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Abstract--By utilizing the multiplicative decomposit ion of  deformat ion gradient,  we precisely 
identify the elastic and  plastic contribution to the velocity strain o f  elasto-plastically deformed 
anisotropic materials. Corresponding elastic stiffness and compliance tensors are obtained to 
within the unknown rotation tensor,  to be additionally determined. Orthotropic materials are 
considered in particular and constitutive structure for their plastic strain-rate established. Var- 
ious kinematic aspects and relationships between different plastic strain-rate and spin tensors,  
as well as comparison to related work, are also given. 

I. I N T R O D U C T I O N  

The constitutive analysis of large deformation elasto-plastic behaviour of metals has been 
extensively treated in the literature, from various standpoints. Within the model of mul- 
tiplicative decomposition of deformation gradient into its elastic and plastic parts, ex- 
tensive research was done since the early work by LEE [1969] (see, for example, recent 
papers by AGAH-TEHRANI et al. [1987] and DAFAUAS [1987]). Many aspects of the the- 
ory, however, were treated differently, in particular the definition of elastic strain-rate 
and partition of total strain-rate into its elastic and plastic parts. These, and other rel- 
evant issues, were extensively discussed by LUBARDA [1991]. In this paper we confine 
attention to constitutive behavior of elastically anisotropic materials, assuming that an- 
isotropy remains unaltered during the plastic flow (for example, that orthotropic ma- 
terial remains orthotropic, with the same elasticity constants). This case was little treated 
in the literature by using the multiplicative decomposition and, as a matter of fact, 
caused some skepticism concerning the extent of decomposition utility in the constitu- 
tive analysis. Some important work has, nevertheless, been done by MANDEI. [1973, 
1981,1982], in the case of polycrystalline materials whose elastic properties are influenced 
by previous plastic flow, and by PmRCE et al. [1982] and ASARO [1983a, 1983b], in the 
case of a single crystal plasticity. In a series of papers by Lee and his coworkers (LEE 
[1969]; LtraARDA & LEE [1981]; AGAH-TEm~rI et al. [1987]), elastic anisotropy, either 
initial or by plastic flow induced, was not considered. Consequently, we analyze here 
the case of persistent elastic anisotropy, leaving for future investigation the more in- 
volved and, perhaps, significant problem of varying and induced elastic anisotropy. 

II. KINEMATIC A N D  KINETIC PRELIMINARIES  

Let (B0 be the initial configuration of elastically anisotropic (say orthotropic) mate- 
rial and let a°(i = 1,2,3) define the axes of anisotropy with respect to which the strain 
energy has the representation w = w(Ce) ,  Ce being the right Cauchy-Green deforma- 
tion tensor. Let (Bt be the current configuration obtained from (Bo by elasto-plastic de- 
formation, with the corresponding gradient being F. Finally, let (~t be the imagined, 
intermediate-purely plastically deformed configuration, obtained from (Bt by (possibly 
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virtual) elastic destressing to zero stress. The multiplicative decomposition F = FeFp 
then holds, with Fe being the elastic and Fp the plastic part of  deformation gradient F. 
Elastic rotation on destressing is taken to be arbitrary, say Re, so that by polar decom- 
position Fe = VeRe, lie being the elastic stretch tensor. Assume, further, that the ma- 
terial in its intermediate configuration has the same type of  elastic anisotropy as in its 
initial state: the axes of  anisotropy a ° in 630 are then just rotated to axes a?  in the in- 
termediate state, that is, a~ = (Ra °, where (R is the orthogonal tensor. The strain en- 
ergy in the intermediate state can consequently be represented by w((RrCe(R) ,  that is, 
the same function w, introduced for initial state, but of the arguments which are by (R 
rotated-axes components of  deformation tensor Ce. AS discussed by MANDEL [1973, 
1981], in view of the discontinuities of displacements and rotations of elements at micro- 
scale, the rotation matrix (R is independent of the (overall) plastic part of  deformation 
gradient Fp. Finally, as the elastic deformation takes material from intermediate to 
current state, the unit vectors a; ~ are considered to convect with material, that is, ai = 
F~a + (elastic embedding), hence 

