
The effects of couple stresses on dislocation strain energy

V.A. Lubarda *

Department of Mechanical and Aerospace Engineering, University of California – San Diego, La Jolla, CA 92093-0411, USA

Received 14 April 2003; received in revised form 14 April 2003

Abstract

The correspondence theorem which relates the solutions of displacement boundary value problems in classical and

couple stress elasticity is formulated and applied to derive the solutions for edge and screw dislocations in an infinite

medium. The effects of couple stresses on the dislocation strain energy is evaluated for both types of dislocations. It is

shown that within a radius of influence of each dislocation in a metallic crystal with dislocation density of 1010 cm�2, the

strain energy contribution from couple stresses (excluding the core energy) is about 15% in the case of an edge dis-

location, and about 11% in the case of a screw dislocation. It is then shown that couple stresses make large effect on the

total work of tractions acting on the dislocation core surface.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a micropolar continuum the deformation is described by the displacement vector and an independent

rotation vector. The rotation vector specifies the orientation of a triad of director vectors attached to each

material particle. A particle (material element) can experience a microrotation without undergoing a

macrodisplacement. An infinitesimal surface element transmits a force and a couple vector, which give rise

to non-symmetric stress and couple stress tensors. The former is related to a non-symmetric strain tensor,
and the latter to a non-symmetric curvature tensor, defined as the gradient of the rotation vector. This type

of the continuum mechanics was originally introduced by Voigt (1887) and the brothers Cosserat (1909).

The fundamentals of the theory were further developed in the sixties, most notably by G€uunther (1958),

Grioli (1960), Aero and Kuvshinskii (1960), Mindlin (1964), and Eringen and Suhubi (1964). In a simplified

micropolar theory, the so-called couple stress theory (Toupin, 1962; Mindlin and Tiersten, 1962), the ro-

tation vector is not independent of the displacement vector, but related to it in the same way as in classical

continuum mechanics.

The physical rationale for the extension of the classical to micropolar or couple stress theory was that the
classical theory was not able to predict the size effect experimentally observed in problems which had a
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geometric length scale comparable to material�s microstructural length, such as the grain size in a poly-

crystalline or granular aggregate. For example, the apparent strength of some materials with stress con-

centrators such as holes and notches is higher for smaller grain size; for a given volume fraction of dispersed

hard particles, the strengthening of metals is greater for smaller particles; the bending and torsional
strengths are higher for very thin beams and wires. An extensive list of references to micropolar and couple

stress elasticity can be found in review articles by Dhaliwal and Singh (1987) and Jasiuk and Ostoja-

Starzewski (1995). The research in couple stress and related non-local and strain-gradient theories of

material response (both elastic and plastic) has intensified during the last decade, largely because of an

increasing interest to describe the deformation mechanisms and manufacturing of micro- and nanostruc-

tured materials and devices, as well as inelastic localization and instability phenomena (Fleck and

Hutchinson, 1997; De Borst and Van der Giessen, 1998).

There has been a significant amount of research devoted to dislocation theory in couple stress, micro-
polar and non-local elasticity. The representative references include Kr€ooner (1963), Mis�icu (1965), Teo-

dosiu (1965), Anthony (1970), Kn�eesl and Semela (1972), J.P. Nowacki (1974, 1978), W. Nowacki (1986),

Eringen (1977a,b, 1983), Minagawa (1977, 1979), Hsieh et al. (1980), and Gutkin and Aifantis (1996). In

this paper we derive the solutions for edge and screw dislocations in an infinite medium by using the

correspondence theorem of couple stress elasticity, which relates the solutions of displacement boundary

value problems in classical and couple stress elasticity. The basic equations of couple stress elasticity are

summarized in Section 2, with an accent given to displacement formulation in Section 3. Both compressible

and incompressible elastic materials are considered. The correspondence theorem of couple stress elasticity
for the problems with prescribed displacement boundary conditions is formulated in Section 4. The plane

strain and anti-plane strain equations of couple stress elasticity are listed in Section 5. The correspondence

theorem is applied in Sections 6 and 8 to derive the solutions for edge and screw dislocations in an infinite

medium. The solution for the edge dislocation in a hollow cylinder is derived in Section 7. The contribution

from couple stresses to dislocation strain energy is evaluated and discussed for both types of dislocations. It

is shown that within a radius of influence of each dislocation in a metallic crystal with the dislocation

density of 1010 cm�2, the strain energy contribution from couple stresses (excluding the core energy) is

about 15% in the case of an edge dislocation, and about 11% in the case of a screw dislocation. It is then
shown that couple stresses make large effect on the total work of tractions acting on the dislocation core

surface. Concluding remarks are given in Section 9.

2. Basic equations of couple stress elasticity

In a micropolar continuum the deformation is described by the displacement vector and an independent

rotation vector. In the couple stress theory, the rotation vector ui is not independent of the displacement

vector ui but subject to the constraint

ui ¼
1

2
eijkxjk ¼

1

2
eijkuk;j; xij ¼ eijkuk; ð1Þ

as in classical continuum mechanics. The skew-symmetric alternating tensor is eijk, and xij are the rect-

angular components of the infinitesimal rotation tensor. The latter is related to the displacement gradient

and the symmetric strain tensor by uj;i ¼ �ij þ xij, where

�ij ¼
1

2
ðuj;i þ ui;jÞ; xij ¼

1

2
ðuj;i � ui;jÞ: ð2Þ

The comma designates the partial differentiation with respect to Cartesian coordinates xi.
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A surface element dS transmits a force vector TidS and a couple vector MidS. The surface forces are in

equilibrium with the non-symmetric Cauchy stress tij, and the surface couples are in equilibrium with the

non-symmetric couple stress mij, such that

Ti ¼ njtji; Mi ¼ njmji; ð3Þ

where nj are the components of the unit vector orthogonal to the surface element under consideration. In

the absence of body forces and body couples, the differential equations of equilibrium are

tji;j ¼ 0; mji;j þ eijktjk ¼ 0: ð4Þ

By decomposing the stress tensor into its symmetric and antisymmetric part

tij ¼ rij þ sij ðrij ¼ rji; sij ¼ �sjiÞ ð5Þ

from the moment equilibrium equation it readily follows that the antisymmetric part can be determined as

sij ¼ � 1

2
eijkmlk;l: ð6Þ

If the gradient of the couple stress vanishes at some point, the stress tensor is symmetric at that point.

