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Abstract

The correspondence theorem which relates the solutions of displacement boundary value problems in classical and
couple stress elasticity is formulated and applied to derive the solutions for edge and screw dislocations in an infinite
medium. The effects of couple stresses on the dislocation strain energy is evaluated for both types of dislocations. It is
shown that within a radius of influence of each dislocation in a metallic crystal with dislocation density of 10! cm~2, the
strain energy contribution from couple stresses (excluding the core energy) is about 15% in the case of an edge dis-
location, and about 11% in the case of a screw dislocation. It is then shown that couple stresses make large effect on the
total work of tractions acting on the dislocation core surface.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a micropolar continuum the deformation is described by the displacement vector and an independent
rotation vector. The rotation vector specifies the orientation of a triad of director vectors attached to each
material particle. A particle (material element) can experience a microrotation without undergoing a
macrodisplacement. An infinitesimal surface element transmits a force and a couple vector, which give rise
to non-symmetric stress and couple stress tensors. The former is related to a non-symmetric strain tensor,
and the latter to a non-symmetric curvature tensor, defined as the gradient of the rotation vector. This type
of the continuum mechanics was originally introduced by Voigt (1887) and the brothers Cosserat (1909).
The fundamentals of the theory were further developed in the sixties, most notably by Giinther (1958),
Grioli (1960), Aero and Kuvshinskii (1960), Mindlin (1964), and Eringen and Suhubi (1964). In a simplified
micropolar theory, the so-called couple stress theory (Toupin, 1962; Mindlin and Tiersten, 1962), the ro-
tation vector is not independent of the displacement vector, but related to it in the same way as in classical
continuum mechanics.

The physical rationale for the extension of the classical to micropolar or couple stress theory was that the
classical theory was not able to predict the size effect experimentally observed in problems which had a
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geometric length scale comparable to material’s microstructural length, such as the grain size in a poly-
crystalline or granular aggregate. For example, the apparent strength of some materials with stress con-
centrators such as holes and notches is higher for smaller grain size; for a given volume fraction of dispersed
hard particles, the strengthening of metals is greater for smaller particles; the bending and torsional
strengths are higher for very thin beams and wires. An extensive list of references to micropolar and couple
stress elasticity can be found in review articles by Dhaliwal and Singh (1987) and Jasiuk and Ostoja-
Starzewski (1995). The research in couple stress and related non-local and strain-gradient theories of
material response (both elastic and plastic) has intensified during the last decade, largely because of an
increasing interest to describe the deformation mechanisms and manufacturing of micro- and nanostruc-
tured materials and devices, as well as inelastic localization and instability phenomena (Fleck and
Hutchinson, 1997; De Borst and Van der Giessen, 1998).

There has been a significant amount of research devoted to dislocation theory in couple stress, micro-
polar and non-local elasticity. The representative references include Kroner (1963), Misicu (1965), Teo-
dosiu (1965), Anthony (1970), Knésl and Semela (1972), J.P. Nowacki (1974, 1978), W. Nowacki (1986),
Eringen (1977a,b, 1983), Minagawa (1977, 1979), Hsieh et al. (1980), and Gutkin and Aifantis (1996). In
this paper we derive the solutions for edge and screw dislocations in an infinite medium by using the
correspondence theorem of couple stress elasticity, which relates the solutions of displacement boundary
value problems in classical and couple stress elasticity. The basic equations of couple stress elasticity are
summarized in Section 2, with an accent given to displacement formulation in Section 3. Both compressible
and incompressible elastic materials are considered. The correspondence theorem of couple stress elasticity
for the problems with prescribed displacement boundary conditions is formulated in Section 4. The plane
strain and anti-plane strain equations of couple stress elasticity are listed in Section 5. The correspondence
theorem is applied in Sections 6 and 8§ to derive the solutions for edge and screw dislocations in an infinite
medium. The solution for the edge dislocation in a hollow cylinder is derived in Section 7. The contribution
from couple stresses to dislocation strain energy is evaluated and discussed for both types of dislocations. It
is shown that within a radius of influence of each dislocation in a metallic crystal with the dislocation
density of 10'° cm~2, the strain energy contribution from couple stresses (excluding the core energy) is
about 15% in the case of an edge dislocation, and about 11% in the case of a screw dislocation. It is then
shown that couple stresses make large effect on the total work of tractions acting on the dislocation core
surface. Concluding remarks are given in Section 9.

