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Abstract-In order to adequately reproduce the thermo-mechanical behaviour of metals under finite 
volume reduction and large temperature increase, it is necessary to use the second order thermo- 
elastic analysis, i.e. to use the free energy function expanded up to the third degree in strain and 
tcmpcrature. Determination of the corresponding material constants is given and the resulting 
expressions are applied to the adiabatic compression of aluminum. The results are compared with 
those obtained from the first order theory. 

I. INTRODUCTION 

The behaviour of metals subjected to high pressures, such as those produced by explosive 
loadings, has long been a subject of special interest[l-51. The volume reduction caused by 
pressures in the range of 10-30 GPa can be of the order of 25%. Such a large (finite) volume 
reduction is followed by a rise in temperature of about 100-200 K, depending on material 
and applied pressure. In this temperature range the thermal characteristics of materials 
(like the coefficients of thermal expansion and specific heat) are not constant and in order 
to reproduce their variation adequately, it is necessary to include the terms of higher order 
than second in the expression for the free energy. Also, large geometry (volume) changes 
demand the use of finite strain which therefore, together with the previous, leads to nonlinear 
thermo-elastic analysis. In this paper we consider its second order approximation. The 
determination of the material constants which appear in the expansion of the free energy 
function is done by using the experimental data and results from the solid state physics 
theory which accurately represents the thermal effects of many metals. On the basis of 
developed expressions, some specific results are obtained in the case of aluminum which is 
rapidly (adiabatically) compressed. The comparison with the results obtained by using the 
first order theory is also given. 

2. PRELIMINARY THERMODYNAMIC ANALYSIS 

We consider a homogeneous material which is subjected to high uniform pressure. 
Many tests have shown that such a material can sustain enormous pressures and still remain 
elastic. According to the first law of thermodynamics the increase of the specific internal 
energy (or internal energy per unit mass of the system) is produced by the corresponding 
work done and heat input to the system (per unit mass), i.e. 

du = --$Vp dV+Tdq, (2.1) 

where do = - (1 /p) p (d V/v) is the specific work associated with the change of volume d V 
(p is the pressure, p is the density and V is the volume), while the specific heat input is 
dq = T dq, where T is the absolute temperature and r~ is the specific entropy, since hydro- 
static compression is elastic (recoverable). introducing the Helmholtz free energy (per unit 
mass) II/ = u-q T, (2.1) can be rewritten as 

de = - -+J dV--q dT, (2.2) 
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which is the form of the first law of thermodynamics that is convenient in the subsequent 
analysis, where we use the Helmholtz free energy as a potential function. Indeed, since we 
are dealing with hydrostatic compression, which is purely (thermo-)elastic deformation, the 
free energy is a function of only two state variables, which completely define the state, the 
volume I/and temperature T, i.e. $ = $( V, T). Introducing further the free energy per unit 
initial volume I,? = $( V, T) then 

whcrc p. is the initial density of the body. Applying the differential on (2.3), we have 

(2.3) 

(2.4) 

so that comparison with (2.2) gives the usual expressions for the pressure and entropy : 

p= _P,% I a$ 
p. av’ ?= -pear. (2.5) 

However, in dealing with finite volume compressions it is convenient to use the log- 
arithmic strain E = In (V/V,) as a measure of volume change[5,6], and if we also introduce 
the relative (dimensionless) temperature change 6’ = (T- T,)/T,, where V,, and To are the 
initial volume and temperature, then we have $ = t&V, T) = I/(&, O), and by the chain 
rule differentiation we obtain from (2.5) : 

_,a$ 
p=-e a~, 

I a$ -- 
rl = - poTn de (2.6) 

The first of expressions (2.6) was utilized in [6] in establishing the isothermal pressure- 
volume relation at high pressures, where $ (there interpreted as a strain energy) is approxi- 
mated by a second and third order polynomial in strain E. The results were compared with 
Murnaghan’s results[2] in the case of Bridgman’s experimental data for the metal sodium[l], 
and the differences were critically examined. In the next section we shall analyse and 
establish the polynomial representation (expression) for the free energy function which is 
suitable in the case of large volume and temperature changes. 

3. EXPRESSION FOR THE FREE ENERGY FUNCTION AND DETERMINATION OF MATERIAL 
CONSTANTS 

The classical linear thermoelasticity equations are obtained by taking the free energy 
function to be a polynomial up to the second degree in strains and temperature. In the case 
of hydrostatic loading this means that $ is of the form 

$(E,fq = aij+u,&+az&2+b,&e+c,e+c*e2, (3.1) 

where a, - c2 are constants. The free energy expansion (3.1) leads to thermoelastic relations 
which are appropriate in the range of sufficiently small pressures and temperature increases. 
If we are, however, dealing with the pressures large enough to produce finite volume changes 
(say, 25%) and large temperature changes (say, 100-200 K, such as those produced by 
explosive loadings), thermo-mechanical behaviour of the solid is such that, for its accurate 
description, we also need to take the third order terms in strain and temperature in the 
expression for the free energy function, i.e. 