~1 i = [ l ~ e f  e l  --[ - Fe((~t(R-l)Fel]ai, (1) 

where the superimposed dot stands for the material derivative and -1  for the inverse. 
The (Cauchy) stress response is accordingly given by 

(det Fe)o = 2 G  f ~ W ( ( R T c e ( R )  F e  T, (2) 
0G 

or, in view of the polar decomposition Fe = VeRe and the relationship between left (Be) 
and right deformation tensor Ce = Rr~BeRe, 

aW( (R~Be(Re) 
(det Ve)a = 2Ve Ve. (3) 

3Be 

The rotation tensor (R e appearing in the transition from eqn (2) to eqn (3) is clearly 
(R e = Re(R. This is also the rotation which appears in transition ai = F~a~ = Fe(Ra ° = 
V~Re(Ra ° - V~(Rea °, (Re = Re(R. For example, if we define the intermediate configura- 
tion by destressing without rotation (Fe - V~, Re =- I ) ,  (R e is the rotation of  elastic an- 
isotropy axes from 63o to (Pt (that is, 6t -- (Re); if the intermediate configuration is 
isoclinic (a~ -- a/°, that is 6 / -  I ) ,  (R e represents the elastic rotation during the loading 
from (Pt to 63t:Fe = VeR e, R e ~ (Re. In any case, (Re is the unique quantity and the 
stress response (3) is independent of selected intermediate configuration. Finally, in view 
of  the decomposition F = FeFR = V~ReFp, the velocity gradient L = F'F -~ in the cur- 
rent configuration can be expressed as 

L = (ZeVe-l"{- V e ( k e R ~ " ) V e l +  Ve[Re(ff)p + ~Tv)RTelV~ - ' ,  (4) 

where ~p  and ~ p  are the plastic velocity and spin of  the chosen intermediate state, that 
is, the symmetric and antisymmetric part of  l~pF7 1 . 

!1I. OBJECTIVITY REQUIREMENTS 

On superimposing the time dependent rigid-body rotation Q in the current configu- 
ration 63t, the deformation gradient F changes to F* -- QF, while elastic and plastic 
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parts Fe and Fp change to F ;  = QFeQ T and Fp = Q.Fp, where the orthogonal (rotation) 
tensor Q, defining the corresponding rotation of intermediate state, depends on that 
state: for example, if intermediate state is obtained by destressing without rotation, we 
have (2 - Q; if intermediate configuration is isoclinic, then Q - L To simultaneously 
treat all possible selections of the intermediate configuration, we denote the correspond- 
ing rotation, associated with objectivity requirements, by • and show in the body of 
the paper that final results (that is, elastic and plastic strain-rates and their constitutive 
expressions) are independent of Q. In this way we essentially fulfill the invariance re- 
quirements advocated by Naghdi and his colleagues (see, for example, CASEY & NAGHDI 
[1981]). The introduced kinematic quantities accordingly change to: 

V* = QVeQ r, Be = QBeQ r, C* = O CeO T 

(R* --- O.(R, R~ = OReO. T (R* = Q(Re. 
(5) 

/2. = Q Q - ,  + Q/2Q r 

/2; = 0 0 - '  + O/2pO ~. (6) 

The following (Jaumann type) derivatives, associated with the spins/2 and/2p, can 
then be defined, together with the rules they obey under introduced frame change: 

¢, o o 

Fe = Fe - /2Fe  + Fe/2p, (fe)* = QFe(~ T (7.1) 

¢ 

G = G  -/2pG, 
o A 0 

(Fp)* = QFp (7.2) 

F=F-/2F, (P)* = QP (7.3) 

o o * o T 

v~ = v~ - /2v~ + v~& (v~) = QV~Q (7.4) 

o o * o A T 

Re = Re - fiRe + Re/2?, (Re) = QReQ (7.5) 

& = ( R - & ( R ,  (dt )*= Qdt (7.6) 

o 

(Re = (Re-  /2(Re, 
o * o 

((Re) = O(Re. (7.7) 
¢ 

For example, Fe gives the change of elastic deformation gradient Fe observed in (or 
with respect to) the coordinate systems that rotate with spin 12 in the current and/2p in 
the intermediate configuration. To be compatible with introduced frame change rules 
(5),/2p depends on the selected intermediate configuration: for example, if destressing 
is without rotation, then/2p --/2. The plastic strain-rate and spin of intermediate con- 
figuration change to: 

z ;  = 0 z p 0  T, w ;  = 0 0 - '  + OV¢p0T. (8) 

The spin/2 will be specified in the next section such as to obtain an explicit (and ex- 
act) expression for the elastic contribution to total velocity strain. 

