=QD&', i.e. Dp is independent of 0 (as, of course, it must be 
since we have already seen that D and 0, are both inde~ndent of 0). In the case of isotropic 
hardening, the principal directions of stress and plastic strain-rate coincide [following from 
eqn (20)], and as with isotropic elasticity, V, also has principal directions parallel to stress ; 
the expression given by (35) is identically equal to zero and, therefore, D, = R$&. 

We now derive the relationship between elastic rotation on destressing and the cor- 
responding intermediate spin. Substitution of (19) for the spin R and (35) for the spin 
(V; ‘Dp V,), into the relationship (33), gives 

R,&-‘+&wpR: = W-(ZIH’+H’Z’)+(Z~HI+HrZt)+(trZ’)Ht-(trZ2)H2, 

(38) 

which expresses the spin &,R; ’ f R,%$Rz in terms of the total spin W, elastic deformation 
V, and elastic and plastic strain-rates De and Dp [see expressions (36) for Zz and Hz, and 
similar ones for Z’ and H,, following eqn (I8)]. For example, if the intermediate con- 
figuration is obtained by destressing without rotation (R, E I, & = 0). (38) gives the 
corresponding spin 71vP. If destressing is defined such that JvP r 0, (38) gives k& ‘, i.e. on 
integrating, the corresponding elastic rotation 4. In the case of isotropic hardening, (38) 
is simplified, since then H2 z 0. 
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6. SOME PARTICULAR CASES AND RELATIONSHIP WITH PREVIOUS RESULTS 

(i) As a first particular case of presented formulation, consider the case of the inter- 
mediate configuration obtained by destressing without rotation, as used in the work by Lee 
and his coworkers. Then F, = b’,. R, = 1, C’, = Be = V,’ and eqn (37) becomes 

which, with somewhat different notation, coincides with expressions (30) and (3 1) of Agah- 
Tehrani et al. (1987). If hardening is isotropic, D, = 9,. as utilized by Lubarda and Lee 
(1981). From eqn (38), on the other hand, we get the plastic spin of the intermediate 
configuration 

“; = JC’-(Z~HI +HIZI)+(ZzHz+HzZz)+(trZI)HI -(tr ZL)Hz. (40) 

explicitly in terms of W. V,. D, and D,. Note also that from eqn (33) we have R = .W,- 
(V; ‘D, V,),. If hardening is isotropic, R = % b. which agrees with Lubarda and Lee (198 I), 
who used the Jaumann derivative with respect to spin W’p to define elastic strain-rate [eqn 
(21) of the cited paper]. 

(ii) Consider next the intermediate configuration obtained by the destressing program 
such that always “; = 0. Equation (38) then gives the corresponding rotation R,. via the 
spin 

&R, ’ = CY-(Z,/1, +ff,2,)+(Z~f12+tf2Zr)+(tr Z,)1/, -(tr Z2)Hz. (41) 

Again, this is known in terms of W, cl,, D, and Dp. If hardening is isotropic, &R;’ = R. 

(iii) Particularly intcrcsting. and in many aspects revealing, is the special case of the 
intormcdiatc configuration dcfincd by the destrcssing program such that 

[F,(9, + qJF; ‘I& = 0. (42) 

From cqn (31) then fbllows [V,(l&R,-’ -Q)V;‘], = 0, which (by simple matrix arguments) 
neccssi~rily implies 

f&R;’ =fl= W-(Z,H,+H,Z,)+(trZ,)H,, (43) 

while eqn (38) gives the spin of the intermediate state 

Wp = RI[(Z2H, + HzZ,) -(tr Z#fr]&. (44) 

In the case of isotropic hardening (H, = 0), this is identically equal to zero (WP = 0). which 
coincides with Mandel’s (1973) result. Observe, however, that in view of (43). the elastic 
strain-rate (1 I) bccomcs 

while (31) reduces to 

4 = F@,,+~JF;‘. (46) 

Equations (43)-(46). therefore, show that if elastic strain-rate is defined as the symmetric 
part of &F; ‘, condition (42) necessarily holds. This seems to be overlooked in much of 
the previous work on this subject. 
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It is. perhaps. instructive to analyze this particular case a little further. From eqn (3). 

in view of (42). we first have : 

and 

D = (&F,-I),+ F,(Z,+ U,)Fy ’ (47) 

W = (&F; I)*. (48) 

while differentiation of the finite elasticity law 

IV being (for isotropic elasticity) an isotropic function of C,. gives 

(49) 

From (SO). in view of (48). it is clear that (i‘,F; ‘)* is indeed the elastic strain-rate II,, since 
then 

as it should bc (see cqns (I 2) and (I 3)]. Note also the isotropic elasticity identity 

(52) 