&,e) = ~n+~,~+~2~*+~3~~+b,~e+b2~2e+b3~e2+C,e+C2e~+c3e3. (3.2) 
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The corresponding expressions for the pressure and entropy follow on substituting (3.2) 
into (2.6) : 

p = -e-L(u, +2a2~+3a~~2+b,0+2b2~~+bg~2) (3.3) 

‘I= - &-$c+bs2+2b&‘+c, +2c2tI+3c3t12). (3.4) 

Taking pressure and entropy to be zero at zero strain (E = 0) and initial temperature 
(T = T,,, 8 = 0), the constants a, and cl are equal to zero. The constant a, in (3.2) is an 
arbitrary value of the initial free energy function, and can also be taken to be zero. The 
remaining seven constants can be determined as follows. First, consider an isothermal bulk 
test (0 = 0) under small strain 

( .5z -?,A”= Vo-V,e-” +1,&2+0 , 
> 

then 

(3.5) 

and therefore 2u2 is equal to the initial bulk modulus of the material (K,). To get the 
constant ul we need to consider the isothermal bulk test at large strain, in which case 

p = -e-‘(Kos+2uSc2). (3.6) 

The constant u3 now can be obtained by comparing expression (3.6) with the experimental 
data for pressure-volume relation at extreme pressures. For example, for sodium metal 
such data were obtained by Bridgman[ l] and were used by Mumaghan[Z] to determine the 
second order elastic constant in his theory which is based on Lagrangian strain, rather than 
logarithmic strain. In our case, i.e. with relation (3.6) as a pressure-volume relation, the 
second order elastic constant a3 for sodium is determined in [6]. Determination of the 
second order elastic constants for some other materials (not necessarily under hydrostatic 
loading) is given, for example, in [7]. 

In order to determine the physical meaning and the values of the constants bl-b3 we 
consider the thermal expansion test at zero pressure 0, = 0), in which case from (3.3) we 
have 

Kos+3u,t2+b,~+2b2d+bj02 = 0. (3.7) 

However, the increase in temperature of the order 100-200 K (the temperature range of 
interest in our case) produces a volume expansion small enough that the .s2 term in (3.7) 
can be neglected, and therefore 

(Ko+2b2@ = -b,&b#‘. (3.8) 

The expression (Ko+2b20) in (3.8) can be identified as a temperature dependent bulk 
modulus, K(0) = Ko+2b20. However, for most applications it is sufficient to take the 
bulk modulus of solids as independent of temperature[8], although it generally decreases 
somewhat with increasing temperature (for example, bulk modulus of copper decreases by 
about 3% with a temperature increase of 100 K, from 273 to 373 K[9]). If we therefore 
take bulk modulus to be temperature independent, we can take b2 to be equal to zero, and 
therefore from (3.8) 

&= _ $.e- !!$p. 
0 0 

(3.9) 
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On the other hand, an increase in temperature by dTproduces the relative volume expansion 

d I’ 
- = a(T) dT 
V 

(3.10) 

where a = a(T) is the temperature dependent coefficient of volume thermal expansion, so 
that integration from initial to final state gives 

s r 

E= cc(T) dT. (3.11) 
ro 

The temperature dependence of tl can be further represented by a series expansion 

a(T) = 5 a,(T-To)“, 
n=O 

so that integration of (3.11) gives 

E = ao(T-To)+~a,(T-To)2+~a~(T-To)3+ . . . . 

(3.12) 

(3.13) 

If we retain the first two terms in the expansion of (3.12), (3.13) becomes 

E = aoToB+ ia, T@*. (3.14) 

Since the coefficients a0 and a, can be determined experimentally (numerical values for 
various metals are given, for example, in [8]), the comparison of (3.9) and (3.14) gives 

6, = -KoaoTo, b3 = -)Koa,Ti. (3.15) 

Expressions (3.15) can also be obtained starting from the thermodynamic definition of the 
coefficient of volume thermal expansion[8, 91 

(3.16) 

where K = - (c?R/&)~ is the bulk modulus. Since 

substitution in (3.16) and comparispn with the two term approximation of (3.12) gives 
again (3.15). 