Introduce now two spins (/2 and/2p), LUBARDA [1988,1991], the first associated with 
the current and the second with the intermediate state, such that under introduced frame 
change they behave according to: 
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IV. ELASTIC STRAIN-RATE 

As utilized in LUBARDA [1991], following HILL and RICE [1973], the elastic contribu- 
tion to total strain-rate is defined by De = d~e : ÷, where ÷ is the Jaumann rate of  Kirch- 
hof f  stress r = ( d e t F ) a  at the current state as a reference ( F -  I) ,  while ¢/~e is the 
associated instantaneous elastic compliance tensor. The rest of strain-rate (Dp = D - 
De) is plastic part, governed by the plastic potential and codirectional with the outward 
normal to the yield surface in the Cauchy stress space. To elaborate on this more ex- 
plicitly, apply the Jaumann derivative, defined in the previous section, to the anisotropic 
constitutive law (3). We obtain 

o , o 2 V,[a2w((j:{TeOe(~e) ] 
; = ( V e V e ) o + ~ ( V y ' V e ) + d e ~ - F e  e e - - - - - -  [ aBe@aBe :he V~ 

+ m 2 
det Ve 

[ a2w((~lTeBe(j:{e) ] 
aBe@a~e :&e Ve, 

(9) 

where ~ = ~ + ( t rD)a ,  : is double contraction and ® the tensor product. Plastic in- 
compressibility assumption has been used in arriving at eqn (9), that is, (det l/e)" = 
(det F ) ' =  (det Ve)(tr D) .  On the other hand, from eqn (7.4), symmetric and antisym- 

o 1 
metric parts of  the matrix l/eVe are: 

o 1 
(VeVe~)s--~ (VeVe - l  "~- VeaVel)s ~- 1VelleWe-1 (10) 

and 

( ~ e V ~ - l ) °  = ( ~ V ~ - '  + Ve12V~-| )a - -12  --  ,~ - 1 2 ,  (11) 

with the obvious representation of  the spin w. Therefore, by defining 12 to be such that 
o~ -- W (total spin), it follows that 

( VeVel )s = De + de, (12) 

that is, the sum of  the elastic strain-rate (De) and an additional term (ale), to be sub- 
sequently specified. Indeed, substitution of  eqns (10)-(12) into eqn (9) gives 

4 [a2W((~TOel~e) ] 
"~=Dea+aDe+ d-e~e Ve OBe(~)OB e : (VeDeVe) Ve 

4 V,[O2w((RTBe(~e) 1 + AeO + aAe + ~ e - - - -  [ aBe ® aBe : (VeAeVe) Ve 

2 [a2w((RTBe(Re) ] 
+ det-----~e Ve aBe ® O(Re : ((Re(R-d I - 12)(Re Ve, 

(13) 

or, in the shorter form, by introducing the fourth-order operator £e  

2 [OZw((RTeBe6te) ] 
~" = ~e:De"~" ~e'-Ae-'~" ~ Ve[ ~ e - ~  ~ e : ( (~e(~e I -- 12)(~e Ve. (14) 
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It is now clear why .4 e term is introduced in eqn (12): it is needed to cancel the third 
term on the right-hand side of  eqn (14), so that this reduces to the needed elastic rate- 
type constitutive structure ÷ -- £e  : De. Hence, we define Ae such that 

2 V. [ a2w((RreBe(Re) ] 
- - - -  e . . . .  £ e : A e =  detVe L OBe@O(Re : ( ( ~ e ( ~ e l  D)(~e Ve, (15) 

which, after somewhat involving manipulation, can be written as 

£ e  : A e -~ a Z a  --  Z a °  "~- £ e  "- Z s ,  (16) 

where Z = v e - l ( ( ~ e ( ~ e  -'1 - -  ~'~)~e is the second-order tensor induced f rom the spin 
((Re(R~ -1 - D) by deformation Ve, while s and a stand for the symmetric and antisym- 
metric parts. Therefore,  the additional term Ae is given by 

A e = £ e  1" (~TZ a --  Z a a  ) + Z s. (17) 

Note that in the case of  elastically isotropic characteristics, w is an isotropic function 
of  Be, hence independent of  (Re, and from eqn (15) we have Ae -- 0, while eqn (17) 
gives Zs = £71: (Zaa - aZa). 