The rate of strain energy per unit volume is

_WW ¼ rij _��ij þ mij _jjij; ð7Þ

where

jij ¼ uj;i ð8Þ

is a non-symmetric curvature tensor. In view of the identity xij;k ¼ �ki;j � �kj;i, the curvature tensor can also

be expressed as

jij ¼ �ejkl�ik;l: ð9Þ

These are the compatibility equations for curvature and strain fields. In addition, there is an identity

jij;k ¼ jkj;ið¼ uj;ikÞ, which defines the compatibility equations for curvature components. The compatibility

equations for strain components are the usual Saint Venant�s compatibility equations. Since �ij is symmetric
and eijk is skew-symmetric, from Eq. (9) it follows that the curvature tensor in couple stress theory is a

deviatoric tensor (jkk ¼ 0).

Assuming that the elastic strain energy is a function of the strain and curvature tensors, W ¼ W ð�ij; jijÞ,
the differentiation and the comparison with Eq. (7) establishes the constitutive relations of couple stress

elasticity

rij ¼
oW
o�ij

; mij ¼
oW
ojij

: ð10Þ

In the case of isotropic material with the quadratic strain energy,

W ¼ 1

2
k�kk�ll þ l�kl�kl þ 2ajkljkl þ 2bjkljlk; ð11Þ

where l, k, a, and b are the Lam�ee-type constants of isotropic couple stress elasticity. The stress and couple
stress tensors are in this case

rij ¼ 2l�ij þ k�kkdij; mij ¼ 4ajij þ 4bjji: ð12Þ

By the positive-definiteness of the strain energy, it follows that a þ b > 0, and a � b > 0. Thus, a is positive,
but not necessarily b. Since the curvature tensor is deviatoric, from the second Eq. (12) it follows that the
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couple stress is also a deviatoric tensor (mkk ¼ 0). In some problems the curvature tensor may be symmetric,

and then the couple stress is also symmetric, regardless of the ratio a=b.
If the displacement components are prescribed at a point of the bounding surface of the body, the

normal component of the rotation vector at that point cannot be prescribed independently. This implies
(e.g., Mindlin and Tiersten, 1962; Koiter, 1964; Germain, 1973) that at any point of a smooth boundary we

can specify three reduced stress tractions

T i ¼ njtji �
1

2
eijknjðnpmpqnqÞ;k; ð13Þ

and two tangential couple stress tractions

Mi ¼ njmji � ðnjmjknkÞni: ð14Þ

3. Displacement equations of equilibrium

The couple stress gradient can be expressed from Eqs. (9) and (12) as

mlk;l ¼ �2aekpqup;qll; ð15Þ

independently of the material parameter b. The substitution into Eq. (6) gives an expression for the anti-

symmetric part of the stress tensor

sij ¼ �2axij;kk ¼ �2ar2xij; ð16Þ

which is also independent of b. The Laplacian operator is r2 ¼ o2=oxkoxk. Consequently, by adding (12)

and (16) the total stress tensor is

tij ¼ 2l�ij þ k�kkdij � 2ar2xij: ð17Þ

Incorporating this into the force equilibrium equations (4), we obtain the equilibrium equations in terms of

displacement components

r2ui � l2r4ui þ
o

oxi

1

1� 2m
ð$ � uÞ

�
þ l2r2ð$ � uÞ

�
¼ 0; ð18Þ

where $ � u ¼ uk;k, the biharmonic operator is r4 ¼ r2r2, and

l2 ¼ a
l
; 1þ k

l
¼ 1

1� 2m
: ð19Þ

The Poisson coefficient is denoted by m. Upon applying to Eq. (18) the partial derivative o=oxi, there follows

r2�kk ¼ 0. Thus, the volumetric strain is governed by the same equation as in classical elasticity without

couple stresses. The substitution into Eq. (18) yields the final form of the displacement equations of

equilibrium

r2ui � l2r4ui þ
1

1� 2m
o

oxi
ð$ � uÞ ¼ 0: ð20Þ

Three components of displacement and only two tangential components of rotation may be specified on the
boundary. Alternatively, three reduced stress tractions and two tangential couple stress tractions may be

specified on a smooth boundary.
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The general solution of Eq. (20) can be cast in the form (Mindlin and Tiersten, 1962)

ui ¼ Ui � l2
o

oxi
ð$ �UÞ � 1

4ð1� mÞ
o

oxi
½u þ x � ð1� l2r2ÞU	; ð21Þ

where the scalar potential u and the vector potential Ui are solutions of the Laplacian and Helmholtz

partial differential equations

r2u ¼ 0; r2ðUi � l2r2UiÞ ¼ 0: ð22Þ

The general solution of the latter equation can be obtained by observing that

Ui � l2r2Ui ¼ U 0
i ð23Þ

must be a harmonic function, satisfying the Laplace equation r2U 0
i ¼ 0. Thus, the general solution can be

expressed as Ui ¼ U 0
i þ U 


i , where

U 

i � l2r2U 


i ¼ 0: ð24Þ

3.1. Incompressible materials

For incompressible elastic materials (�kk ¼ 0), the stress response is

tij ¼ 2l�ij � 2ar2xij � pdij; ð25Þ

where p ¼ pðx1; x2; x3Þ is the pressure field, indeterminate by the constitutive analysis. The corresponding

displacement equations of equilibrium are

r2ui � l2r4ui ¼
1

l
op
oxi

: ð26Þ

The general solution can be expressed as ui ¼ u0i þ u
i , where u0i and u
i satisfy the non-homogeneous partial