2. Basic equations of couple stress elasticity

In a micropolar continuum the deformation is described by the displacement vector and an independent
rotation vector. In the couple stress theory, the rotation vector ¢, is not independent of the displacement
vector u; but subject to the constraint

1 1
¢ = Eeijkwjk = ieijkuk,p Wij = €ijk Py, (1)
as in classical continuum mechanics. The skew-symmetric alternating tensor is e;;, and w;; are the rect-
angular components of the infinitesimal rotation tensor. The latter is related to the displacement gradient
and the symmetric strain tensor by u;; = €; + w;;, where

1 1
€ =3 (i +uiz), oy = 3 (i — uiy). (2)

The comma designates the partial differentiation with respect to Cartesian coordinates x;.
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A surface element dS transmits a force vector 7;dS and a couple vector M;dS. The surface forces are in
equilibrium with the non-symmetric Cauchy stress #;, and the surface couples are in equilibrium with the
non-symmetric couple stress m;;, such that

T =njty,  M; = nymy, 3)
where n; are the components of the unit vector orthogonal to the surface element under consideration. In
the absence of body forces and body couples, the differential equations of equilibrium are

iy =0, m;+euty =0. 4)
By decomposing the stress tensor into its symmetric and antisymmetric part

tj=o0y+1; (05=0; ;= —1;) (5)
from the moment equilibrium equation it readily follows that the antisymmetric part can be determined as

1
Ty = — Eeijkmlk,l- (6)

If the gradient of the couple stress vanishes at some point, the stress tensor is symmetric at that point.
The rate of strain energy per unit volume is

W= i€ -+ MiKij, (7)
where
Kij = @;; (8)

is a non-symmetric curvature tensor. In view of the identity w;;x = € — €, the curvature tensor can also
be expressed as

Kij = —€jki€ik,1- (9)

These are the compatibility equations for curvature and strain fields. In addition, there is an identity
Kijx = Ki;i(= @, ), which defines the compatibility equations for curvature components. The compatibility
equations for strain components are the usual Saint Venant’s compatibility equations. Since ¢;; is symmetric
and e;; is skew-symmetric, from Eq. (9) it follows that the curvature tensor in couple stress theory is a
deviatoric tensor (. = 0).

Assuming that the elastic strain energy is a function of the strain and curvature tensors, W = W (e, k;;),
the differentiation and the comparison with Eq. (7) establishes the constitutive relations of couple stress
elasticity

ow ow
= A, My = . 10
o ] aEij m ] aKij ( )
In the case of isotropic material with the quadratic strain energy,
1
W= 5161(1(611 + peper + 20K + 2Kk, (11)

where u, A, o, and f are the Lamé-type constants of isotropic couple stress elasticity. The stress and couple
stress tensors are in this case

O',‘j = 2,Ll€,'j —+ )Lekkéfj, m,-j = 40(Kfij + 4ﬂKj,‘. (12)

By the positive-definiteness of the strain energy, it follows that o + f# > 0, and « — f# > 0. Thus, « is positive,
but not necessarily f. Since the curvature tensor is deviatoric, from the second Eq. (12) it follows that the
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couple stress is also a deviatoric tensor (my, = 0). In some problems the curvature tensor may be symmetric,
and then the couple stress is also symmetric, regardless of the ratio a/f.

If the displacement components are prescribed at a point of the bounding surface of the body, the
normal component of the rotation vector at that point cannot be prescribed independently. This implies
(e.g., Mindlin and Tiersten, 1962; Koiter, 1964; Germain, 1973) that at any point of a smooth boundary we
can specify three reduced stress tractions

T =ty — 5 equn; (mpmpgny) i (13)
and two tangential couple stress tractions

M,‘ = njmj, - (njmjknk)n,-. (14)

3. Displacement equations of equilibrium

The couple stress gradient can be expressed from Eqgs. (9) and (12) as
M) = —20€4pqUp i1 (15)

independently of the material parameter . The substitution into Eq. (6) gives an expression for the anti-
symmetric part of the stress tensor

Ty = 720((1),'1"](]( = 72(1V2C0,'j, (16)

which is also independent of . The Laplacian operator is V2 = 0?/0x;0x;. Consequently, by adding (12)
and (16) the total stress tensor is

t;; = 2ue; + Ay — 2aV2w,;,.. (17)

Incorporating this into the force equilibrium equations (4), we obtain the equilibrium equations in terms of
displacement components

0 1
2 pos, o 9|1 g 22V .| —
Vu; qu,+axi 1_2\)(V u)+°V(V-u)| =0, (18)

where V - u = u;, the biharmonic operator is V* = V>V?, and
o A 1

P== l+-= :
u’ +u 1 —2v

(19)

The Poisson coefficient is denoted by v. Upon applying to Eq. (18) the partial derivative 8/0x;, there follows
V2ex = 0. Thus, the volumetric strain is governed by the same equation as in classical elasticity without
couple stresses. The substitution into Eq. (18) yields the final form of the displacement equations of
equilibrium

1 ©

2‘_12 4. — (V-
Veu; Vu,+1_2vaXi( u)

=0. (20)

Three components of displacement and only two tangential components of rotation may be specified on the
boundary. Alternatively, three reduced stress tractions and two tangential couple stress tractions may be
specified on a smooth boundary.
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The general solution of Eq. (20) can be cast in the form (Mindlin and Tiersten, 1962)