For any other choice of intcrmcdiatc configutation [not defined by (42)]. the symmetric 

part of &?& ’ is not all. but just a portion of the elastic strain-rate 0,. See also further 

discussion on this in the next section, within the context of anisotropic elasticity, 

7. ELASTICALLY-ANtSOTROPfC MATERIALS 

Let us now consider elastically-anisotropic (say, orthotropic) materials and let a,” 
(i = I. 2.3) dcfinc the axes of anisotropy with rcspcct to which the strain energy has the 

representation br’ = #(C,). We can also assume further, that the material in its unstressed 

configuration has the same type of elastic anisotropy as in its initial state, so that the axes 

ago have just rotated to axes aic in the intermediate state, i.e. a: = .#a,!’ (St being the 

orthogonal tensor). The strain energy can consequently be represented by w(sr’FC,L#}. As 

discussed by Mandcl (1973, 1981). in view of the discontinuities of displacements and 

rotations of elcmcnts at the microscalc, ti is independent of the (overall) plastic part 

of deformation gradient. Since linal results of the analysis are independent of selected 

intcrmcdiatc configurations. in this section WC shall consider only the so-called isoclinic 

intcrmediatc configuration. dofincd such that a,+ = a,“. i.e. Lip = I. (A more general dcvel- 

opmcnt of the analysis by using arbitrary intermediate configurations was presented by 
Lubarckt. 1988b.) Ths corresponding multiplicative decomposition of the deformation 
gradient is F = .Fc.F,. while the stress response is 

(53) 

where ‘G, = T$.FG. Applying the material derivative to (53). we have 
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1: = (&se- ‘)a+ a(s;T4T) + -& .Fe 
ST 

ea e 1 (54) 

It then follows that 

since substitution in (54). in view of 

gives 

w = (.F&- 1). + [,Fe(9,S, ‘).F; ‘Ia, (56) 

where fi’, denotes the spin corresponding to the second term on the right-hand side of eqn 

(56). It is now clear that the additional term b, in eqn (55) has to be such that (57) reduces 

to 9 = Ye: D,. hence 

A, = IP;‘:(Ci’pc7-atip)* (58) 

This is in accord with the results of Hill and Rice (1973), Hill and Havner (1982) and 

Asaro (1983a.b). Indeed. by taking the symmetric part of the velocity gradient, expressed 

via TC and 9” (in the context of crystal plasticity, .F, would correspond to the lattice 

contribution to F associated with stretching and rotation of the lattice, whereas 9, would 

bc due solely to slip), WC get 

D = Pw- ‘1. + [.Fe(.+p9, ‘)9; ‘1.. (59) 

hcnco, in view of cqn (55) and D = DC+ D,, we have 

DP = d,+Py ‘:(bvpu-u~p). (60) 

where 6, is the second term on the right-hand side of eqn (59). As discussed by Hill and 

Havner (1982) and Asaro (1983a). D,, which gives the plastic increment of strain in a stress 

cycle, does not come from the slip deformation (&) alone; there is a further net elastic 

contribution from the lattice, which is caused by the slip-induced rotation of the lattice 

relative to the material stress. Nonetheless, it is D, (and not 6,) that is governed by the 

plastic potential. [The distinction between D, and f$ is small and involves O(a/V,) terms 

in comparison to O(I). However, in some applications it is necessary to retain such accuracy 

(Asaro and Rice. 1977).] In much of the work (for example, Dafalias, 1985, 1987) the elastic 

strain-rate is defined to be ($C9; I)., which is the rate of strain associated with the Jaumann 

stress-rate, corresponding to spin (z#=.F.; ‘)il. Indeed, Nemat-Nasser (1982, 1983) introduces 

decompositions D = D* + Dp and W = W++ Wp, defining the elastic contribution to the 

strain-rate by 

. 
r = 2,: D*, i = i- W*a+oW*. (61) 

It then directly follows that: 

9=9’c:D-(T2’Pc:DP+CYPc-aWP). (62) 

Since, in our context D*+ W* can be identified as gCT”; ‘, we have Dp+ Wp 3 d,+ bf’p 
and expression (62). in view of (60). reduces to 
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2= Y,:(D-D,), (63) 

hence, one needs at the phenomenological level to examine the constitutive structure for 
D,, rather than DR. For example, as we have already pointed out, D, (and not Dp) is 
governed by a plastic potential. Also, the elastic strain-rate is D, = D* - 4. 

The elastic moduli tensor Ye, appearing in (57) via (54), has the component form 

so that .TC = V,9Pip, must be determined. If elasticity is infinitesimal ( Ve z I), rotation J?, is 
needed. More on this, however, is the subject of a forthcoming paper. If elasticity is 
isotropic. w becomes an isotropic function of WC and (64) reduces to (14). 
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