differential equations

r2u0i ¼
1

l
op
oxi

; ð27Þ

u
i � l2r2u
i ¼ l2
1

l
op
oxi

: ð28Þ

4. The correspondence theorem of couple stress elasticity

For equilibrium problems of couple stress elasticity with prescribed displacement boundary conditions,

and with no body forces or body couples present, we state

Theorem. If ui ¼ ûui is a solution of the Navier equations of elasticity without couple stresses,

r2ûui þ
1

1� 2m
o

oxi
ð$ � ûuÞ ¼ 0; ð29Þ

then ûui is also a solution of differential equations (20) for couple stress elasticity.
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Proof. It suffices to prove that ûui is a biharmonic function. By applying the Laplacian operator to Eq. (29),

we obtain

r4ûui þ
1

1� 2m
o

oxi
r2ð$ � ûuÞ ¼ 0: ð30Þ

Since $ � ûu is a harmonic function, as can be verified from Eq. (29) by applying the partial derivatives o=oxi,
Eq. (30) reduces to

r4ûui ¼ 0: ð31Þ
This shows that ûui is a biharmonic function, which completes the proof. The correspondence theorem for

couple stress elasticity formulated here should be compared with a related principle of association by

Sternberg and Muki (1967), and a theorem of correspondence in non-local elasticity by Eringen

(1977a,b). �

We now prove that the stress tensor in couple stress elasticity with prescribed displacement boundary

conditions and body forces or body couples is a symmetric tensor. From Eq. (29) it readily follows by

partial differentiation that the rotation components are harmonic functions (r2xij ¼ 0, r2ui ¼ 0), and
substitution into Eq. (16) gives sij ¼ 0. In general, the couple stress tensor is still non-symmetric, although

in the case of anti-plane strain with prescribed displacement boundary conditions it becomes a symmetric

tensor (see Section 5.3).

5. Plane problems of couple stress elasticity

5.1. Plane strain

In plane-strain elasticity the displacement components are u1 ¼ u1ðx1; x2Þ, u2 ¼ u2ðx1; x2Þ, and u3 ¼ 0.

The non-vanishing strain, rotation, and curvature components are

�11 ¼
ou1
ox1

; �22 ¼
ou2
ox2

; �12 ¼
1

2

ou2
ox1

�
þ ou1

ox2

�
; ð32Þ

u3 ¼ x12 ¼
1

2

ou2
ox1

�
� ou1

ox2

�
; ð33Þ

j13 ¼
ou3

ox1
; j23 ¼

ou3

ox2
: ð34Þ

The stress–strain relations are

r11 ¼ ð2l þ kÞ�11 þ k�22; r22 ¼ ð2l þ kÞ�22 þ k�11; ð35Þ

r12 ¼ 2l�12; s12 ¼ �2ar2u3: ð36Þ
The normal stress r33 ¼ kð�11 þ �22Þ. The couple stress–curvature relations are

m13 ¼ 4aj13; m31 ¼ 4bj13; m23 ¼ 4aj23; m32 ¼ 4bj23: ð37Þ
The elastic strain energy per unit volume is

W ¼ 1

2l
r2
12

�
þ 1

2ð1þ mÞ ðr
2
11 þ r2

22 � 2mr11r22 � r2
33Þ

�
þ 1

8a
ðm2

13 þ m2
23Þ: ð38Þ
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Eqs. (32)–(38) can be easily rewritten in terms of polar coordinate components. For example, we have

�rr ¼
our

or
; �hh ¼

1

r
ouh

oh

�
þ ur

�
; �rh ¼

1

2r
our

oh

�
þ r

ouh

or
� uh

�
; ð39Þ

u3 ¼ xrh ¼
1

2r
oðruhÞ
or

�
� our

oh

�
; jr3 ¼

ou3

or
; jh3 ¼

1

r
ou3

oh
: ð40Þ

Mindlin’s stress functions
The rectangular components of stress and couple stress tensors can be expressed in terms of the functions

U and W as

t11 ¼
o2U
ox22

� o2W
ox1ox2

; t22 ¼
o2U
ox21

þ o2W
ox1ox2

; ð41Þ

t12 ¼ � o2U
ox1ox2

� o2W
ox22

; t21 ¼ � o2U
ox1ox2

þ o2W
ox21

; ð42Þ

m13 ¼
oW
ox1

; m23 ¼
oW
ox2

; ð43Þ

where the functions U and W satisfy the partial differential equations

r4U ¼ 0; r2W � l2r4W ¼ 0: ð44Þ
The curvature–strain compatibility equations require that the functions U and W be related by

o

ox1
ðW � l2r2WÞ ¼ �2ð1� mÞl2 o

ox2
ðr2UÞ; ð45Þ

o

ox2
ðW � l2r2WÞ ¼ 2ð1� mÞl2 o

ox1
ðr2UÞ: ð46Þ

The solution of the equation for W in (44) can be expressed as W ¼ W0 þ W
, where

r2W0 ¼ 0; W
 � l2r2W
 ¼ 0: ð47Þ
Thus, Eqs. (45) and (46) can be rewritten as

oW0

ox1
¼ �2ð1� mÞl2 o

ox2
ðr2UÞ; ð48Þ

oW0

ox2
¼ 2ð1� mÞl2 o

ox1
ðr2UÞ: ð49Þ

The counterparts of Eqs. (41)–(43), and Eqs. (48) and (49) in polar coordinates are

trr ¼
1

r
oU
or

þ 1

r2
o2U

oh2
� 1

r
o2W
oroh

þ 1

r2
oW
oh

; ð50Þ

thh ¼
o2U
or2

þ 1

r
o2W
oroh

� 1

r2
oW
oh

; ð51Þ

trh ¼ � 1

r
o2U
oroh

þ 1

r2
oU
oh

� 1

r
oW
or

� 1

r2
o2W

oh2
; ð52Þ
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thr ¼ � 1

r
o2U
oroh

þ 1

r2
oU
oh

þ o2W
or2

; ð53Þ

mr3 ¼
oW
or

; mh3 ¼
1

r
oW
oh

; ð54Þ

and

o

or
ðW � l2r2WÞ ¼ �2ð1� mÞl2 1

r
o

oh
ðr2UÞ; ð55Þ

1

r
o

oh
ðW � l2r2WÞ ¼ 2ð1� mÞl2 o

or
ðr2UÞ: ð56Þ

5.2. Anti-plane strain

For the anti-plane strain problems, the displacements are u1 ¼ u2 ¼ 0, u3 ¼ wðx1; x2Þ. The non-vanishing
strain, rotation, and curvature components are