The obtained elastic strain-rate is clearly objective and independent of  the selected in- 
termediate configuration, that is, rotation (~. Indeed, the elastic moduli tensor £e,  
which in the component form reads 

1 4 
£~k l  = "~ ( ~)ikOjl JI- ~ilajk Jr" Oik~jl "+ Oi,~jk ) + ~ VfmV; e 

UCL V e 

0 2 W (  (~ T B e ( ~ e )  
V~kV~t, (18) 

(6 being the Kronecker delta) is independent of  0 ,  and since the stress rate ÷ is also, 
De = ,8; -1 : ~- is independent of  (~ as well. It follows that D~' = QDeQ r, hence from 
eqn (12), or eqn (17), A~ = QAeQ r. Also, it should be mentioned that the tensor £e  
satisfies the usual symmetry and reciprocity relations. In the case of  infinitesimal elas- 
ticity, the strain energy having the quadratic form 

W - ~  1 A e :  ( ~ e ( ~  ~ e ) ,  ~e  = l ( e e - - I )  (19) 

( ~ e  = ( R T B e ( R e ) ,  eqn (18) reduces to 

e e e e e e 
o~ ijkl -~ (~ im ( ~ j n A  mnpq (~ kp (~{ iq, (20) 

so that the instanteneous elastic compliance tensor becomes 

e _ e--I t oe  rDe Ae--I  ,,De rDe 
c J ~ i j k l -  £ i j k l  = ~ t i m ~ t j n ~ i m n p q V t k p U t l q ,  (21) 

where A~ -1 is the inverse of  the initial elastic moduli tensor, defined by Ae--I  Ae ai ijmnZA mnkl 
½ (6ik6yt + 6a6jk). Clearly, to know oA%, the rotation tensor (~e must be determined. 
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V. AN A L T E R N A T I V E  DERIVATION A N D  R E L A T I O N S H I P  

W I T H  S O M E  E A R L I E R  RESULTS 

Since final results of the analysis are shown to be independent of selected intermediate 
configuration, we consider in this section more closely the so-called isoclinic interme- 
diate configuration (MANDEL [1973,1981]), as introduced in Section II. The correspond- 
ing multiplicative decomposition of deformation gradient is F = C[YeC~p, q-e ~- Ve(~e ,  while 
the stress response is 

(det V~)a = 2% O W ( e e ~ )  C['eT , (22) 
OCe 

where Ce = qFr%. Applying the material derivative to eqn (22), we have 

+ = (@eC~e 1 )17 + O(C~e-TC~Y T )  "t- - -  2 ~e [ ------02W(ee) ] 
det V~ [ Oee ® Oee : ~ e  c~J .  (23) 

It then follows that 

(~eCrre-l)s= Oe + ~le, (24) 

since substitution in eqn (23), in view of 

W :  (C]7eC~e--l)a + [c~e(%qypl )C]Te- l ]a  , (25) 

gives 

~= ~e:De + ~3e:Ae- l~pa + al~p, (26) 

where Wp denotes the spin corresponding to the second term on the right-hand side 
of eqn (25). It is now clear that the additional term / i  in eqn (24) has to be such that 
eqn (26) reduces to ÷ = ~3e :De, hence 

/~e = ' ~ e l  ; ( W p  O - -  o W p ) .  (27) 

The comparison with expression (17) is easily made. It follows that I~p - -Za ,  
therefore 

A e = z~ e "Jr- l s ,  Z s ~-- [ V e - l ( ( j ~ e t ~ e  I - ~"~)Ve] s. (28) 

If elasticity is isotropic, A e ~ 0 a n d  z~ e = - Z  s. Equation (28) also follows by compar- 
ing eqns (12) and (24). 

