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Abstract-Stress and deformation analysis of the simple shear at finite strain of a strain- 
hardening elastoplastic hollow circular cylinder is given. Both isotropic and anisotropic hardening 
models are considered. In the case of isotropic hardening, there is a closed form analytical solu- 
tion. No normal stresses exist in this case. Purely kinematic hardening with a Mises-type yield 
condition is utilized as a model of anisotropic hardening. Conventional (average) spin is taken 
to construct the objective Jaumann derivative needed in the structure of the corresponding con- 
stitutive laws. Governing partial differential equations are derived and solved numerically to 
give stress and deformation distribution following the advance of plastic flow. The extent or 
range of the appropriateness of the considered constitutive model is also established. 

I. INTRODUCTION 

This article deals with the problem of  a simple shear of  a strain-hardening elastoplas- 
tic hollow circular cylinder, which can be considered to be the analogue in the cylindrical 
coordinates to the simple shear problem of  the rectangular block, treated in the litera- 
ture by NAGTEGAAL & DE JONG [1982], LE~ et al. [1983] and others, but which is more 
involved due to the nonhomogeneous stress and deformat ion distribution that takes 
place. After we introduce kinematic and other preliminaries, and give simple, 
infinitesimal elasticity solution, we first consider the isotropic hardening elastoplastic 
behavior. It is shown that no normal stresses exist in this case. A closed form analyti- 
cal solution is obtained for the deformation and shear stress distribution at any stage 
of  deformation. Rigid-plastic case follows from the elastoplastic solution when the shear 
modulus becomes infinitely large. An interesting observation is made with respect to the 
lack of  the residual stresses on unloading, in spite of  the previous nonhomogeneous plas- 
tic deformat ion in loading. 

The anisotropic hardening behavior is subsequently analyzed in the case of  purely 
kinematic hardening with a Mises-type yield condition, and with the conventional (aver- 
age) spin used to define the objective Jaumann derivative needed in the structure of  the 
corresponding constitutive laws. All three nonvanishing normal  stresses (in cylindrical 
coordinates) exist in this case. The governing partial differential equations are derived, 
whose solution gives the deformation and stress distribution in the course of  deforma- 
tion. Equations are solved numerically by adequate finite difference step by step pro- 
cedure, following the advance of  the plastic region. An analytical explanation for the 
qualitatively limited acceptability of  the considered model is given, which is fully in 
agreement with obtained numerical solution. 

6! 
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II. KINEMATIC AND OTHER PRELIMINARIES 

Consider a long hollow circular cylinder with inner radius a and outer radius b, which 
is bounded by two rigid casings attached to its curved surfaces. The inner casing is fixed, 
while the outer casing rotates about its axis through a prescribed angle J2 =/2  (t) (Fig. 1). 
Using the cylindrical coordinates (r, 0 ,z )  and in view of symmetry of  the problem, dis- 
placement components are given by: 

u,  = r o ~ ( r , t ) ,  1A r = ~ z  = O, (1) 

where 03 = 03(r,t) is the angle of  rotation at radius r and time t. Velocity components 
are then: 

003(r,t) 
v,  = r Ot v~ = w = O, (2)  

so that velocity gradient matrix in cylindrical coordinates (see, for example, MALVERN 
[1969]) is 

0 

L =  003 
~ - + r - -  

0 

0203 

OrOt 

003 

Ot 

0 

0 

having its symmetric part as the rate of  deformation or velocity strain 

(3) 

D = 

l 0203 
o ~r~rot o 

1 0203 

r OrOt 
0 

0 0 0 

0 
(4) 

and its antisymmetric part as a spin matrix 

W = 

0 

003 1 020) 
+ ~ r o r o t  

0 

003 
- Z  + ~ r OrOt/ 

0 

0 

(5)  
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Fig. 1. Hollow circular cylinder bounded by two rigid casings. 

We wish to determine, for the assumed range of deformation and known material prop- 
erties, the stresses in the cylinder and the angle change w = w(r, t) if the angle of  rota- 
t ion/2 = /2 ( t )  of  the outer casing is prescribed. Boundary conditions at radii r = a and 
r = b are, therefore, 

~ ( a , t )  = 0, w(b, t )  = / 2 ( t ) .  (6) 

Neglecting the inertial effects and in view of the symmetries (no dependence on ~ and 
z, with shear stresses Ozr = azO = 0), equilibrium equations reduce to: 

0 0 r O r - -  06~ 
- - +  - 0  
Or r 

0 Orq ~ 2 
Or +-rare=O" 

(7) 

Regardless of  the material properties, f rom eqn (7)2 we obtain 

C~(t) 
Or4~ - -  r2 (8) 

Determination of the function C~ (t) ,  the angle change w = ~(r,  t) and possibly non- 
vanishing normal stresses at, o,  and Oz demands naturally the specification of the mate- 
rial properties (i.e., the corresponding constitutive equations of  the problem). 

