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Abstract

Two di�erent partitions of the rate of deformation tensor into its elastic and plastic parts

are derived for elastic±plastic crystals in which crystallographic slip is the only cause of plastic
deformation. One partition is associated with the Jaumann, and the other with convected rate
of the Kirchho� stress. Di�erent expressions for the plastic part of the rate of deformation are

obtained, and corresponding constitutive inequalities discussed. Relationship with the plastic
part of the rate of the Lagrangian strain is also given. # 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

What is left as a residual increment of plastic deformation upon an in®nitesimal
cycle of stress depends on the employed measures of stress and strain. Thus, there
are in®nitely many ways to partition the rate of deformation tensor into its elastic
and plastic parts. The general framework for the partition, corresponding to any
measure of the strain and its work-conjugate stress, was developed for elastic±plastic
crystals at ®nite strain by Hill and Rice (1972). By using this theory, we have derived
the plastic parts of the rate of deformation tensor corresponding to the Jaumann
and convected rates of the Kirchho� stress. The ®rst one is well-known, but the
second one less so. The di�erences between the two quantities are examined, and the
connection with the plastic part of the rate of the Lagrangian strain is given. Some
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new kinematic and kinetic relationships are derived in the latter case, in addition to
those previously obtained by Hill and Havner (1982). The framework of rate-inde-
pendent crystal plasticity is assumed, in which crystallographic slip is the sole
mechanism of plastic deformation. The plastic stress and strain rates are expressed
in terms of the slip rates, the total rate of deformation, and the stress rates. The
corresponding constitutive inequalities are discussed. The present work is an exten-
sion of an earlier study by the author (Lubarda, 1994), given in the framework of
phenomenological plasticity, and based on the multiplicative decomposition of the
deformation gradient into its elastic and plastic parts (Lee, 1969).

2. Kinematic preliminaries

The kinematic representation of elastic±plastic deformation of single crystals, in
which crystallographic slip is assumed to be the only cause of plastic deformation, is
described by Asaro (1983). The material ¯ows through the crystal lattice via dis-
location motion, while the lattice itself, with the material embedded to it, undergoes
elastic deformation and rotation. The total deformation gradient F is decomposed as

F � F�Fp; �1�

where Fp is the part of F due to slip only, while F� is due to lattice stretching and
rotation. The following Lagrangian strains can be introduced:

E � 1

2
�FTFÿ I�; Ep � 1

2
�FT

pFp ÿ I�; E� � 1

2
�FT
�F� ÿ I�; �2�

where I is the identity tensor. The relationship holds

E � FT
pE�Fp � Ep: �3�

By introducing the decomposition (1), the velocity gradient L � _FFÿ1 can be
expressed as

L � _F�Fÿ1� � F�� _FpF
ÿ1
p �Fÿ1� ; �4�

while the rate of the Lagrangian strain is

_E � FT
p

_E�Fp � 1

2
FT
p C�� _FpF

ÿ1
p � � � _FpF

ÿ1
p �TC�

h i
Fp; �5�

where C� � FT
�F�.

Denote the slip direction and the normal to the corresponding slip plane in the
undeformed con®guration by sa0 and ma

0, where a designates the slip system. The
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vector sa is embedded in the lattice, so that it becomes sa � F� �sa0 in the deformed
con®guration. The normal to the slip plane in the deformed con®guration is de®ned
by the reciprocal vector ma � ma

0 �Fÿ1� . The velocity gradient in the intermediate
con®guration is a consequence of the slip rates 
a over n active slip systems, such
that

_FpF
ÿ1
p �

Xn
a�1

_
asa0 
ma
0 �6�

where 
 designates a dyadic product. The corresponding tensor in the deformed
con®guration is

F�� _FpF
ÿ1
p �Fÿ1� �

Xn
a�1

_
asa 
ma �
Xn
a�1
�Pa �Wa� _
a: �7�

For convenience, the second-order tensors are introduced:

Pa � 1

2
�sa 
ma �ma 
 sa�; Wa � 1

2
�sa 
ma ÿma 
 sa�; �8�

as commonly done in crystal plasticity (e.g. Asaro, 1983).
The rate of the Lagrangian strain is