§ 1 0
— J— 2_ . N . — 2 2
u; = U l@xi(v U) A0 =) ax, [p+x-(1—-1VH)U], (21)

where the scalar potential ¢ and the vector potential U; are solutions of the Laplacian and Helmholtz
partial differential equations

Vip =0, V(U - PPV*U)=0. (22)
The general solution of the latter equation can be obtained by observing that
U~ PVU, = U (23)

must be a harmonic function, satisfying the Laplace equation V2U? = 0. Thus, the general solution can be
expressed as U; = U + U;, where

Ur — PVAU; = 0. (24)

3.1. Incompressible materials

For incompressible elastic materials (¢ = 0), the stress response is
tij = 2,“,61'1' — 2O(V2(1),-j _pél]) (25)

where p = p(x;,x»,x3) is the pressure field, indeterminate by the constitutive analysis. The corresponding
displacement equations of equilibrium are

1o

Vzu,- - 12V4u,- = .
1 Ox;

(26)

The general solution can be expressed as u; = u? + u!, where 4 and u satisfy the non-homogeneous partial
differential equations

1 op

2.0

vul 'uax[) (7)
1 op

* 12 2*: 2~

u: = I°Voul =1 L (28)

4. The correspondence theorem of couple stress elasticity

For equilibrium problems of couple stress elasticity with prescribed displacement boundary conditions,
and with no body forces or body couples present, we state

Theorem. If u; = u; is a solution of the Navier equations of elasticity without couple stresses,

1 0 .
1_2va—xi(V~u)70, (29)

V2 +

then 4; is also a solution of differential equations (20) for couple stress elasticity.
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Proof. It suffices to prove that #; is a biharmonic function. By applying the Laplacian operator to Eq. (29),
we obtain

1 0
1 —2v Ox;

V4 + V3(V-a) = 0. (30)
Since V - is a harmonic function, as can be verified from Eq. (29) by applying the partial derivatives 0/0x;,
Eq. (30) reduces to

Vi, = 0. (31)

This shows that #; is a biharmonic function, which completes the proof. The correspondence theorem for
couple stress elasticity formulated here should be compared with a related principle of association by
Sternberg and Muki (1967), and a theorem of correspondence in non-local elasticity by Eringen
(1977a,b). O

We now prove that the stress tensor in couple stress elasticity with prescribed displacement boundary
conditions and body forces or body couples is a symmetric tensor. From Eq. (29) it readily follows by
partial differentiation that the rotation components are harmonic functions (Vw,; =0, V?¢, = 0), and
substitution into Eq. (16) gives 7;; = 0. In general, the couple stress tensor is still non-symmetric, although
in the case of anti-plane strain with prescribed displacement boundary conditions it becomes a symmetric
tensor (see Section 5.3).

5. Plane problems of couple stress elasticity

5.1. Plane strain

In plane-strain elasticity the displacement components are u; = u;(x1,x3), uy = us(x1,x2), and uz = 0.
The non-vanishing strain, rotation, and curvature components are

ooom o 0w 1/0wm 0w (32)
= axl ’ 2= a)Cz7 2= 2 axl 6x2 ’
1 6u2 6u1
<D3 “n 2 (6)61 6)62)’ ( )
- 00, - 00,

K13 = aXI y Ky3 = axz . (34)
The stress—strain relations are

g1 = (2#%—2)611 +)v622, 0 = (2/,[—|—/1)€22—|—/1611, (35)

o1y =2, T = —2“V2(P3~ (36)
The normal stress a3; = A(e1; + €2,). The couple stress—curvature relations are

myz = dokys, my = 4fi3,  my = 4ok, myp = 4Pk, (37)
The elastic strain energy per unit volume is

1 1 1
W= 2 oy + 20+ (01, + 03, — 2vonon — 033) | + M (miy +m;). (38)
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Eqgs. (32)-(38) can be easily rewritten in terms of polar coordinate components. For example, we have

~ Ou, 1 [/ Ouy 1 (%u, Ouy

= 6""r<69+”’>’ 6"(’2r<ae+rar“">’ %)
B 1 [0(rup)  Ou, _ 00, 1 0¢;

p=o0=g | TG0 G = e 0)

Mindlin’s stress functions
The rectangular components of stress and couple stress tensors can be expressed in terms of the functions
® and ¥ as

ro Y ’?e Y

= A7 T A A =25 ta A 41
fu a3 dxyoxy’ 2 ox? + 0x,0xy (41)
’ro Y ro Y
thh=—-————F—-——>, bhi=———+— 42
12 dxox,  Ox3 2 Ox0x,  Ox}’ (42)
oY oY

mi3 :aixla my3 :aix27 (43)
where the functions @ and ¥ satisfy the partial differential equations

Vi =0, V¥ - PV =0. (44)
The curvature—strain compatibility equations require that the functions @ and ¥ be related by

0 0

— (Y - PVY)=2(1 =) —(V’® 45

o (¥ = VW) = 210 £ (V0), (45)

i(av — PVAY) =2(1 — v)12£(v2<p) (46)