�13 ¼ �31 ¼
1

2

ow
ox1

; �23 ¼ �32 ¼
1

2

ow
ox2

; ð57Þ

u1 ¼ x23 ¼
1

2

ow
ox2

; u2 ¼ x31 ¼ � 1

2

ow
ox1

; ð58Þ

j11 ¼ �j22 ¼
1

2

o2w
ox1ox2

; j12 ¼ � 1

2

o2w
ox21

; j21 ¼
1

2

o2w
ox22

: ð59Þ

It readily follows that

t13 ¼ l
o

ox1
ðw � l2r2wÞ; t31 ¼ l

o

ox1
ðw þ l2r2wÞ; ð60Þ

t23 ¼ l
o

ox2
ðw � l2r2wÞ; t32 ¼ l

o

ox2
ðw þ l2r2wÞ: ð61Þ

The couple stresses are related to the curvature components by

m11 ¼ 4ða þ bÞj11; m22 ¼ 4ða þ bÞj22; ð62Þ

m12 ¼ 4aj12 þ 4bj21; m21 ¼ 4aj21 þ 4bj12: ð63Þ

Since displacement field is isotropic, the displacement equations of equilibrium (20) reduce to a single

equation

r2w � l2r4w ¼ 0: ð64Þ

The general solution can be expressed as w ¼ w0 þ w
, where w0 and w
 are the solutions of the partial

differential equations

r2w0 ¼ 0; w
 � l2r2w
 ¼ 0: ð65Þ
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The non-zero strain, rotation and curvature components in polar coordinates are

�h3 ¼ �3h ¼
1

2r
ow
oh

; �r3 ¼ �3r ¼
1

2

ow
or

; ð66Þ

ur ¼ xh3 ¼
1

2r
ow
oh

; uh ¼ x3r ¼ � 1

2

ow
or

; ð67Þ

and

jrr ¼
our

or
¼ 1

2

o

or
1

r
ow
oh

� �
; jrh ¼

ouh

or
¼ � 1

2

o2w
or2

; ð68Þ

jhr ¼
1

r
our

oh
� uh

r
¼ 1

2r2
o2w

oh2
þ 1

2r
ow
or

; ð69Þ

jhh ¼
1

r
ouh

oh
þ ur

r
¼ � 1

2

o

or
1

r
ow
oh

� �
: ð70Þ

The couple stresses are related to the curvature components by

mrr ¼ �mhh ¼ 4ða þ bÞjrr; ð71Þ

mrh ¼ 4ajrh þ 4bjhr; mhr ¼ 4ajhr þ 4bjrh; ð72Þ

with the inverse relations

jrh ¼
1

4ða2 � b2Þ
ðamrh � bmhrÞ; jhr ¼

1

4ða2 � b2Þ
ðamhr � bmrhÞ: ð73Þ

The elastic strain energy per unit volume is

W ¼ 1

2l
ðr2

r3 þ r2
h3Þ þ

1

4ða þ bÞ m2
rr

�
þ 1

2ða � bÞ ½aðm
2
rh þ m2

hrÞ � 2bmrhmhr	
�
: ð74Þ

5.3. The correspondence theorem for anti-plane strain

For anti-plane strain problems with prescribed displacement boundary conditions, the correspondence

theorem of couple stress elasticity reads: If w ¼ w0 is a solution of differential equation of elasticity without

couple stresses r2w0 ¼ 0, then w0 is also a solution of differential equations (64) for couple stress elasticity.
The proof is simple. Since w0 is a harmonic function, it is also a biharmonic function, satisfying Eq. (64).

For prescribed displacement boundary conditions, the function w0 specifies the displacement field in both

non-polar and couple stress elasticity.

The stress and couple stress tensors in anti-plane strain problems of couple stress elasticity, in the case of

prescribed displacement boundary conditions, are symmetric tensors. Indeed, since the displacement field is

a harmonic function, the antisymmetric stress components in Eqs. (60) and (61) vanish, i.e., s13 ¼ s23 ¼ 0.

Thus, the total stress tensor is a symmetric tensor. From Eq. (59) it further follows that the curvature tensor

is a symmetric tensor (j12 ¼ j21). This implies from Eq. (63) that the couple stress tensor is also symmetric
(m12 ¼ m21), regardless of the ratio a=b.
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6. Edge dislocation in couple stress elasticity

For the edge dislocation in an infinite medium, the only boundary condition is the displacement dis-

continuity b, for example imposed along the plane x1 > 0 and x2 ¼ 0. Thus, by the correspondence theorem
the displacement field is as in classical elasticity, i.e. (e.g., Hirth and Lothe, 1968),