_E � FT
p

_E�Fp �
Xn
a�1

Pa
0 _
a; �9�

with the symmetric second-order tensor Pa
0, dual to the tensor Pa, de®ned by

Pa
0 �

1

2
FT
p C��sa0 
ma

0� � �ma
0 
 sa0�C�

� �
Fp: �10�

It can be easily veri®ed that the connection holds

Pa
0 � FTPaF: �11�

For the later purposes, it is useful to rewrite the tensor Pa
0 in the following equiva-

lent form

Pa
0 � �Eÿ Ep�Ba

0 � B�T0 �Eÿ Ep� � 1

2
FT
p �sa0 
ma

0 �ma
0 
 sa0�Fp; �12�

where

Ba
0 � Fÿ1p �sa0 
ma

0�Fp: �13�
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The second-order tensors Pa
0 and Ba

0 were originally introduced by Hill and Havner
(1982) ( ~� and ~C in their notation).

3. Kinetic preliminaries

It will be assumed that elastic properties of the crystal are una�ected by the crys-
tallographic slip. Since slip is an isochoric deformation process, the elastic strain
energy per unit initial volume can be written as

 �  �E�� �  FÿTp �Eÿ Ep�Fÿ1p

h i
; �14�

The symmetric Piola±Kircho� stress tensors with respect to lattice and total defor-
mation are:

S� � @ 

@E�
; S � @ 

@E
: �15�

The two stresses and their rates are related to each other by:

S� � FpSF
T
p ; �16�

_S� � Fp
_SFT

p � � _FpF
ÿ1
p �FpSF

T
p � FpSF

T
p � _FpF

ÿ1
p �T; �17�

In terms of the Kirchho� stress � � �detF��, where � denotes the Cauchy stress, the
relationships are:

S� � Fÿ1� �F
ÿT
� ; S � Fÿ1�FÿT; �18�

_S� � Fÿ1� �
r�
FÿT� ; _S � Fÿ1�

r
FÿT; �19�

The convected derivatives of the Kirchho� stress with respect to lattice and total
deformation are:

�
r� � _�ÿ L��ÿ �LT

� ; �
r � _�ÿ L�ÿ �LT; �20�

where L� � _F�Fÿ1� . By using Eq. (7), the two rates can be related by

�
r� � �r �

Xn
a�1
�Pa �Wa��� ��Pa ÿWa�� � _
a; �21�
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Similarly, for the rates of the Piola±Kirchho� stresses we have

Fÿ1p
_S�FÿTp � _S�

Xn
a�1
�Ba

0S� SB�T0 � _
a: �22�

If the response is purely elastic ( _Fp � 0), the following rate-type elasticity equa-
tions hold:

_S� � L� : _E�; _S � L0 : _E; �
r� � L : D�: �23�

The trace product is denoted by (:), and the lattice rate of deformation D� is the
symmetric part of L�. The instantaneous elastic sti�ness tensors are:

L� � @2 

@E� 
 @E� ; L0 � @2 

@E
 @E : �24�

The easily established connections between the sti�ness tensors are:

L � F�F�L�FT
�T

T
� ; L0 � Fÿ1Fÿ1LFÿTFÿT; �25�

The products in Eq. (25) are de®ned such that, for example,

Lijkl � F�imF
�
jnL�mnpqF

�T
pk F

�T
ql : �26�

4. Partition of the stress rates

In the case of an ongoing plastic deformation, by combining Eqs. (4), (21) and
(23) we obtain

�
r � L : Dÿ

Xn
a�1

�a _
a: �27�

The rate of deformation tensor D is the symmetric part of L, and

�a � L : Pa � �Pa �Wa��� ��Pa ÿWa� �28�

is the symmetric second-order tensor, originally introduced in a more general con-
text by Hill and Rice (1972). The constitutive equation (27) can be rewritten in terms

of the Jaumann derivative �
� � �r � �D�D�, as
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�
� � L̂ : Dÿ

Xn
a�1

�a _
a: �29�

The associated instantaneous elastic sti�ness is L̂ � L� J, where the fourth-order
tensor J is de®ned by J : D � �D�D�. The tensor �a can be conveniently recast, in
connection with Eq. (29), in the following form

�a � L̂ : Pa �Wa�ÿ �Wa: �30�

This representation of �a was used in most of the work in crystal plasticity, e.g.
Asaro (1983). The rate of the Kirchho� stress is similarly