The remaining constants (c2 and cj) can be determined from the consideration of the 
specific heat at constant volume (c,). It is well known from solid state physics that the 
temperature dependence of the specific heat at constant volume for most metals is accurately 
represented by the Debye theory[9, IO], according to which 

(3.17) 
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where 

is Dcbye’s function, and TI, is the Debye temperature characteristic for each solid. (For 
aluminum, for example, To = 428 K, for iron TD = 467 K, while for other solids the values 
are given in [9].) At high temperatures (T >> T,), c, asymptotically approaches the Dulong- 
Petit value of c, = 3R, which is for most metals 3R = 24.9381 J mol- ’ K- ‘. On the other 
hand, using our expression for the entropy (3.4) the specific heat c, at constant volume ( VO) 
is 

[cz + (c2 + 3c,)8+ 3c3e21. (3.18) 

As suggested in [5], the constants c2 and C~ can be determined by fitting (3.18) to (3.17) in 
the temperature range of interest (in our case, for example, the temperature range is approx. 
273-423 K). To do this we first calculate c, according to (3.17) at two appropriately 
selected temperatures: T,/T = 1.4 and T,/T = 1. (These temperatures would approxi- 
mately define the temperature range of interest for both aluminum and iron.) Using the 
tabular values of Debye’s function[l 11, we find D( 1.4) = 0.570793 and D( 1) = 0.674416, so 
that c,( 1.4) = 22.6555 J mol- ’ K- ’ and c,(l) = 23.7341 J mol- ’ K- ‘. Equating this with 
(3.18) at corresponding values of 8 

( . (j=&+-l, and 
0 

0=:-l 
0 

we obtain two algebraic equations for c2 and c3, from which : 

c2 = -25.8384Jmol-’ K-’ (2 -o.5407)E, c3 =4.6571 

- 
To 

(3.19) 

The specific heat variation (3.18) with constants c2 and c3 determined by (3.19) is plotted, 
together with Debye’s expression (3.17), in Fig. 1 and satisfactory agreement in the tem- 
perature range of interest is achieved. 

It should be noticed that expression (3.18) gives the temperature variation of the 

3R .I4938 1 
pj------______---------- 

- Debye’s theory 

---Approximation 

Temperature range 

Of intercs t 
_ T 

0 a2 0.4 0607la8 1 12 u 16 18 20 % 

Fig. I. The specific heat variation. 
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specific heat at constant volume V,, i.e. E = 0. The specific heat at constant volume V(E # 0) 
is 

C&E) = - ~k2+(C2+3C3)8+3C’e2]----&l+e)b3e, (3.20) 

which, of course, is the form of the Clausius relation[9] 

c,( T, v) = c,V’, d-t- T (3.21) 

where v = l/p is the specific volume. It is clear from (3.20) that for a given temperature (8). 
c, decreases as E grows (in absolute value). This is in agreement with (3.17) since, according 
to the Griineisen equation, the volume dependence of the Debye temperature is 

TD = constant - v-V (3.22) 

where y is the Griineisen constant (for aluminum, for example, y = 2.1[8]), so that 

TD(c # 0) = e+ T&z = 0), (3.23) 

and therefore T, increases with compression E, i.e. for a given temperature c, also decreases 
with compression E. 

4. ADIABATIC LOADING AND SOME NUMERICAL RESULTS 

Consider the case of rapidly applied pressure, so that there is no time for significant 
heat transfer to take place (but with inertia effects still to be neglected). The process then 
can be considered to be adiabatic. Since it is also elastic, with no dissipative effects, the 
entropy cannot change and is equal to its initial value (q = 0). Therefore, from (3.4) 

b,~+bz~*+2b3d9+2c20+3c,0* = 0, (4.1) 

so that the temperature increase corresponding to given volume strain E is AT = 8To, where 

Since for E = 0 we have 8 = 0 and since from (3.19) c2 is negative, we must take a minus 
sign in expression (4.2). To determine the adiabatically applied pressure which is required 
to produce a given amount of volume reduction (V/V,), we first calculate 8 from (4.2) and 
then with this value and with E = In (V/V,) obtain the pressure from (3.3). 

For example, let us consider the case of moderate volume reduction when we pre- 
sumably can neglect the a+’ term in the free energy expansion (3.2), and the 3a3s2 term in 
the expression for the pressure (3.3):Reasonable agreement with the experimental pressure- 
volume data is still achieved, as indicated in [5], due to the presence of the e-+ term in the 
expression for the pressure. (Note that, although we are not retaining the E’ term in the 
expression for the free energy, E is still a finite strain and K,,e-% is still capable of reproducing 
moderately large-finite strain behaviour. The use of powers of Lagrange strain, for example, 
does not provide such a close approximation to the geometric nonlinearity.) In this case 
then (3.3) becomes 

P = -e+ (2az&+b,tl+b3f32), 

where b2 is taken to be zero, as discussed in the previous section. 