Oxy 0x; '
The solution of the equation for ¥ in (44) can be expressed as ¥ = ¥° + ¥*, where

VPl =0, ¥ - PV =0. (47)
Thus, Egs. (45) and (46) can be rewritten as

oY%, 0

— = 2(1 =P —(V*® 4

0= =21 =P (V) (48)

oY%, 0

— =2(1 =) —(V*®). 4

=21 - P (V) (49)
The counterparts of Eqs. (41)—(43), and Egs. (48) and (49) in polar coordinates are

100 10°¢ 1% 103%
= et T ro0 o0 (50)
’o 1P 10Y
=57t 500 7230 (51)

- 162d3+16d3 109 1 o*Y (52)
T L0012 00 ror 2 o0’



3814 V.A. Lubarda | International Journal of Solids and Structures 40 (2003) 3807-3826

1’0 100 OV

= a0 200 T o .
oY 1 0%
my3 :E’ mg3 Z;@v (54)
and

Q(W— PV*Y) = -2(1 —v)lzlg(vzdi) (55)
or r 00 ’

lg(q/—zzvzsr'):z(l—v)zzg(vzcb) (56)
r 00 or '

5.2. Anti-plane strain

For the anti-plane strain problems, the displacements are u; = u, = 0, u3 = w(xy,x,). The non-vanishing
strain, rotation, and curvature components are

6132631252—;} 6232632232—;2, (57)
wlzwzszég—;zv <pz=w31=—%§—;:, (58)
2 2 2
K11:—K22:%%, Klz——ézxv%}, KZI_;ZXV%V' (59)
It readily follows that
lis = o (w = PYPW), b = pa (w0 VW), (60)
ox; Ox;
ty; = ,ui(w — PV*W), ty= ui(w—&— PV2w). (61)
Oxy ox,
The couple stresses are related to the curvature components by
my =4+ )i, myn = 4o+ fKa, (62)
myy = 4oy + 4Prar,  my = 4ok + 4Bk, (63)

Since displacement field is isotropic, the displacement equations of equilibrium (20) reduce to a single
equation

Viw — PViw = 0. (64)

The general solution can be expressed as w = w® + w*, where w° and w* are the solutions of the partial
differential equations

VAW =0, w —PVw =0. (65)
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The non-zero strain, rotation and curvature components in polar coordinates are

1 ow 1 ow

€03 = €30 = 200 €3 = €3 = 2 (66)
1 ow 1 ow
%ZCU(B:Z@, (P9:w3r:—§a7 (67)
and

_0p, 10 (10w _0py 10w

W—w—zw@w) i F e (68)
_10p, @, 1 Ow 1 0w

R T T T )

_10¢py , @, 10 (10w
W—7@+7—zm<wﬁ' (70)

The couple stresses are related to the curvature components by

my, = —hlyy = 4(“ + ﬁ)Krra (71)

myy = 40(Kr9 + 4ﬁKHr7 me, = 40”(:9)‘ + 4ﬁKr97 (72)

with the inverse relations

1 1
K = —— (am.g — Pmg,), Ko = ———— (amgy, — Pm,g). 73
0 4(0627[;2)( o — Pmg,), Ko 4(0627[),2)( o — Pmeg) (73)
The elastic strain energy per unit volume is
L, 2 1 2 1 2 2
= S — — -2 . 4
/4 2# (01'3 + 003) + 4(0( + ,B) {mrr + 2(0( _ B) [a(mr(/ + m(}r) ﬁmr()m()r] (7 )

5.3. The correspondence theorem for anti-plane strain

For anti-plane strain problems with prescribed displacement boundary conditions, the correspondence
theorem of couple stress elasticity reads: If w = w? is a solution of differential equation of elasticity without
couple stresses V>w” = 0, then w' is also a solution of differential equations (64) for couple stress elasticity.

The proof is simple. Since w" is a harmonic function, it is also a biharmonic function, satisfying Eq. (64).
For prescribed displacement boundary conditions, the function w° specifies the displacement field in both
non-polar and couple stress elasticity.

The stress and couple stress tensors in anti-plane strain problems of couple stress elasticity, in the case of
prescribed displacement boundary conditions, are symmetric tensors. Indeed, since the displacement field is
a harmonic function, the antisymmetric stress components in Egs. (60) and (61) vanish, i.e., 713 = 753 = 0.
Thus, the total stress tensor is a symmetric tensor. From Eq. (59) it further follows that the curvature tensor
is a symmetric tensor (kj; = ;). This implies from Eq. (63) that the couple stress tensor is also symmetric
(m12 = myy), regardless of the ratio o/p.
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6. Edge dislocation in couple stress elasticity

For the edge dislocation in an infinite medium, the only boundary condition is the displacement dis-
continuity b, for example imposed along the plane x; > 0 and x, = 0. Thus, by the correspondence theorem
the displacement field is as in classical elasticity, i.e. (e.g., Hirth and Lothe, 1968),