_S � L0 : _Eÿ
Xn
a�1

�a
0 _
a �31�

where

�a
0 � L0 : Pa

0 � Ba
0S� SB�T0 : �32�

The tensor �a
0 is a symmetric second-order tensor, dual to �a, such that:

�a
0 � Fÿ1�aFÿT; �a

0 : Pa
0 � �a : Pa: �33�

The elastic parts of the stress rates �
r
; �
�
and _S are:

��r�e � L : D; ����e � L̂ : D; � _S�e � L0 : _E: �34�

The remaining, plastic parts of the stress rates follow from Eqs. (27), (29) and (31).
They are:

��r�p � ����p � ÿ
Xn
a�1

�a _
a; � _S�p � ÿ
Xn
a�1

�a
0 _
a �35�

Evidently,

� _S�p � Fÿ1��r�pFÿT; �36�

as it should be.

5. Partition of the rate of deformation tensor

According to Hill and Rice's (1972) general framework, the elastic part of the
strain rates, associated with the introduced stress rates, are:
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De �M : �
r
; D̂e � M̂ : �

�
; � _E�e �M0 : _S; �37�

where M � Lÿ1;M̂ � L̂ÿ1 and M0 � Lÿ10 are the corresponding instantaneous
elastic compliances of the crystal. Thus, by substituting Eqs. (27), (29) and (31) for
the stress rates, we obtain:

De � Dÿ
Xn
a�1
M : �a _
a; �38�

D̂e � Dÿ
Xn
a�1
M̂ : �a _
a; �39�

� _E�e � _Eÿ
Xn
a�1
M0 : �a

0 _
a: �40�

This identi®es the plastic parts of the strain rates as:

Dp �
Xn
a�1

Ma _
a; D̂p �
Xn
a�1

M̂a _
a; � _E�p �
Xn
a�1

Ma
0 _
a; �41�

where:

Ma �M : �a; M̂a � M̂ : �a; Ma
0 �M0 : �a

0 : �42�

For example, � _E�p � FTDPF. More speci®cally, the three plastic strain rates are:

Dp �
Xn
a�1

Pa �M : �Pa �Wa��� ��Pa ÿWa�� �� 	
_
a; �43�

D̂p �
Xn
a�1

Pa � M̂ : �Wa�ÿ �Wa�
h i

_
a; �44�

� _E�p �
Xn
a�1

Pa
0 �M0 : �Ba

0S� SB�T0 �
� �

_
a: �45�

Physically, Dpdt represents the residual strain increment left in the crystal upon an

in®nitesimal loading/unloading cycle associated with the stress increment ��rdt�. This
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is proportional to the increment of the symmetric Piola±Kirchho� stress, when the
reference con®guration is taken to momentarily coincide with the current con®g-
uration. On the other hand, the increment D̂pdt represents the residual strain incre-
ment left in the crystal upon an in®nitesimal loading/unloading cycle associated with
the stress increment �

�
dt. This is proportional to the increment of the stress con-

jugate to the logarithmic strain, when the reference con®guration is taken to
momentarily coincide with the current con®guration (Hill, 1978). Finally, � _E�pdt
represents the residual strain increment left in the crystal upon an in®nitesimal
loading/unloading cycle associated with the stress increment _Sdt.

6. Normality structure

For rate-independent materials it is commonly assumed that plastic ¯ow occurs on
a slip system when the resolved shear stress on that system reaches the critical value
(�a � �acr). The Schmid stress �a can be de®ned as the work conjugate to the slip rate
_
a, such that

Xn
a�1
�a _
a � S :

Xn
a�1

Pa
0 _
a � � :

Xn
a�1

Pa _
a: �46�

Therefore,

�a � Pa
0 : S � Pa : �: �47�

The plastic rate � _E�p lies within a pyramid of outward normals to the yield surface at
S, each normal being associated with an active slip system (Havner, 1992). The
direction of the normal to the yield plane �a � �acr at S is determined from

@�a

@S
� Pa

0 �
@Pa

0

@S
: S � Pa

0 �
@Pa

0

@E
:M0 : S: �48�

From Eq. (12), it follows that

S :
@Pa

0

@E
� Ba

0S� SB�T0 : �49�

Thus, Eq. (48) becomes

@�a

@S
� Pa

0 �M0 : �Ba
0S� SB�T0 �; �50�

which proves the normality structure of � _E�p, inherent in Eq. (45), i.e.
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� _E�p �
Xn
a�1

@�a

@S
_
a: �51�

The normality holds with respect to conjugate measures �E;S�, or with respect to
any other conjugate measures of stress and strain (Hill and Havener, 1982).