(4.3) 
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In the case of aluminum, for example, with K. = 70 GPa, a0 = 6.663.x IO-’ K-‘, 
a, = 6.84x low8 ICm2, p. = 2.768 g cm- 3, TD = 428 K[9,12] and taking To = 283 K, we 
obtain from (3.5), (3.15) and (3.19): a2 = 35 GPa, b, = - 1.32 GPa, b3 = -0.192 GPa, 

= -0.139 GPa and c3 = -0.059 GPa. If we wish to calculate the temperature rise and 
Fie needed adiabatically applied pressure for the volume reduction of, say V/V, = 0.85, 
i.e. E = -0.1625, we obtain first from (4.2) (with h2 = 0) 8 = 0.429, which corresponds 
to a temperature increase AT = UT0 = 121.4 K. The required pressure is then from (4.3) 
p = 14.09 GPa. It should be mentioned that the inclusion of the u$ term in the expression 
for free energy [which we have neglected in (4.3)] would make the value of pressure more 
accurate, but the temperature rise would still be the same, as calculated by (4.2), which 
does not depend on a2 and a3. 

It is useful to compare these results with those obtained by using the free energy 
expansion with terms only up to the second degree, i.e. 

$ = a2&2+b,d?+c2t92. 

In this case we have from (2.6) : 

p = -e-‘(2a2zfb,0) 

‘1=- & (b,E+2cd% 

so that for the adiabatic compression : 

0 
b, = ----_E 

2c2 

E. 

The constants a2 and 6, again can be determined from a2 = :Ko and b, = 
by using the values of bulk modulus and coefficient of volume thermal 
temperature T = To (initial values). The constant c2 can be determined 
expression for the specific heat 

c, = - j-3 +w2 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

- KOaoTO, i.e. 
expansion at 
by using the 

(4.9) 

and the Debye value of c, at T = To (0 = 0), which is for aluminum c,(T = To) z 22.6 
J mol- ’ K- ‘. In this way we obtain : a2 = 35 GPa, b, = - 1.32 GPa and c2 = -0.328 GPa, 
so that a volume compression of E = -0.1625 is followed by a temperature increase of 
AT = 92.5 K, since from (4.7), 0 = 0.327. The corresponding pressure is from (4.8), 
p = 13.89 GPa. We see, therefore, that the first order theory (with free energy function of 
the second degree) predicts 28.9 K, i.e. a 23.8% smaller increase in temperature for a given 
volume reduction of V = 0.85 Vo. On the other hand, the value for the required pressure is 
only 0.2 GPa, i.e. 1.4% smaller in the case of the fist order theory. This is not surprising 
because the difference of 28.9 K in the increase of temperature requires a somewhat higher 
pressure (14.09 vs 13.89 GPa) to produce a given amount of compressiqn. 

Better agreement of the first order theory with the second order theory could be 
obtained if we use the mean values of the coefficient of volume thermal expansion a and 
specific heat c, in the interval of expected temperature increase. For example, if we take 
a = 7.347x lo-‘K-’ and c c = 23.17 J mol- ’ K- ’ (which are the values approximately at 
T = To+60 K), we get 6, = - 1.4555 GPa and c2 = -0.2775 GPa, so that 9 = 0.426, 
AT = 120.5 K and p = 14.11 GPa. However, we cannot in advance know the amount of 
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temperature increase, and therefore cannot know the mean vaiues of a and c, (except, of 
course, by assuming them approximately), so that it is clearly necessary to use the second 
order theory to determine the true temperature increase and required pressure for a given 
amount of adiabatic compression. 

5. DISCUSSION 

It can be seen from this paper, that in order to adequately reproduce the thermo- 
mechanical behaviour of metals under finite volume reduction and large temperature 
increase, it is necessary to use the second order thermo-elastic analysis, i.e. to use the free 
energy function expanded up to the third degree. In particular, we have seen that in the 
case of adiabatically compressed aluminum, the first order theory predicts a 23.8% lower 
increase of temperature than the second order theory. The analysis performed in this paper 
was restricted to hydrostatic loading, when the solid can be described by an equation 
of state which includes just volume strain (or density) and temperature, as in the case 
of a fluid. However, inclusion of the nonhydrostatic loading, as it arises in explosive 
loadings, would clearly demand elastic-plastic theory, as is done in the analysis of the 
propagation of elastic-plastic waves at finite strain[4, 51. However, at extremely high 
pressures (say, higher than 20 GPa), the effects of shear stresses can be neglected in 
comparison with the influence ofmean pressure and this again leads to a fluid-like behaviour, 
i.e. hydrodynamic theory as discussed in the papers on the wave and shock propagation 
phenomena, such as [3, 13, 141. 
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