u1 ¼
b
2p

tan�1 x2
x1

�
þ 1

2ð1� mÞ
x1x2

x21 þ x22

�
; ð75Þ

u2 ¼ � b
2p

1

4ð1� mÞ ð1
�

� 2mÞ ln x21 þ x22
b2

þ x21 � x22
x21 þ x22

�
: ð76Þ

The stresses are

r11 ¼ � lb
2pð1� mÞ

x2ð3x21 þ x22Þ
ðx21 þ x22Þ

2
; ð77Þ

r22 ¼
lb

2pð1� mÞ
x2ðx21 � x22Þ
ðx21 þ x22Þ

2
; ð78Þ

r12 ¼
lb

2pð1� mÞ
x1ðx21 � x22Þ
ðx21 þ x22Þ

2
; ð79Þ

r33 ¼ � mlb
pð1� mÞ

x2
x21 þ x22

: ð80Þ

The rotation and curvature components are

u3 ¼ � b
2p

x1
x21 þ x22

; ð81Þ

j13 ¼
b
2p

x21 � x22
ðx21 þ x22Þ

2
; j23 ¼

b
2p

2x1x2
ðx21 þ x22Þ

2
: ð82Þ

The corresponding couple stresses are

m13 ¼
2ab
p

x21 � x22
ðx21 þ x22Þ

2
; m31 ¼

2bb
p

x21 � x22
ðx21 þ x22Þ

2
; ð83Þ

m23 ¼
2ab
p

2x1x2
ðx21 þ x22Þ

2
; m31 ¼

2bb
p

2x1x2
ðx21 þ x22Þ

2
: ð84Þ

In polar coordinates, the displacements are

ur ¼
b
2p

h cos h

�
þ 1

4ð1� mÞ 1

�
� ð1� 2mÞ ln r2

b2

�
sin h

�
; ð85Þ

uh ¼ � b
2p

h sin h

�
þ 1

4ð1� mÞ 1

�
þ ð1� 2mÞ ln r2

b2

�
cos h

�
; ð86Þ
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and the stresses

rrr ¼ rhh ¼ � lb
2pð1� mÞ

sin h
r

; ð87Þ

rrh ¼
lb

2pð1� mÞ
cos h

r
; ð88Þ

r33 ¼ � mlb
pð1� mÞ

sin h
r

: ð89Þ

The rotation and curvature components are

u3 ¼ � b
2p

cos h
r

; jr3 ¼
b
2p

cos h
r2

; jh3 ¼
b
2p

sin h
r2

; ð90Þ

with the corresponding couple stresses

mr3 ¼
2ab
p

cos h
r2

; m3r ¼
2bb
p

cos h
r2

; ð91Þ

mh3 ¼
2ab
p

sin h
r2

; m3h ¼
2bb
p

sin h
r2

: ð92Þ

The stress components decay with a distance from the center of dislocation as r�1, while the couple stresses

decay as r�2. These also specify the orders of the singularities at the dislocation core when r ! 0. The
displacement and rotation fields for an edge dislocation in polar elasticity, without the constraint (1), can be

found in Nowacki (1986). An analysis allowing for a smooth transition of the displacement field from zero

value at the center of the dislocation core to the value b along the cut used to create the dislocation has been

done in non-local elasticity by Eringen (1977a). Minagawa (1977, 1979) derived the stress and couple stress

fields produced by disclinations and circular dislocations in a micropolar elastic continuum.

6.1. Strain energy

The strain energy (per unit length in x3 direction) stored within a cylinder bounded by the radii r0 and R
is

E ¼
Z R

r0

Z 2p

0

Wrdrdh; ð93Þ

where the specific strain energy (per unit volume) is

W ¼ 1

2l
½r2

rh þ ð1� 2mÞr2
rr	 þ

1

8a
ðm2

r3 þ m2
h3Þ ¼

lb2

8p2ð1� mÞ2
1

r2
ð1� 2m sin2 hÞ þ ab2

2p2

1

r4
: ð94Þ

Upon the substitution into Eq. (93) and integration, there follows

E ¼ lb2

4pð1� mÞ ln
R
r0
þ ab2

2p
1

r20

�
� 1

R2

�
: ð95Þ

The second term on the right-hand side is the strain energy contribution from the couple stresses. The
presence of this term is associated with the work done by the couple stresses on the surfaces r ¼ r0 and

r ¼ R. This can be seen by writing an alternative expression for the strain energy,
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E ¼ 1

2

Z R

r0

rrhðr; 0Þbdr þ
1

2

Z 2p

0

M3u3Rdh � 1

2

Z 2p

0

M3u3r0 dh; ð96Þ

with M3 ¼ mr3 given by Eq. (91), and u3 given in Eq. (90). The work of the tractions rrr and rrh on the

displacements ur and uh over the surface r ¼ R cancels the work of the tractions rrr and rrh over the surface

r ¼ r0. These terms are thus not explicitly included in Eq. (96). The second term in Eq. (95) is the strain

energy contribution due to last two work terms in Eq. (96). For example, in a metallic crystal with the

dislocation density q ¼ 1010 cm�2, the radius of influence of each dislocation (defined as the average dis-
tance between dislocations) is of the order of q�1=2 ¼ 100 nm (Meyers and Chawla, 1999). For an FCC

crystal with the lattice parameter a ¼ 4 �AA and the Burgers vector along the closed packed direction

b ¼ a=
ffiffiffi
2

p
, the radius R can be approximately taken as R ¼ 200b. By choosing the material length l to be the

lattice parameter (l ¼
ffiffiffi
2

p
b), the couple stress modulus is a ¼ 2lb2, and by selecting r0 ¼ 2b and m ¼ 1=3,

the strain energy contribution from couple stresses in Eq. (95) is 14.5% of the strain energy without couple

stresses. The calculations are sensitive to selected value of the dislocation core radius, and larger the value

of r0 smaller the effect of couple stresses in the region beyond r0. For example, the strain energy contri-

bution from couple stresses in the region between r0 ¼ 3b and R ¼ 200b decreases to 7%, and in the region
between r0 ¼ 4b and R ¼ 200b to 4.2%. This percentage increases by the decrease of the radius R, and the

strain energy contribution from couple stresses in the region between r0 and R ¼ 50b is 20.7%, 10.5% and

6.6% in the case of r0 ¼ 2b, 3b and 4b, respectively. Such small values of R may be appropriate for problems

with extremely high dislocation densities, as arise in localized or non-localized regions of severe plastic

deformation (shear bands, wear, wire drawing, high-pressure torsion, equal channel angular pressing), or in

the plastically deformed layer behind the shock front (Meyers et al., 2003). In this context, it should be

noted that an increase of dislocation density from1010 to 1011 cm�2 results in the decrease of R by the factor

of more than 3. It should also be pointed out that the strain energy contribution from couple stresses is
likely to be lowered by inclusion of the micropolar effects. The corresponding calculations have not been

performed in this paper, but it is known that the effect of couple stresses on stress concentration is less

pronounced if the microrotations are assumed to be independent of the displacement field (Kaloni and

Ariman, 1967; Cowin, 1970; Lakes, 1985; Eringen, 1999).