7. Relationships between Dp and D̂p

From Eqs. (43) and (44), clearly, Dp 6� D̂p. This was also evident from the outset,
since the reversible parts of the rate of deformation, corresponding to two stress
rates, are di�erent, De 6� D̂e, while D � De �Dp � D̂e � D̂p. To establish the rela-

tionships between Dp and D̂p, we use the identity ��r�p � ����p, and the connections:

��r�p � ÿL : Dp; ����p � ÿL̂ : D̂p: �52�

This gives:

Dp � D̂p �M : J : D̂p; �53�

D̂p � Dp ÿ M̂ : J : Dp: �54�

The elastic parts of the rate of deformation are, accordingly, related by:

De � D̂e ÿM : J : D̂p; �55�

D̂e � De � M̂ : J : Dp: �56�

Furthermore, from Eqs. (43) and (44) we have

Dp ÿ D̂p �
Xn
a�1
�Ma ÿ M̂a� _
a �

Xn
a�1
�Mÿ M̂� : �a _
a; �57�

which indicates that the di�erence between the two plastic rates of deformation
depends on the di�erence between instantaneous elastic compliances, associated
with the Jaumann and convected rates of the Kirchho� stress.

8. Hardening rules and slip rates

The rate of change of the critical value of the resolved shear stress on a given slip
system is de®ned by the hardening law (Asaro, 1983; Havner, 1985, 1992)
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_�acr �
Xn
b�1

hab _
b �58�

where hab are the slip-plane hardening rates. The diagonal terms represent self-
hardening on a given slip system, while o�-diagonal terms represent latent hard-
ening. The consistency condition for slip on the system a is

_�a �
Xn
b�1

hab _
b: �59�

The rate of Schmid stress is obtained by di�erentiation from Eq. (47),

_�a � _Pa
0 : S� Pa

0 : _S: �60�

After a somewhat lengthy derivation, the following remarkable expression for the
rate _Pa

0 is found from Eq. (10)

_Pa
0 � _EBa

0 � B�T0
_E: �61�

The rate of Schmid stress, therefore, becomes

_�a � �SB�T0 � Ba
0S� : _E� Pa

0 : _S: �62�

This is also equal to �a
0 : �FT

p
_E�Fp�, or �a : D�, the latter expression being used in

Asaro's (1983) analysis. The slip rates can, accordingly, be determined from either
of:

_
a �
Xn
b�1

gÿ1ab �b
0 : _E �

Xn
b�1

gÿ1ab �b : D; �63�

provided that the matrix

gab � hab ��a
0 : Pb

0 � hab ��a : Pb �64�

is positive-de®nite, as originally shown by Hill and Rice (1972).
Substituting Eq. (64) into Eqs. (27), (29) and (31) gives the three alternative con-

stitutive structures for the elastic-plastic single crystals. The plastic parts of the cor-
responding stress rates are:

��r�p � ����p � ÿ
Xn
a�1

Xn
b�1

�agÿ1ab �b

 !
: D; �65�
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� _S�p � ÿ
Xn
a�1

Xn
b�1

�a
0g
ÿ1
ab �b

0

 !
: _E �66�

9. Plastic parts of the rate of deformation in terms of stress rates

Since

D� �M : �
r� �M : �

r �
Xn
b�1
��b ÿL : Pb� _
b

" #
; �67�

the substitution into _�a � �a : D� yields

Ma : �
r �

Xn
b�1

k�b _
b; kab � gab ÿ�a :M : �b: �68�

If k is an invertible matrix, from Eq. (68), it follows that the slip rates are

_
a �
Xn
b�1

kÿ1abM
b : �
r
: �69�

Similarly, we have:

M̂a �
� �

Xn
b�1

k̂ab _
b; k̂ab � gab ÿ�a : M̂ : �b; �70�

Ma
0

_S �
Xn
b�1

k0ab _
b; k0ab � gab ÿ�a
0 :M0 : �b

0 : �71�

Clearly, k̂ab 6� kab 6� k0ab. In the context of general strain and its conjugate stress
measures, this has been extensively discussed by Hill and Rice (1972), Hill and
Havner (1982) and Havner (1992). For the prescribed stress rates �

�
or _S, the slip

rates _
a are uniquely determined provided that k̂ and k0 are positive-de®nite,
respectively. The slip rates are then determined from

_
a �
Xn
b�1

k̂ÿ1ab M̂
b �
� �

Xn
b�1

k0ÿ1ab Mb
0

_S: �72�

The plastic strain rates in three cases are, consequently:
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Dp �
Xn
a�1

Xn
b�1

Makÿ1abM
b

 !
: �
r
; �73�

D̂p �
Xn
a�1

Xn
b�1

M̂ak̂ÿ1ab M̂
b

 !
: �
�
; �74�

� _E�p �
Xn
a�1

Xn
b�1

Ma
0k

0ÿ1
ab Mb

0

 !
: _S: �75�

10. Constitutive inequalities

If the matrix g is positive de®nite, gÿ1 is as well, and

� _S�p : _E � ��r�p : D � ����p : D � ÿ
Xn
a�1

Xn
b�1

D : �agÿ1ab �b : D < 0: �76�

The inequality holds regardless of whether the crystal is in the state of overall
hardening or softening. On the other hand,

_S : � _E�p � �r : Dp 6� �� : D̂p; �77�

since from Eqs. (73) and (74), and in view of Eq. (37),

Xn
a�1

Xn
b�1

De : �akÿ1ab �b : De 6�
Xn
a�1

Xn
b�1

D̂e : �ak̂ÿ1ab �b : D̂e: �78�

In particular, it may happen that k̂ÿ1 is positive-de®nite, so that �
�

: D̂p > 0 (imply-

ing hardening), while kÿ1 is negative de®nite, so that �
r

: Dp < 0 (implying soft-
ening). In a more general context, these possibilities were discussed by Havner
(1992). In fact, it can be shown that:

�
r

: Dp �
Xn
a�1

_�a _
a �
Xn
a�1

Xn
b�1
��a : Pb ÿ�a :M : �b� _
a _
b; �79�

while

�
�

: D̂p �
Xn
a�1

_�a _
a �
Xn
a�1

Xn
b�1
��a : Pb ÿ�a : M̂ : �b� _
a _
b: �80�
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Their di�erence is, thus,

�
r

: Dp ÿ �� : D̂p �
Xn
a�1

Xn
b�1

�a : �M̂ÿM� : �b
h i

_
a _
b; �81�

which can be either positive or negative, depending on the positive-de®niteness of
the tensor �M̂ÿM�.
In contrast to (77), we have the equality

Fÿ1p
_S�FÿTp : � _E�p � �r

�
: Dp � ��� : D̂p �

Xn
a�1

_�a _
a: �82�

For example, if D̂p in Eq. (82) is plastic part of the rate of deformation during
plastic loading, while �

��
is the stress rate during elastic unloading, it follows that

�
��

: Dp < 0, provided that during elastic unloading _�a < 0 for each �. The slip rates
_
a are assumed to be always positive during plastic loading, so that opposite senses
of slip in the same glide plane are represented by distinct �. Thus, in this case

�
r�

: Dp � ��� : D̂p < 0, which is measure invariant and in accord with Ilyushin's
postulate, regardless of the hardening or softening of the crystal at the considered
instant of deformation (Hill, 1978; Havner, 1992).

11. Rigid±plastic behavior

Although the partition of the rate of deformation is not an issue in the rigid-
plastic idealization, the previous results can be specialized when the elastic com-
pliancesM and M̂, and the lattice rate of deformation D�, all vanish. The rate of
deformation and the spin tensor are then:

D �
Xn
a�1

Pa _
a; W �W� �
Xn
a�1

Wa _
a; �83�

where W� � _R�Rÿ1� is the lattice spin, and R� is the lattice rotation.
If convected derivative of the Kirchho� stress is used, the slip rates can be

expressed as

_
a �
Xn
b�1

kÿ1abP
b : �
r
; kab � hab ÿ Pa : �Pb �Wb��� ��Pb ÿWb�� �

: �84�

If the Jaumann derivative is used, the same slip rates are

_
a �
Xn
b�1

k̂ÿ1abP
b : �

�
; k̂ab � hab ÿ Pa : �Wb�ÿ �Wb�: �85�
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The last expression is in accord with the corresponding expression given by Khan
and Huang (1995). The matrix of hardening moduli hab, related to k̂ab as in Eq. (85),
was originally introduced by Havner and Shalaby (1977) in their study of latent
hardening of single crystals. Evidently,

�
r

: D �
Xn
a�1

Xn
b�1
�
r

: Pakÿ1abP
b : �
r
; �86�

�
�

: D �
Xn
a�1

Xn
b�1
�
�

: Pak̂ÿ1abP
b : �

�
: �87�

The sign of these clearly depends on the positive-de®niteness of the matrices k and k̂,
respectively. In particular, one can be positive, the other can be negative.