!!1. INFINITESIMAL ELASTIC BEHAVIOR 

We first consider infinitesimal elastic deformation,  since if the cylinder is metallic it 
can be deformed in an elastic manner only infinitesimally. If  the cylinder is made of rub- 
ber, for example, large elastic deformation can take place, and finite elasticity analysis 
applies, as discussed in GREEN & ZERNA [1968]. Restricting, therefore, to metals and 
small enough values of  the angle/2 deformation to be elastic, Hooke's  law applies, which 
in the rate-type form gives for the dilatational strain rates: 
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1 
Dr = ~ [6, - ~,(6~ + 6~)] = 0 

1 
D o = ~ [a  s - ~(6~ + 6,.)] = 0 (9) 

1 
Dz = ~ [#z - u(6r + 6~)] = 0, 

where  E and  u are  the  elast ic  cons tan t s ,  and  the supe rposed  do t  s tands  for  the t ime 
derivative.  No  coro ta t iona l  (objective) derivatives are  needed since the elastic modul i  o f  
meta ls  are  far  grea ter  t han  app l i ed  stresses.  Equa t i ons  (9) give ar = 6~ = az = 0, and  
since ini t ial ly (when /2  = / 2 ( 0 )  = 0) no stresses are  present ,  therefore ,  or = oo = o~ = 0. 

F o r  the shear  s t ra in  ra te  we have 

1 020)  1 
Dro = ~ r OrOt - 2ix ar~, (10) 

/~ being the shear  modu lus .  On  in tegra t ing  this 

00) (11) 
arO = I~r Or 

which toge ther  with eqn (8) def ines  the d i f fe ren t i a l  equa t ion  for  ~0, 

00) 1 C l ( t )  
O r  - # r 3 ' ( 1 2 )  

whose so lu t ion ,  a f te r  sa t is fying b o u n d a r y  cond i t ions  (6), is 

w(r , t )  - / 2 ( 0  1 - (13) 
a 2 ~ • 

1 - - -  
b z 

The  stress is given by  

/2( t )  a 2 
oro(r,t)  = 2~ - -  (14) 

t j2  F 2 • 

1 - ---  
b 2 

This is greatest  at  inner radius  r = a, and  if  the yield stress in shear is Ko, plast ic  defor -  

m a t i o n  s tar ts  when 

a 2 ) Ko (15) 
/2=a0= 2-; 
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The angle and stress distribution at that instant (t0) are: 

:) oJ(r, to) = ~ 1 - - ~  

a 2 
Or,(r, to) = Ko -~.  

(16) 

(17) 

IV. ISOTROPIC HARDENING ELASTOPLASTIC BEHAVIOR 

If  the material is nonhardening (i.e., modeled as ideally plastic (K = K0 = const.)), 
angle 120 when plasticity first starts is also the ultimate (collapse) angle, since as 
infinitesimally thin plastic ring forms at r = a, the whole system becomes a mechanism 
ready to rotate as a rigid body about the z axis. Further deformation is therefore pos- 
sible only if the cylinder is of  a strain-hardening material. Let us first consider the iso- 
tropic hardening assumption with a relationship 

= ao(1 + mEp)" (18). 

betweeen the generalized (equivalent) stress O and plastic strain/~p defined by HILL 
[1950]: 

# = x/-3~(S: S) 1/2 (19) 

f t  l J~p = 2x]~(DP:  Dp) l /2d t ,  (20) 
o 

where S is the deviatoric part of  the stress tensor a, D p is the plastic part of the velocity 
strain matrix, while ":"  stands for the trace of the matrix product. In eqn (18), o0 is the 
initial yield stress in the simple tension test, while m and n are the appropriate constants. 
Consider now the instant of  deformation when the plastic region has spread from radius 
r = a to r = c(t)  < b. In this region, we have velocity strain to be the sum of  elastic and 
plastic part D = D e + D p, so that by using eqn (4) and Hooke's  law: 

I [~r -- P(~* + {TZ)] Df =-D e =- ~. 