1 X2 1 X1X2

2|t *2 75
. Zn{an x1+2(1—v)x%+x%} (73)
b 1 42 -
= — (1= In= 2471 2| 76
" 2 4(1 —v) {( V) In b? x7 —|—x§] (76)
The stresses are
b x(3x+x3
o1 = - & 2(2 : 222)7 (77)
2n(l =) (a7 +23)
b x(x?—x3
0 = K 2(2 l > 22)7 (78)
2n(1 =) (x7 +x3)
b x (-3
P H 1( 1 22), (79)
)
_ vub X
o8 = (1l —v) x3 +x3 (80)
The rotation and curvature components are
b X1
=—— 1
?3 om x% +x%7 (8 )
b x—x3 b 2xx
iy =g e = (52)
2 (x} +x3) 2 (x7 +x3)
The corresponding couple stresses are
2ub  x? —x? 2Bb x} —x3
my =2 iz 2B oy (83)
2 232 2 2\2
T (xf+x3) T (¥ +x3)
20b  2x\x 2pb  2xix
g = 220202 m31:iﬁ. (84)
T (x4 x3) T (x] +x3)
In polar coordinates, the displacements are
b 1 P
u,:E{Ocos(H—m{l—(l—2v)lnﬁ] s1n0}, (85)
I P S . P 2v)lnr2 cos 0 (86)
YT T 41— v) b2 ’
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and the stresses

ub  sinf
"= = T A_/1 N 87
7 o0 2n(1—v) r (87)
ub cos 6
0 = AT ; 88
70 2n(l —v) r (88)
vub  sinf
=1 77 89
73 n(l—v) r (89)
The rotation and curvature components are
b cosf b cosf b sinf
%*‘ﬁ P Kr3*£77 K93*ﬁ73 (90)
with the corresponding couple stresses
2ab cos 0 2b cos 6
my3 = n 2 msy = T 2 1)
2ab sin 0 2fb sin 0
me3y =——5—, M3 = i > - (92)
T Tor

The stress components decay with a distance from the center of dislocation as 7~!, while the couple stresses
decay as 2. These also specify the orders of the singularities at the dislocation core when » — 0. The
displacement and rotation fields for an edge dislocation in polar elasticity, without the constraint (1), can be
found in Nowacki (1986). An analysis allowing for a smooth transition of the displacement field from zero
value at the center of the dislocation core to the value b along the cut used to create the dislocation has been
done in non-local elasticity by Eringen (1977a). Minagawa (1977, 1979) derived the stress and couple stress
fields produced by disclinations and circular dislocations in a micropolar elastic continuum.

6.1. Strain energy

The strain energy (per unit length in x; direction) stored within a cylinder bounded by the radii 7y and R
is

R p2n
E= / Wi drdo, (93)
rg J0
where the specific strain energy (per unit volume) is
1, ) 1, ., ) ub? 1 . ab® 1
W = % [65+ (1 —2v)o. ] + E(m” +my) = m ﬁ(l — 2vsin” 0) toa (94)

Upon the substitution into Eq. (93) and integration, there follows

b R ab® /1 1
E= 4n(1 —v) lnro T rn R) (95)

The second term on the right-hand side is the strain energy contribution from the couple stresses. The
presence of this term is associated with the work done by the couple stresses on the surfaces r = ry and
r = R. This can be seen by writing an alternative expression for the strain energy,
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2n 2n

R
E=— / Gr(q(}", ())b(.‘ll"ﬁ*l M3§D;Rd9 71 ]\43QD3I"()C107 (96)
2/, 2 o » 2 o

0

with M3 = m,; given by Eq. (91), and ¢; given in Eq. (90). The work of the tractions ¢, and ¢,y on the
displacements u, and uy over the surface » = R cancels the work of the tractions o, and 7,9 over the surface
r = ry. These terms are thus not explicitly included in Eq. (96). The second term in Eq. (95) is the strain
energy contribution due to last two work terms in Eq. (96). For example, in a metallic crystal with the
dislocation density p = 10'° cm~2, the radius of influence of each dislocation (defined as the average dis-
tance between dislocations) is of the order of p~ 2 =100 nm (Meyers and Chawla, 1999). For an FCC
crystal with the lattice parameter a =4 A and the Burgers vector along the closed packed direction
b = a/+/2, the radius R can be approximately taken as R = 200b. By choosing the material length / to be the
lattice parameter (I = v/2b), the couple stress modulus is o = 2ub?, and by selecting r, = 2b and v = 1 /3,
the strain energy contribution from couple stresses in Eq. (95) is 14.5% of the strain energy without couple
stresses. The calculations are sensitive to selected value of the dislocation core radius, and larger the value
of ry smaller the effect of couple stresses in the region beyond r,. For example, the strain energy contri-
bution from couple stresses in the region between ry = 3b and R = 2005 decreases to 7%, and in the region
between ry = 4b and R = 2005 to 4.2%. This percentage increases by the decrease of the radius R, and the
strain energy contribution from couple stresses in the region between », and R = 505 is 20.7%, 10.5% and
6.6% in the case of oy = 2b, 3b and 4b, respectively. Such small values of R may be appropriate for problems
with extremely high dislocation densities, as arise in localized or non-localized regions of severe plastic
deformation (shear bands, wear, wire drawing, high-pressure torsion, equal channel angular pressing), or in
the plastically deformed layer behind the shock front (Meyers et al., 2003). In this context, it should be
noted that an increase of dislocation density from10'? to 10'! cm™ results in the decrease of R by the factor
of more than 3. It should also be pointed out that the strain energy contribution from couple stresses is
likely to be lowered by inclusion of the micropolar effects. The corresponding calculations have not been
performed in this paper, but it is known that the effect of couple stresses on stress concentration is less
pronounced if the microrotations are assumed to be independent of the displacement field (Kaloni and
Ariman, 1967; Cowin, 1970; Lakes, 1985; Eringen, 1999).