The analysis presented here is in accord with the results of HIZL and RICE [1973], HIzI. 
and HAVNER [1982] and ASARO [1983a, 1983b]. Indeed, by taking the symmetric part of 
the velocity gradient, expressed via q:e and q:u (in the context of crystal plasticity, q:e 
would correspond to lattice contribution to F, associated with stretching and rotation 
of the lattice, whereas q:o would be due solely to slip), we get 

D = (~eq-e -~ )s + [qre(q~pffp-~ )ff~-~ ]s, (29) 
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hence, in view of eqn (24) and D = De + Dp, we have 

(30) 

where/Sp is the second term on the right-hand side of eqn (29). As discussed by HILL 
and HAVNER [1982] and ASARO [1983a]: Dp, which gives the plastic increment of strain 
in a stress cycle, does not come from the slip deformation (/)p) alone; there is a fur- 
ther net elastic contribution from the lattice, which is caused by the slip-induced rota- 
tion of the lattice relative to the material stress a. Nonetheless, it is Dp (and not Dp) 
that is governed by the plastic potential. (The distinction between Dp and Dp is small 
and involves O(a /~e )  terms in comparison to O(1). However, in some applications it 
is necessary to retain such accuracy (AsARO & RICE [1977]).) Note, also, that the decom- 
position D = De + D p  = ,,~e I " ~" -[- D p ,  utilized in this paper, exactly corresponds to 
eqn (3.25) of ASARO [1983b], with associated normality structure established in his pa- 
per following eqn (3.30). 

The elastic moduli tensor £e, appearing in eqn (26) via eqn (23), has the component 
form 

1 4 OZW(Ce) 
~ok, = 2 (6ikojt + 6,tojk + oikajt + o,,6jk) + ~ ~Fi%q:)% ~F~p"FI~, (31) ae~.ae~. 

so that % = Ve(Re must be determined. Of course, the elastic moduli operator (31) is 
identical to that already obtained in eqn (18). 

VI. C O N S T I T U T I V E  E X P R E S S I O N  F O R  P L A S T I C  S T R A I N - R A T E  

OF  O R T H O T R O P I C  M A T E R I A L  

In this section we consider plastic behavior of orthotropic material which hardens in 
an isotropic manner. If  the principal axes of orthotropy (intersections of three mutu- 
ally orthogonal planes of symmetry) are, say, parallel to coordinate axes in the initial 
configuration, in the current state they are approximately rotated by (Re, as we as- 
sumed that elastic anisotropy remains unaltered. The yield function can accordingly 
be introduced as a function of  the rotated-axes components of the Cauchy stress q- = 
(Rffa(Re, as 

f = f(q-, 6), (32) 

where 6 is the equivalent stress which, by analogy with isotropic theory, is taken to be 
a function of the total plastic work, or the equivalent plastic strain 

fotI op:O, )l'  , (33) 

Clearly, the yield function (32) is independent of  the superimposed rotation Q, since 
(Re = Q(Re and a* = Q~Qr, Hence q-* - q-. For example, in the case of Hill's orthotro- 
pic criterion 

f =  [f0(c~'-22 - -  c~33)2 "st" g0(C~33 - -  c]-11)2 "Jr- ho(C]-ll - -  c'[-22)2 

+ 21o~-~3 + 2moq-?l  + 2no~ '?2] ' J2  - : = o. 
(34) 
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For further analysis, we recall from HILL [1968,1978] that the work conjugate to loga- 
rithmic strain E0 = In U = E - E 2 + • • -, E being the Lagrange strain, is 

To = ( d e t F ) R T a R  + O(E2), (35) 

where R is the rotation tensor from the polar decomposition of  deformation gradient 
F = R U  (from the reference state). Now, if the reference state is defined such that in 
the current state we have F = (R e (reference state differs from the current state by ro- 
tation (Re), then: E0 = E = 0,/~o = /~  = (RrD(Re, To = (Rig(Re and To = (Rer÷fRe • It then 
follows that the normality for the plastic strain-rate ((RrD(Re)p - (Rr~Dp(Re holds in the 
q-space, that is, 

Oq- ' (36) 

where from 

Dp = A of(q-,~) 
Oo (37) 