1 
D~ = -D:~ = -~ [b, - u(b z + b,)] 

1 [az _ p (br  + b,)] 1 9 :  = - D e  = 

(21) 

1 020: 1 
D ~  = ] r arat 2~ Or*" 
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But, due to the incompressibil i ty o f  plastic de fo rmat ion  D f  + D R + D~' = 0, hence 
f rom eqns (21), Or + 6ch + 6 z = 0 and therefore  o~ + % + o~ = 0, as it was so initially, 
at the beginning o f  plasticity. The result that  the hydrostat ic  part  o f  stress is identically 
zero is, o f  course, clear since otherwise it would produce (elastic) volume change, which 
is impossible due to the isochoric nature o f  the overall deformat ion.  The state o f  slress 
is therefore deviatoric and the Prand t l -Reuss  equat ions become:  

D y  D~ ~ D. p D,~: 
. . . . . .  - -  = ~ . . . . .  -'-~:~, (22)  

U s, O , ,  0 .  0 ! ,,,~ 

i.e., 

C~2~ 

6, bch orch - tzr OrOt 

(7 r 0-¢, Or,!~ 
(23) 

since f rom eqn (21): 

1 1 1 
D/" - 6r, D ~  - 66, D~ ~ = - -  (6,. + 6~). (24) 

2# 2~, 2F* 

F rom eqn (23) we conclude that  on = o<, = 0 th roughou t  the course o f  deformat ion .  
Indeed,  denot ing the r ight-hand side o f  eqn (23) by g ( r , t )  and intergrating for  o;, we 
get 

ar = A ( r ) e x p  g(r ,  t ) d t  . (25) 

But initially (at t = to) or = 0, hence A ( r )  = 0 and Or = O. Similarly, o o = 0 and % - 
0. F r o m  eqn (22) then also D p = D R = D p = 0 th roughout  the course o f  deformat ion,  
and f rom eqns (19) and (20) we have: 

2f, 
0 = x/3oro, E ,  = - ~  DrP~ dt .  (26) 

o 

At the instant when the plastic region has spread to radius c = c ( t ) ,  the stress is 

ca ( t )  1 
arch = K0 r2 , K0 = 7"3 ao (27) 

so that ,  after using e q n  (21)4 ,  t h e  g e n e r a l i z e d  plastic strain can be expressed as 

1 Ow 1 ao c2(t)  
Ep = - ~  r Or 3 t* r 2 (28) 

This, as easily can be checked,  satisfies the requirement/Tp(r ,  to) = 0, when C(to) = a. 
Restricting for  simplicity further  analysis to linear hardening (n = 1) (for example, the 
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strain hardening of  an aluminum alloy can be appropriately modeled by eqn (18) with 
Oo = 207 MPa (30 ksi), m = 1.5 and n = 1), substitution of  eqns (27) and (28) into 
eqn (18), gives 

Or = --+'~ r 3 m r '  
(29) 

or, on integration, 

1 ( ~  1 ~)c2(t) ~f31n r 
o~(r,t) = - ~  - -  + --~ r 2 m A,(t-----S' (30) 

where A1 (t) is the integration function to be determined. Notice that from eqns (28) 
and (30), Ep(c , t )  = 0, as it should be. 

In the elastic region c ( t )  <_ r <_ b we have Hooke's  law 

br(~ = 2gDr~,  (31) 

from where, by using eqn (27) for stress and eqn (4) for strain rate, 

0 2 0 )  2 aOc(t  ) dc 1 
OrOt ~f3 ~ d--t r --3' (32) 

that is, by integrating 

1 Oo c2(t)  
~o(r , t )=  2 ~  /x r 2 + B l ( t ) + B 2 ( r ) .  (33) 

1 
As at t = to, when C(to) = a, o~(r, to) is given by eqn (16) with Ko = ~ ao, we must 

have in eqn (33) 

1 (7 0 
- , B2(r) = 0. (34) B1(to) 24-3 # 

Further conditions for determining integration functions and the relationship between 
the extent of  the plastic region c and the angle I2 are the boundary conditions (6), and 
condition at the interface of  elastic and plastic region 

co(c- , t )  = o~(c+,t). (35) 

Substitution of  eqn (30) into eqn (6) gives 

a 

In A1 (t----) = - 2--~ - -  + ~ a - - T - '  (36) 
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hence 