6.2. Work of dislocation core tractions

If an edge dislocation is near the free surface or the interface, the contribution from the tractions on the
dislocation core surface appears in the final expression for the dislocation strain energy (e.g., Freund, 1994;
Lubarda, 1997, 1998). If the dislocation is at the distance from the free surface much greater than the
dislocation core radius, it is common practice to evaluate the contribution from the tractions on the dis-
location core surface (left after removing the material of the dislocation core) by subjecting the core sur-
face to tractions of the dislocation in an infinite medium, along with the corresponding displacement. This
is

1

2n 1 2n
Bn =5 | 10nl00, 00 00.0) & a0, O O d0 5 [ o, 0)s (1, O, 57)
0 0

The first integral in Eq. (97) depends on cut used to create the dislocation (Lubarda, 1998). If the dislo-
cation is created by the displacement discontinuity along the cut at an angle ¢ (Fig. 1), the evaluation of the
above integrals gives

2



V.A. Lubarda | International Journal of Solids and Structures 40 (2003) 3807-3826 3819

Fig. 1. A material of the dislocation core is removed and its effect on the remaining material represented by the indicated stress and
couple stress tractions over the surface r = ry. The slip discontinuity of amount b is imposed along the cut at an angle ¢.

Using o = ul?, this can be rewritten as

2 2
b= e o] ()}
For example, in the case of the displacement discontinuity along the horizontal cut (¢ = 0), the energy
becomes
E,=E 1—8(11_72?2&)2], (100)
where
o _ _ 1-2v wh? (101)

P (1—v) l6n

is the energy contribution without the couple stress effects. For example, if v = 1/3 and / = v/2b (the lattice
parameter),

64 [ b\’
_ 0 T =
E,=E ll 3 <ro) ] (102)

The extraordinary effect of the couple stresses on the ratio £, /E?0 vs. r9/b is shown by a solid curve in Fig. 2.
If »y is equal to 2b, 3b and 4b, the corresponding ratio E,, /E?0 is equal to —4.33, —1.37 and —0.33, respec-
tively.

If the displacement discontinuity is imposed along the vertical cut (¢ = n/2), the energy becomes

8(1—v)* [/ 1\’
where

o _ 3-2 u’
"o (1_\,)2 16m

ErO = E:‘)o

(104)
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Fig. 2. The ratio of the core surface energies with and without couple stress effects vs. the core radius over the Burgers vector ratio in
the case when the edge dislocation is created by the displacement discontinuity along the horizontal cut (solid line) and vertical cut
(dashed line). In the former case E;‘O is defined by Eq. (101), and in the latter case by Eq. (104).

is the energy contribution without the couple stress effects. By setting v =1/3 and / = V2b, we obtain

1+%<%>2l. (105)

The effect of couple stresses on the ratio E,, /E?0 vs. 9/b is in this case shown by a dashed curve in Fig. 2. If
ro is equal to 2b, 3b and 4b, the corresponding ratio E,, /E?O is equal to 3.62, 2.17 and 1.65, respectively.
Although the strain energy associated with the tractions on the surface of the dislocation core is cut de-
pendent, the total strain energy due to dislocation in an infinite or semi-infinite medium is not cut de-
pendent. This was previously discussed in the context of classical elasticity by Lubarda (1997), and an
analogous discussion applies for couple stress elasticity.

E, =E,

7. Edge dislocation in a hollow cylinder

The so-called hollow dislocation along the axis of a circular cylinder with inner radius », and the outer
radius R is shown in Fig. 3. Both surfaces of the cylinder are required to be stress and couple stress free. The
displacement discontinuity of amount 4 is imposed along the horizontal cut from ry to R. The solution is
derived from the infinite body solution by superposing an additional solution that cancels the stresses and
couple stresses over the inner and outer surface associated with the solution for an edge dislocation in an
infinite medium. Thus, we require that the superposed solution satisfies the boundary conditions

b sin 0 _pb sin 0
(R, 0) = 2n(l —v) R’ tr(r0, 0) = 2n(l—v) ry ’ (106)
bo(R.0) = — ub cos 0 0) ub cos 0 (107)

2n(1—v) R’ to(ro, (=)
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‘. b

Fig. 3. A slip discontinuity of amount b is imposed along the horizontal cut from the inner radius ry to the outer radius R. The inner
and outer surface of the cylinder are free from stresses and couple stresses.