6.2. Work of dislocation core tractions

If an edge dislocation is near the free surface or the interface, the contribution from the tractions on the
dislocation core surface appears in the final expression for the dislocation strain energy (e.g., Freund, 1994;

Lubarda, 1997, 1998). If the dislocation is at the distance from the free surface much greater than the

dislocation core radius, it is common practice to evaluate the contribution from the tractions on the dis-

location core surface (left after removing the material of the dislocation core) by subjecting the core sur-

face to tractions of the dislocation in an infinite medium, along with the corresponding displacement. This

is

Er0 ¼ � 1

2

Z 2p

0

½rrrðr0; hÞurðr0; hÞ þ rrhðr0; hÞuhðr0; hÞ	r0 dh � 1

2

Z 2p

0

mr3ðr0; hÞu3ðr0; hÞr0 dh: ð97Þ

The first integral in Eq. (97) depends on cut used to create the dislocation (Lubarda, 1998). If the dislo-

cation is created by the displacement discontinuity along the cut at an angle u (Fig. 1), the evaluation of the

above integrals gives

Er0 ¼ � lb2

8pð1� mÞ cos 2u

�
� 1

2ð1� mÞ

�
þ a
2p

b
r0

� �2

: ð98Þ
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Using a ¼ ll2, this can be rewritten as

Er0 ¼ � lb2

2p
1

4ð1� mÞ cos 2u

�(
� 1

2ð1� mÞ

�
� l

r0

� �2
)
: ð99Þ

For example, in the case of the displacement discontinuity along the horizontal cut ðu ¼ 0Þ, the energy

becomes

Er0 ¼ E0
r0

1

"
� 8ð1� mÞ2

1� 2m
l
r0

� �2
#
; ð100Þ

where

E0
r0
¼ � 1� 2m

ð1� mÞ2
lb2

16p
ð101Þ

is the energy contribution without the couple stress effects. For example, if m ¼ 1=3 and l ¼
ffiffiffi
2

p
b (the lattice

parameter),

Er0 ¼ E0
r0

1

"
� 64

3

b
r0

� �2
#
: ð102Þ

The extraordinary effect of the couple stresses on the ratio Er0=E
0
r0
vs. r0=b is shown by a solid curve in Fig. 2.

If r0 is equal to 2b, 3b and 4b, the corresponding ratio Er0=E
0
r0
is equal to )4.33, )1.37 and )0.33, respec-

tively.

If the displacement discontinuity is imposed along the vertical cut ðu ¼ p=2Þ, the energy becomes

Er0 ¼ E0
r0

1

"
þ 8ð1� mÞ2

3� 2m
l
r0

� �2
#
; ð103Þ

where

E0
r0
¼ 3� 2m

ð1� mÞ2
lb2

16p
ð104Þ

b

r
0

ϕ

σrr

σ
rθ m

r3

Fig. 1. A material of the dislocation core is removed and its effect on the remaining material represented by the indicated stress and

couple stress tractions over the surface r ¼ r0. The slip discontinuity of amount b is imposed along the cut at an angle u.
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is the energy contribution without the couple stress effects. By setting m ¼ 1=3 and l ¼
ffiffiffi
2

p
b, we obtain

Er0 ¼ E0
r0

1

"
þ 21

2

b
r0

� �2
#
: ð105Þ

The effect of couple stresses on the ratio Er0=E
0
r0
vs. r0=b is in this case shown by a dashed curve in Fig. 2. If

r0 is equal to 2b, 3b and 4b, the corresponding ratio Er0=E
0
r0
is equal to 3.62, 2.17 and 1.65, respectively.

Although the strain energy associated with the tractions on the surface of the dislocation core is cut de-

pendent, the total strain energy due to dislocation in an infinite or semi-infinite medium is not cut de-

pendent. This was previously discussed in the context of classical elasticity by Lubarda (1997), and an

analogous discussion applies for couple stress elasticity.

7. Edge dislocation in a hollow cylinder

The so-called hollow dislocation along the axis of a circular cylinder with inner radius r0 and the outer

radius R is shown in Fig. 3. Both surfaces of the cylinder are required to be stress and couple stress free. The

displacement discontinuity of amount b is imposed along the horizontal cut from r0 to R. The solution is

derived from the infinite body solution by superposing an additional solution that cancels the stresses and
couple stresses over the inner and outer surface associated with the solution for an edge dislocation in an

infinite medium. Thus, we require that the superposed solution satisfies the boundary conditions

trrðR; hÞ ¼
lb

2pð1� mÞ
sin h
R

; trrðr0; hÞ ¼
lb

2pð1� mÞ
sin h
r0

; ð106Þ

trhðR; hÞ ¼ � lb
2pð1� mÞ

cos h
R

; trhðr0; hÞ ¼ � lb
2pð1� mÞ

cos h
r0

; ð107Þ

Fig. 2. The ratio of the core surface energies with and without couple stress effects vs. the core radius over the Burgers vector ratio in

the case when the edge dislocation is created by the displacement discontinuity along the horizontal cut (solid line) and vertical cut

(dashed line). In the former case E0
r0
is defined by Eq. (101), and in the latter case by Eq. (104).
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mr3ðR; hÞ ¼ � 2ab
p

cos h
R2

; mr3ðr0; hÞ ¼ � 2ab
p

cos h
r20

: ð108Þ

This can be accomplished by using the following structure of the Mindlin stress functions:

U ¼ A0r3
�

þ B0

1

r

�
sin h; ð109Þ

W ¼ Ar
�

þ B
1

r
þ CI1

r
l

 �
þ DK1

r
l

 ��
cos h: ð110Þ

From the conditions (55) and (56) it readily follows that

A ¼ �16ð1� mÞl2A0; B ¼ 0: ð111Þ

The stress and couple stress components of the superposed solution are accordingly

trr ¼ 2A0r
�

� 2B0

1

r3
þ C

1

rl
I2

r
l

 �
� D

1

rl
K2

r
l

 ��
sin h; ð112Þ

trh ¼ � 2A0r
�

� 2B0

1

r3
þ C

1

rl
I2

r
l

 �
� D

1

rl
K2

r
l

 ��
cos h; ð113Þ

mr3 ¼ � 16ð1
�

� mÞl2A0 � C
1

2l
I0

r
l

 �h
þ I2

r
l

 �i
þ D

1

2l
K0

r
l

 �h
þ K2

r
l

 �i�
cos h: ð114Þ

The expressions for the derivatives of the modified Bessel functions with respect to r=l are used (Watson,

1995, p. 79).