1 ( ~  1 ~ )  ( 1  1 ) _  __~ln(a  ) ,  a < r < c ( t ) _  _ . (137) w(r , t )  = ~ - -  + ~ cZ(t)  a 2 r 2 m 

Substitution of eqns (33) and (37) into eqn (35) determines the expression for integra- 
tion function Bl 

1 (~__ + 1 ~ ) c 2 ( t )  ~/31nC(t) xf3 (38) Bl( t)  
~ a z m a 2m" 

1 
Clearly, B~ (to) = ~ Oo/#, as it should be according to eqn (34). Therefore, in the 

243 
elastic region the angle change is given by 

~o(r,t) - 2x/3 ~ a2 2mm [ a 2 
- - - l J  ---~m ln--,c(t)a c ( t ) _ < r _ < b .  

(39) 
Finally, the remaining condition (6) at radius r = b gives the relationship between the 
angle D(t) and radius c ( t )  which defines the corresponding extent of  the plastic zone 

1 a o ( 1  1 )  -f3 [ c2(t) ] ~/3 c ( t )  
2x/3 ~ d2 b2 ca(t) + ~m a 2 1 -- --m In a = /2 ( t ) .  (40) 

Note that having this, eqn (39) can be rewritten as 

( b 2 )  ¢2(t) 
1 ao 1 - - -  c ( t )  < r <_ b .  (41) ~o(r,t) = Y2(t) + 2--~ ~ 72 b 2 ' - 

The angle/2 = J21 at which plasticity first spreads through all the cylinder is obtained 
from eqn (40) by setting c ( t )  = b 

J21 = ~ - -  + - ~  . ~-2 - 1 - - - I n  . (42) 
m 

Note that at this instant the generalized plastic strain is 

m ~7 1 . (43) 

For example, if b = 2a, m = 1.5 and neglecting the a0/~ term, which is for most met- 
als usually of the order 10 .3 to 10 -2, we obtain from eqn (42) the value DI ~ 0.93 rad 
for the angle at which plasticity spreads through all the cylinder (assuming no instability 
has occurred). Note that neglect of  the a0/~ term in eqns (37) and (39) in fact reduces 
these expressions to ones that correspond to rigid-plastic behavior of the cylinder. 
Indeed, from eqn (39), for example, we see that neglecting the first term on the right- 
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hand side makes the angle o~ independent of  r outside the plastic region, which means 
that the region rotates as a rigid body about the z axis. Since for b greater than a, plastic 
strain soon becomes much larger than elastic in most of  the plastic region, rigid-plastic 
analysis can be appropriately applied for large angles 12( t ) .  For example, the general- 
ized plastic strain at inner radius r = a at the instant when 12 = 12~ is from eqn (43) for 
b = 2a ,  ff, p = 2. 

For 12 > 12~ the whole cylinder is plastic and is strain hardening. At this stage of  
deformation, the angle change is given by 

° '  " 
m b 2 S a  21n 1 -  7 +~:~_a212(t) 1 -~  - ~  

as can be established in a similar manner as done previously, while the stress distribu- 
tion is 

o2 21 b~-~a2 12(t) + - -  In r- I .  (45) or) = 3 + oo m 

m # 

For example, for b = 2a and m = 1.5, neglecting again the a0/tt term, this reduces to 

4 a 2 
O'rq~ = ~ a0112(t) + 0.8] ~-~. (46) 

V. THE UNLOADING BEHAVIOR 

The simple shear of  an isotropic hardening elastoplastic hollow circular cylinder 
presents an example that shows that the statement often made in plasticity literature (see, 
for example, KACHANOV [1974], p. 110), that a body which undergoes a nonhomogene- 
ous deformation in loading is left in the state of  residual stresses after unloading, is not 
correct in general. Indeed, in the problem analyzed in the previous section we have non- 
homogeneous plastic deformation and stress in loading, yet on unloading no residual 
stresses remain. This is obviously so due to the equilibrium requirement, since when we 
remove the moment corresponding to rotation of  amount 12 (i.e., when we make the 
stress at outer radius r = b equal to zero), no stresses can exist at any other radius r. 
Elastic strains on unloading are therefore zero throughout the cylinder, and residual 
(plastic) deformation presents a compatible strain field (i.e., no residual stresses are 
needed to make it compatible via the elastic strains). Consider, for example, unloading 
performed at the instant when 12 = 12~, as given by eqn (42), while 