2ab cos 0 2ab cos 0

m3(R, 0) = T R my3(ro, 0) = I a2 (108)

This can be accomplished by using the following structure of the Mindlin stress functions:
1
b = (A0r3 —|—B();> sin 9, (109)
1 r r

P — [Ar—f—Br—i-Cll(Z) +DK1(Z)} cos 0. (110)
From the conditions (55) and (56) it readily follows that

A=—-16(1 —v)’4y, B=0. (111)
The stress and couple stress components of the superposed solution are accordingly

1 1 /r 1 | .

= [2A0r—230§+cr—112(;> —Dr—le(?)} sin 0, (112)

o = — |24 2Bl+C11(r) DlK(r) 0 (113

v o 03 rl 7\ i 2\7) |9 )

1 r r 1 r r
— _ 24 - - _ - -
The expressions for the derivatives of the modified Bessel functions with respect to »// are used (Watson,
1995, p. 79).
After a lengthy but straightforward derivation it follows that
) Rb; —
AO: ,I.Lb ry _ib / bl I"()bz (115)

2n(1 —v) Ray —roay ™ R? Raj — roay’
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1 ,Ltb R(lz*l”oal 20b [ azbl 76111)2
By==R -_—— 116
0= 2n(l —v) Ra; —rpa; © R? Raj —roay | (116)
20b I ¢
C=16(1—-v)Plyy -2 2 117
e SR (117)
dl 20b [ d2
D=—16(1 —v)P =4y +— — —. 118
(L=)F—do+ == 25 (118)
The introduced parameters are
13
a) = 2R3 — 16(1 — V)—(C1d3 —d103), (119)
C
13
ay) = 27‘8 — 16(1 — V)—(Cld4 — d1C4), (120)
C
1 1
b1 :E(Czd3 —dng), bz :E(C2d4 —dQC4), (121)

where

o =H[a2) ()] e 5 )
s[6(7) w5z () +0(7)] 123

R R 7 7
C3:7K2<7>7 C4:—0K2<_0>» (124)

and similarly

=) ()] 4 )
i3+ -H[(5) (5] 29

R R 7 7
d3—12(), d4:——012(—°). (127)

C) = —

l /
The parameter c is defined by

4l (5) == (BB ) I (5) <o) o

The effect of couple stresses on the elastic strain energy as a function of the ratio »y/b and given R can be
evaluated similarly as in previous section. If R — oo, we obtain the solution for an edge dislocation with a
stress free hollow core in an infinite medium, previously considered by Knésl and Semela (1972). In this case
Ao=A=B=D=0, and
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bri  2ab Ky(2
By— i 22 Ka(3) (129)

4abl 1
bl 1 (130)
g Ko(7) + Kz ()
If couple stresses are neglected, Eqgs. (115)—(118) yield
p— ! Bo= R4y, A=C=D=0 (131)
0 4n(l —v) R2+ 71}’ 0 050> '
The corresponding stresses are
B ub 1 1 R*r} .
o= 2n(1 —v) [r R*+ 7} (r T sin, (132)
ub 1 1 R*r}
= -— — 0, 133
or0 2n(1 —v) [r R*+r} (r—|— r €08 (133)
B ub 1 1 R*r} .
700 = 2n(1 —v) [r R2+12 <3r 3 sind, (134)

in agreement with the solution for the Volterra edge dislocation from classical elasticity (Love, 1944). The
results should also be compared with those presented by Hirth and Lothe (1968, p. 77), who remove the
tractions on the inner and outer surface of the cylinder only to within the first order terms in »y/R.

8. Screw dislocation in couple stress elasticity

The displacement field for a screw dislocation with imposed displacement discontinuity 4 along the plane
x; > 0 and x, = 0 is as in classical elasticity
b 1% _ i 0

w = —tan

. 135
27 X1 2 (135)

This follows by a correspondence theorem since only displacement boundary conditions are prescribed. The
stresses and couple stresses associated with (135) are

ub  x; ub  x;
=_=Z_77 == _- 136
013 27_[: x% + % ) 023 271: .X'% —‘y—X% 9 ( )
22
mp = —mpy = _(OC—Fﬁ)b il x22’ (137)
L)
b 2
My = My = — @+ p) adu (138)

T (a3

The components of the stress and couple stress tensors along the polar directions are

003 =35 7> 0r3:07 (139)
r
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(a+p)b 1

my, = —mMmpyg = — R
T r

myy = me, = 0. (140)
The stress components decay with a distance from the center of dislocation as 7~!, while the couple stresses
decay as 2. These also specify the orders of the singularities at the dislocation core when » — 0. The
displacement and rotation fields for a screw dislocation in micropolar elasticity can be found in Nowacki
(1986), although his statement (at the bottom of page 327) that in classical theory of dislocations we have
¢, = @, = 0 is apparently a misprint, since the rotation components from Eq. (135) do not vanish but are
equal to

L T L
20w 4nxt 4] P2 = 200, 4nxt a3

P (141)

The analysis allowing for a smooth transition of the displacement field from zero value at the center of the
dislocation core to the value b along the cut used to create the dislocation has been done in non-local
elasticity by Eringen (1977b, 1983), and in gradient elasticity by Gutkin and Aifantis (1996).