After a lengthy but straightforward derivation it follows that

A0 ¼
lb

2pð1� mÞ
R2 � r20

Ra1 � r0a2
� 2ab

p
l
R2

Rb1 � r0b2
Ra1 � r0a2

; ð115Þ

br0

R

Fig. 3. A slip discontinuity of amount b is imposed along the horizontal cut from the inner radius r0 to the outer radius R. The inner
and outer surface of the cylinder are free from stresses and couple stresses.
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B0 ¼
1

2
Rr0

lb
2pð1� mÞ

Ra2 � r0a1
Ra1 � r0a2

�
� 2ab

p
l
R2

a2b1 � a1b2
Ra1 � r0a2

�
; ð116Þ

C ¼ 16ð1� mÞl3 c1
c

A0 �
2ab
p

l
R2

c2
c
; ð117Þ

D ¼ �16ð1� mÞl3 d1
c

A0 þ
2ab
p

l
R2

d2
c
: ð118Þ

The introduced parameters are

a1 ¼ 2R3 � 16ð1� mÞ l
3

c
ðc1d3 � d1c3Þ; ð119Þ

a2 ¼ 2r30 � 16ð1� mÞ l
3

c
ðc1d4 � d1c4Þ; ð120Þ

b1 ¼
1

c
ðc2d3 � d2c3Þ; b2 ¼

1

c
ðc2d4 � d2c4Þ; ð121Þ

where

c1 ¼
1

2
K0

R
l

� ��
þ K2

R
l

� ��
� 1

2
K0

r0
l

 �h
þ K2

r0
l

 �i
; ð122Þ

c2 ¼ � 1

2
K0

r0
l

 �h
þ K2

r0
l

 �i
þ R2

2r20
K0

R
l

� ��
þ K2

R
l

� ��
; ð123Þ

c3 ¼
R
l
K2

R
l

� �
; c4 ¼

r0
l
K2

r0
l

 �
; ð124Þ

and similarly

d1 ¼ � 1

2
I0

R
l

� ��
þ I2

R
l

� ��
þ 1

2
I0

r0
l

 �h
þ I2

r0
l

 �i
; ð125Þ

d2 ¼
1

2
I0

r0
l

 �h
þ I2

r0
l

 �i
� R2

2r20
I0

R
l

� ��
þ I2

R
l

� ��
; ð126Þ

d3 ¼ �R
l
I2

R
l

� �
; d4 ¼ � r0

l
I2

r0
l

 �
: ð127Þ

The parameter c is defined by

c ¼ 1

4
K0

R
l

� ��
þ K2

R
l

� ��
I0

r0
l

 �h
þ I2

r0
l

 �i
� 1

4
K0

r0
l

 �h
þ K2

r0
l

 �i
I0

R
l

� ��
þ I2

R
l

� ��
: ð128Þ

The effect of couple stresses on the elastic strain energy as a function of the ratio r0=b and given R can be

evaluated similarly as in previous section. If R ! 1, we obtain the solution for an edge dislocation with a
stress free hollow core in an infinite medium, previously considered by Kn�eesl and Semela (1972). In this case

A0 ¼ A ¼ B ¼ D ¼ 0, and
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B0 ¼ � lbr20
4pð1� mÞ �

2ab
p

K2
r0
l

� �
K0

r0
l

� �
þ K2

r0
l

� � ; ð129Þ

D ¼ 4abl
pr20

1

K0
r0
l

� �
þ K2

r0
l

� � : ð130Þ

If couple stresses are neglected, Eqs. (115)–(118) yield

A0 ¼
lb

4pð1� mÞ
1

R2 þ r20
; B0 ¼ �R2r20A0; A ¼ C ¼ D ¼ 0: ð131Þ

The corresponding stresses are

rrr ¼ � lb
2pð1� mÞ

1

r

�
� 1

R2 þ r20
r

�
þ R2r20

r3

��
sin h; ð132Þ

rrh ¼
lb

2pð1� mÞ
1

r

�
� 1

R2 þ r20
r

�
þ R2r20

r3

��
cos h; ð133Þ

rhh ¼ � lb
2pð1� mÞ

1

r

�
� 1

R2 þ r20
3r

�
� R2r20

r3

��
sin h; ð134Þ

in agreement with the solution for the Volterra edge dislocation from classical elasticity (Love, 1944). The

results should also be compared with those presented by Hirth and Lothe (1968, p. 77), who remove the

tractions on the inner and outer surface of the cylinder only to within the first order terms in r0=R.