12. Discussion

We have demonstrated in this paper the non-uniqueness of the partition of the
rate of deformation into its elastic and plastic parts, by providing explicit expres-
sions associated with two di�erent partitions. The ®rst one is well-known partition
based on the Jaumann rate of the Kirchho� stress. The second one is less known,
and is based on the convected rate of the Kirchho� stress. Since this rate involves
the total rate of deformation, the latter partition appears to be less appealing than
the partition based on the Jaumann rate, which involves the spin part of the velocity
gradient only. The partition based on the convected rate, however, is inherent in the
formulation of the theory based on the Lagrangian strain and its conjugate Piola±
Kirchho� stress. Thus, it can be deduced from the partition of the Lagrangian strain
rate by adequate transformation formulas, or it can be obtained directly, by an
independent derivation, as done in this paper. The two partitions are particularly
suitable to discuss the nature of the constitutive inequalities in the plastic regime of
the material response.
Although the presented analysis was restricted to single crystal plasticity, some of

the results can be easily extended to polycrystalline plasticity. In that case, we may
use the multiplicative decomposition of the deformation gradient F � FeFp, with
appropriate interpretations of its constituents Fe and Fp (Lee, 1969). For example, if
M0 is the instantaneous elastic compliance of a polycrystalline aggregate relative to
the Lagrangian strain, the elastic and plastic parts of the strain rate become:

� _E�e � FT
p

_EeFp ÿM0 : �BpS� SBT
p �; �88�

� _E�p � 1

2
FT
p Ce� _FpF

ÿ1
p � � � _FpF

ÿ1
p �TCe

h i
Fp �M0 : �BpS� SBT

p �; �89�
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where Ce � FT
e Fe;Ee � 1

2
�Ce ÿ I�, and Bp � Fÿ1p � _FpF

ÿ1
p �Fp. The ®rst part of � _E�p on

the right-hand side of Eq. (89) can also be written as �CBp�s, where C � FTF, and
the subscript s denotes the symmetric part. The plastic strain rate � _E�p is codirec-
tional with the outward normal to a locally smooth yield surface in the stress space
S, and is within the cone of outward normals at the vertex point of the yield surface.
The elastic and plastic constituents of the rate of deformation, corresponding to

the convected stress rate �
r
, are:

De � � _FeF
ÿ1
e �s ÿM : Fe� _FpF

ÿ1
p �Fÿ1e

h i
�� � Fe� _FpF

ÿ1
p �Fÿ1e

h iT� �
�90�

Dp � Fe� _FpF
ÿ1
p �Fÿ1e

h i
s
�M : Fe� _FpF

ÿ1
p �Fÿ1e

h i
�� � Fe� _FpF

ÿ1
p �Fÿ1e

h iT� �
: �91�

Finally, the elastic and plastic parts of D, corresponding to the Jaumann stress
rate �

�
, are given by:

D̂e � � _FeF
ÿ1
e �s ÿ M̂ : Fe� _FpF

ÿ1
p �Fÿ1e

h i
a
�ÿ � Fe� _FpF

ÿ1
p �Fÿ1e

h i
a

n o
; �92�

D̂p � Fe� _FpF
ÿ1
p �Fÿ1e

h i
s
�M̂ : Fe� _FpF

ÿ1
p �Fÿ1e

h i
a
�ÿ � Fe� _FpF

ÿ1
p �Fÿ1e

h i
a

n o
: �93�

It is easily veri®ed that � _E�p � FTDpF. The relationship between Dp and D̂p is
examined by Lubarda (1994). See also a related discussion by Lubarda and Shih
(1994) regarding the independence of the ®nal results on the rotation superimposed
to the intermediate con®guration. The incorporation of anisotropic elasticity in the
considered constitutive framework was studied by Lubarda (1991), and of evolving
elastic properties by Lubarda and Krajcinovic (1995).
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