The consistency condition ( f  = 0), on the other hand, gives 

Of:÷+ af 
ao ~ ~ = O, (38) 

hence, assuming known the relationship 6 = ~(/~p), we obtain the loading index 

A = _1 __af : .p, (39) 
h ao 

with 

h = a f  d~ O f :  (40) 

Note that To = (R~r÷(Re has been utilized as the stress rate in the consistency condi- 
tion; if, instead, q~has been used, erroneous results would be obtained. Therefore, the 
plastic strain-rate is given by 

1 Of ~) Of (41) 
D p = c/~ p : ÷, CM p -- ~ a-~ -~a ' 

with the obvious symmetry and reciprocity properties of  the plastic compliance tensor 
dlAp. In view of  the yield function dependence on the rotated axes components of  
Cauchy stress q'-- (Rrtr(Re, rotation (Re is needed in the structure of plastic compliance, 
as well as elastic compliance. MANDEI~ [1982] has discussed the question of  developing 
constitutive expression for the spin ~e(Re l, which would give, by integration, the ro- 
tation (Re. In the next section we derive some additional relationships between various 
measures of  strain-rate and spin tensors. 
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VII.  A D D I T I O N A L  K I N E M A T I C  A N A L Y S I S  

VII. 1. Relat ionship be tween plastic strain-rates 
in the current and  intermediate configurations 

First, consider the obvious identity 

o 1 o 
Vg-I ( VeVe ) = ( VeVeJ )r  v~ -1. (42) 

o 1 
As shown by A G ~ - T E ~  et al. [1987], for given symmetric part of VeV~- (here ex- 
pressed by eqn (12)), eqn (42) can be solved for the antisymmetric part to give 

( ~reVel )a ~-" Z 1 H I  + H I Z I  - (tr Z I ) H I ,  (43) 

where ZI = [(tr Ve 1)I - Veil  -1 and 

Hi  = Vg-~(De + A~) - (De + A e ) V e  1. (44) 

(Indeed, eqn (42) is of the form A X  = X r A ,  A being a symmetric matrix, which for a 
given symmetric part of X can be solved for X.) Hence, substitution into eqn (11), gives 
an expression for the spin 12 

12 = W -  (ZIH1 + H i Z l )  + (tr ZI)H1. (45) 

Note that 12" = QQ-m + Q12Qr,  as it should be, since 12 is independent of the se- 
lected intermediate configuration. If the elastic component of strain is small, we have 
12~W. 

Next, from eqns (10)-(12), we have 

VeVe I = De + Ae + W - V~12Ve ~ , (46) 

and substitution into eqn (4) gives 

Dp : A e + V e [ ( / ~ e R e  I - 12) -b R e ( ~ )  p + ~ p ) R  T] Ve"lo (47) 

Hence: 

and 

R e ~ ) p R  T :  [ V e - l ( D p  - Ae)Ve] s (48) 

( R e R e  ~ - 12) + Re~CCpR r = [V~-~(Dp - Ae)V~] a. (49) 

On the other hand, the identity 

Be[V~-I(Dp - Ae)Ve] = [ V e l ( D p  - Ae)Ve]TBe (50) 

holds, which, by using expression (48), can be solved for the antisymmetric part 

[ V e l ( D p  -- Ae)Ve]a = ZEH2 + HzZ2  - (tr ZE)Hz, (51) 
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where: 

Z2 = [ ( t r  B e ) I  - Be] -1  

n 2 = Be(Re~)pRTe) - (Re~)pRTe)ae . 
(52) 

Substitution of eqn (51) into eqn (49), and incorporating this into eqn (47), then gives 
the relationship between Dp and ~p 

Dp = Ae  + Fe[~Op + Zo(Ce~3p -- ~3. Ce) + ( C e ~  - ~ p C e ) Z o  

-- (tr Zo)(Ce~Dp - f f ) p C e ) l F £  1, 
(53) 

with Zo [(tr Ce)I - Cel- ' .  Since F* = QFeQ. r, C~ = 0 C e 0  r, ~* = 0~Dp0 r and 
Zo = QZ00 r, we have Dp = QDpQ r, that is, Dp is independent of Q. Note also that, 
in view of eqn (53), expression (44) can be rewritten as 

H 1 = { 2 V e l D -  Re[2ff)p + Zo(Ce~)p)a  + ( C e ~ ) p ) a Z o -  (trZo)(Ceff)v).]RreVe I }~. 