8. Screw dislocation in couple stress elasticity

The displacement field for a screw dislocation with imposed displacement discontinuity b along the plane

x1 > 0 and x2 ¼ 0 is as in classical elasticity

w ¼ b
2p

tan�1 x2
x1

¼ b
2p

h: ð135Þ

This follows by a correspondence theorem since only displacement boundary conditions are prescribed. The

stresses and couple stresses associated with (135) are

r13 ¼ � lb
2p

x2
x21 þ x22

; r23 ¼
lb
2p

x1
x21 þ x22

; ð136Þ

m11 ¼ �m22 ¼ �ða þ bÞb
p

x21 � x22
ðx21 þ x22Þ

2
; ð137Þ

m12 ¼ m21 ¼ �ða þ bÞb
p

2x1x2
ðx21 þ x22Þ

2
: ð138Þ

The components of the stress and couple stress tensors along the polar directions are

rh3 ¼
lb
2p

1

r
; rr3 ¼ 0; ð139Þ
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mrr ¼ �mhh ¼ �ða þ bÞb
p

1

r2
; mrh ¼ mhr ¼ 0: ð140Þ

The stress components decay with a distance from the center of dislocation as r�1, while the couple stresses

decay as r�2. These also specify the orders of the singularities at the dislocation core when r ! 0. The

displacement and rotation fields for a screw dislocation in micropolar elasticity can be found in Nowacki

(1986), although his statement (at the bottom of page 327) that in classical theory of dislocations we have

u1 ¼ u2 ¼ 0 is apparently a misprint, since the rotation components from Eq. (135) do not vanish but are
equal to

u1 ¼
1

2

ow
ox2

¼ b
4p

x1
x21 þ x22

; u2 ¼ � 1

2

ow
ox1

¼ b
4p

x2
x21 þ x22

: ð141Þ

The analysis allowing for a smooth transition of the displacement field from zero value at the center of the

dislocation core to the value b along the cut used to create the dislocation has been done in non-local
elasticity by Eringen (1977b, 1983), and in gradient elasticity by Gutkin and Aifantis (1996).

8.1. Strain energy

The strain energy (per unit length in x3 direction) stored within a cylinder bounded by the radii r0 and R is

E ¼
Z R

r0

W 2prdr; ð142Þ

where the specific strain energy (per unit volume) is

W ¼ 1

2l
r2

h3 þ
1

4ða þ bÞm
2
rr ¼

lb2

8p2

1

r2
þ ða þ bÞb2

4p2

1

r4
: ð143Þ

Upon the substitution into Eq. (142) and integration, there follows

E ¼ lb2

4p
ln

R
r0
þ ða þ bÞb2

4p
1

r20

�
� 1

R2

�
: ð144Þ

The second term on the right-hand side is the strain energy contribution from the couple stresses. The

presence of this term is associated with the work done by the couple stresses on the surfaces r ¼ r0 and

r ¼ R. This can be seen by writing an alternative expression for the strain energy,

E ¼ 1

2

Z R

r0

rh3ðr; 0Þbdr þ
1

2

Z 2p

0

MrurRdh � 1

2

Z 2p

0

Mrurr0 dh; ð145Þ

with Mr ¼ mrr given by Eq. (140), and

ur ¼ xhz ¼
1

2r
ow
oh

¼ 1

4p
b
r

ð146Þ

being the r component of the rotation vector. Since rr3 ¼ 0, there is no work of stress traction on the

displacement w over the surfaces r ¼ r0 and r ¼ R. The second term in Eq. (144) is the strain energy

contribution due to last two work terms in Eq. (145). For example, if we set R ¼ 200b, r0 ¼ 2b, and
a þ b ¼ 2lb2, the energy contribution from couple stresses in Eq. (144) is 10.9% of the strain energy

without couple stresses. In the classical elasticity a cylindrical surface around the screw dislocation at its

center is stress free. On the other hand, the solution derived in this section is characterized by the presence
of the constant couple stress mrr along that surface. However, since mrr in Eq. (140) does not depend on h,
the reduced traction �ttr3 vanishes on the cylindrical surface r ¼ const.
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9. Conclusions

We have derived in this paper the solutions for edge and screw dislocations in an infinite medium by

using the correspondence theorem of couple stress elasticity, which relates the solutions of displacement
boundary value problems in classical and couple stress elasticity. The contribution from couple stresses to

dislocation strain energy is evaluated and discussed for both types of dislocations. It is shown that within a

radius of influence of each dislocation in a metallic crystal with the dislocation density of 1010 cm�2, the

strain energy contribution from couple stresses is about 15% in the case of an edge dislocation, and about

11% in the case of a screw dislocation (excluding the energy of the dislocation core of radius r0 ¼ 2b). This
contribution decreases with an increasing size of the dislocation core. For example, the strain energy

contribution from couple stresses for an edge dislocation in the region between r0 ¼ 3b and R ¼ 200b
decreases to 7%, and in the region between r0 ¼ 4b and R ¼ 200b to 4.2%. This percentage increases by the
decrease of the radius R, and the strain energy contribution from couple stresses in the region between r0
and R ¼ 50b is 20.7%, 10.5% and 6.6% in the case of r0 ¼ 2b; 3b and 4b, respectively. Such small values of R
may be appropriate for problems with extremely high dislocation densities within the localized or non-

localized regions of severe plastic deformation. It is then shown that couple stresses make large effect on the

total work of tractions acting on the dislocation core surface. The solution for the edge dislocation in a

hollow cylinder (Volterra dislocation) in the presence of couple stresses is also derived. The extension of the

present work is in progress to incorporate the effect of couple stresses on the interaction forces between

dislocations on parallel and intersecting slip planes, and the dislocation interactions with straight and
curved free surfaces or rigid boundaries. For example, for an edge dislocation near the stress-free straight

boundary the image dislocation cancels both the normal and couple stress components at the boundary, so

that only the shear stress component has to be removed by superposition of an auxiliary problem to achieve

the stress-free boundary condition. A study of the organized dislocation structures in couple stress elas-

ticity, such as that presented by Lubarda et al. (1993) and Lubarda and Kouris (1996a,b) in the case of

classical elasticity, may also be of interest. In addition, the incorporation of couple stresses in the analysis of

strain relaxation in thin films (Freund, 1994; Lubarda, 1998) is worthwhile. Since couple stresses signifi-

cantly affect dislocation strain energies, they may also have a significant effect on the critical film thickness
and the conditions for the formation of interface dislocation arrays. The solutions for eigenstrain and

inhomogeneity problems for circular inclusions in anti-plane strain couple stress elasticity are presented in

the accompanying paper (Lubarda, 2003).
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