8.1. Strain energy
The strain energy (per unit length in x; direction) stored within a cylinder bounded by the radii ) and R is

R
E:/ W 2nrdr, (142)

0]
where the specific strain energy (per unit volume) is
1 1 WP 1 (e BB’ 1

W L2 _w 1 ~ 143
2 A TS AT A (143)
Upon the substitution into Eq. (142) and integration, there follows
wb> R (a+ P (1 1
E="mo 4 2T (2 ), 144
4n nro + 4n R (144)

The second term on the right-hand side is the strain energy contribution from the couple stresses. The
presence of this term is associated with the work done by the couple stresses on the surfaces » = 1y, and
r = R. This can be seen by writing an alternative expression for the strain energy,

1 R 1 2n 1 2n
E=- / op3(r,0)bdr + = M,.p,Rd0 — = M,p,rydo, (145)
2 /b 2 Jo 2 Jo
with M, = m,, given by Eq. (140), and
1ow 1b

Cr =P =550 " 4n r (146)
being the » component of the rotation vector. Since o,; = 0, there is no work of stress traction on the
displacement w over the surfaces » = ry and » = R. The second term in Eq. (144) is the strain energy
contribution due to last two work terms in Eq. (145). For example, if we set R = 2005, ry = 2b, and
o+ B = 2ub?, the energy contribution from couple stresses in Eq. (144) is 10.9% of the strain energy
without couple stresses. In the classical elasticity a cylindrical surface around the screw dislocation at its
center is stress free. On the other hand, the solution derived in this section is characterized by the presence
of the constant couple stress m,, along that surface. However, since m,, in Eq. (140) does not depend on 0,
the reduced traction #,; vanishes on the cylindrical surface » = const.
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9. Conclusions

We have derived in this paper the solutions for edge and screw dislocations in an infinite medium by
using the correspondence theorem of couple stress elasticity, which relates the solutions of displacement
boundary value problems in classical and couple stress elasticity. The contribution from couple stresses to
dislocation strain energy is evaluated and discussed for both types of dislocations. It is shown that within a
radius of influence of each dislocation in a metallic crystal with the dislocation density of 10! cm~2, the
strain energy contribution from couple stresses is about 15% in the case of an edge dislocation, and about
11% in the case of a screw dislocation (excluding the energy of the dislocation core of radius ry = 2b). This
contribution decreases with an increasing size of the dislocation core. For example, the strain energy
contribution from couple stresses for an edge dislocation in the region between ry = 3b and R = 200b
decreases to 7%, and in the region between ry = 4b and R = 2005 to 4.2%. This percentage increases by the
decrease of the radius R, and the strain energy contribution from couple stresses in the region between r,
and R = 505 is 20.7%, 10.5% and 6.6% in the case of ry = 2b, 3b and 4b, respectively. Such small values of R
may be appropriate for problems with extremely high dislocation densities within the localized or non-
localized regions of severe plastic deformation. It is then shown that couple stresses make large effect on the
total work of tractions acting on the dislocation core surface. The solution for the edge dislocation in a
hollow cylinder (Volterra dislocation) in the presence of couple stresses is also derived. The extension of the
present work is in progress to incorporate the effect of couple stresses on the interaction forces between
dislocations on parallel and intersecting slip planes, and the dislocation interactions with straight and
curved free surfaces or rigid boundaries. For example, for an edge dislocation near the stress-free straight
boundary the image dislocation cancels both the normal and couple stress components at the boundary, so
that only the shear stress component has to be removed by superposition of an auxiliary problem to achieve
the stress-free boundary condition. A study of the organized dislocation structures in couple stress elas-
ticity, such as that presented by Lubarda et al. (1993) and Lubarda and Kouris (1996a,b) in the case of
classical elasticity, may also be of interest. In addition, the incorporation of couple stresses in the analysis of
strain relaxation in thin films (Freund, 1994; Lubarda, 1998) is worthwhile. Since couple stresses signifi-
cantly affect dislocation strain energies, they may also have a significant effect on the critical film thickness
and the conditions for the formation of interface dislocation arrays. The solutions for eigenstrain and
inhomogeneity problems for circular inclusions in anti-plane strain couple stress elasticity are presented in
the accompanying paper (Lubarda, 2003).
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