(54) 

VII.2. Relationships among various spin tensors 

By considering destressing without rotation (R e -~ I), from eqns (49) and (51) we ob- 
tain the expression for the spin/2 in terms of velocity strain DpL and spin Wp b of the Lee 
(L) intermediate configuration 

/2 = ~ L _  ½ [Z2(Be~DL)a + ( B e ~ ) L ) a Z 2 _  (trZz)(Be~).l. (55) 

On the other hand, if we utilize the isoclinic (I) intermediate configuration, we ob- 
tain, from eqns (49) and (51), the spin (~e617 ~ - D) in terms of the velocity strain Dp~ 
and spin ~¢~p of isoclinic intermediate configuration. 

~Re(~e 1 /2 __~ee'~Ip(~T + ~1 {Z2[Be  ( I r + B I T -- = (~e~)p(~e)]a [ e((~e~t)p(~e)]aZ2 

- (tr Z2) [Be(ffle~£)Ip6lff)]a}. 
(56) 

Note that 

1 T (~e(~e I = ~ L  _ f f { e ~ p ( ~ e  ' (57) 

so that the plastic spin introduced by DAFALIAS [1985], his eqn (5)2 , is Wo u = "~,V~ - 
~ e ( R e  1 1 T ~--- (~ee~9; (~e" A l s o  ~Dp L = (Re~)p(~e.l T 

If the elastic component of strain is infinitesimal (V~ ~ I),  from eqn (45) we have 
/2 ~ W, eqn (55) gives %Vp L =/2,  while from eqn (56) we have 

( ~ e ( ~ e  I W - -  I T (~te ~ ? ;  (~ e ,  (58) 

which, of  course, also follows directly from expression (25), by substituting We = 
V~(Re = 6{e. Clearly from eqn (58), for a given (proposed) constitutive expression for 
the spin of isoclinic intermediate configuration, the rotation (Re follows by integration. 
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This has been originally suggested by MANDEL [1973,1981]. In the context of  crystal plas- 
ticity, %Vp ~ is given by the antisymmetric part  of  the proposed expression for the velocity 
gradient of  the intermediate, solely by slip deformed configuration (AsARO [1983a, 
1983b]). 

VIII. C O N C L U D I N G  REMARKS 

We have developed here the continuum mechanics analysis of  large elasto-plastic de- 
format ion of  anisotropic materials by utilizing the multiplicative decomposition of  de- 
formation gradient into its elastic and plastic parts. This has not been previously much 
treated in the literature, as most of  the constitutive elaborations following LEE'S early 
[1969] paper were devoted to elastically isotropic materials. Exact kinematic analysis de- 
veloped here therefore extends some of the previous results, such as those presented by 
LUBARDA and LEE [1981] and AGAH-TEHRANI et al. [1987]. Relationship to other work 
is also given. Several points should, however, be mentioned. In the analysis given in this 
paper, elastic anisotropy was assumed to remain unaltered during the plastic defor- 
mation.  Elimination of  this restriction and inclusion of  the varying or induced elastic 
anisotropy is clearly an important  extension. This, as well as the development of  the 
spin expression needed to determine the anisotropy orientation and to evaluate elasto- 
plastic stiffness and compliance tensors, may demand development of  the specific micro- 
mechanical framework,  with the appropriate (averaging type) procedure to incorporate 
its pertinent features into the macroscopic-continuum theory. Some of these issues have 
been discussed, for example, by MANDEL [1982] and AIFANTIS [1987]. Important  results 
are obtained in studying various, more specific issues. An extensive analysis of  the tex- 
ture development and its effect on the constitutive behaviour of  the polycrystals by using 
the transition f rom the micro-response of the individual grains to the macro-response 
of  the aggregate has been done by ASARO and NEEDLEMAN [1985]. Other issues, such as 
modeling of different strain hardening characteristics, are also in progress, making the 
theory capable of  more satisfactory description of  the complex elasto-plastic behaviour 
of  deformed metals. 
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