¢0(r, tl) = ~ - -  + ~ 1 -- ~-~ -- ~ -  (47) 

which follows from eqn (37) for c ( t )  = b. The stress distribution at this instant is 

(r 0 b 2 
trro(r, t l )  = --~ r-- £ ,  (48) 
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so that the required moment (per unit length of  the cylinder) for this state of stress and 
27r 

deformation is M1 = - ~  bZoo. Removing this moment,  elastic destressing is taking 

place and, as easily can be shown, we have: 

b 2 t/2 
~(r,t) - bX--aZ ( 1 -  -~)12(t) + m b a - a  21n 1 - ~-  - --mln ~ 

(49) 

a , , ( r , t )  = 2# b2 -- aZ 12(t) + --m In - ~m ~ - 1 ~-2. (50) 

Residual angle/2 = Or at which unloading is completed follows from eqn (50) by setting 

ar4 ~ = 0  

~?r= ~mm ~ 5 -  1 - - - m  In . (51) 

This, of  course, can also be obtained directly from eqn (42) by substructing the elastic 
part (i.e., the term proportional to ~0/~)- On substituting eqn (51) into eqn (49) we get 
the residual deformation 

c o t -  2m a 2 1 -  - - - m  In . (52) 

Clearly this is same as eqn (47) if material is elastically rigid, or if we neglect the small 
term proportional to a0/~. 

VI. ANISOTROPIC HARDENING BEHAVIOR 

The nature of  the problem and the stress-deformation behavior is quite different when 
a model of  anisotropic hardening is utilized. Consider, for example, purely kinematic 
hardening with a Mises-type yield condition 

2 o2, (S - a ) :  (S - a )  = (53) 

where a is the back stress whose growth (as an internal variable) is prescribed by the 
evolution law 

- A :  DP, (54) 
33t 

where the fourth-order operator A depends on S, or, and variables selected to account 
for the history of  deformation,  while :D/:Dt stands for the objective Jaumann deriva- 
tive associated with the appropriate spin. In the simplest case A is assumed to be a con- 
stant operator  (Aijkz = h6ikSj~, with h = const. ,  and ~ the Kronecker delta), 
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corresponding to linear hardening in tension with constant tangent modulus (equal to 
~h). Using the Jaumann derivative of  the back stress with respect to the spin W, given 
in our problem by eqn (5), which is the average of  the angular velocities over all direc- 
tions in the current configuration, the change of  a is given by 

& = h D  p + w o t - o t W ,  (55) 

where the superimposed dot denotes material time derivative. The first term on the right- 
hand side of  eqn (55) gives contribution to the growth of  at due to the current plastic 
flow, while the last two are due to the rotation of  or. 

In view of  small elastic strains, rigid-plastic theory can be adopted and the flow law 
associated with the yield condition (53) becomes 

D - ( S  - a ) .  (56)  

In the considered problem of  simple shear, this gives 

0 0 0 

1 Ozw 
r 

2 OrOt 

S r - ol r S ~  - olck S z - ol z OrO - Olr( ~ " 
(57) 

Hence, S, = a, ,  S¢ = a ,  and Se = az = - ( c t ,  + a~,), so that unless c¢, = ct, = 0, there 
are normal stresses developed in the cylinder. From the yield condition (53) we further 
have 

fro 
O'r 0 = ~ "[-O/rqS, ( 5 8 )  

while from the evolution law (55) 

d r  = --20tre~ Wcbr = - - d c b  , (59) 

(so that o( r = --O~b , i.e., S r = - S ,  and Sz = az = 0), and 

1 02~o 
d r O  = 2otrW, r -I- ~ hr - - .  

arOt 
(60) 

But, from the equilibrium equations (7): 

O S r  S r Op 
Or + 2 - -  = - -  (61) r Or 

H ( t )  
trr~ = r2 , (62) 

where p = - ~  (O" r "l- O'• "1L O'Z) , while H ( t )  is the integration function. Equation (61) 
serves to determine the unknown pressure p = p(r, t), within an arbitrary constant, after 
deviatoric stress Sr is found. The pressure distribution is, of  course, needed to get the 
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overall stress distr ibution: Or = Sr - p ,  o6 = S o - p ,  o z = - p .  To determine the stresses 
Sr and Or, (i.e., O/r and O~r,) we, therefore,  have on disposal eqns (59), (60) with (58), 
(62) and the appropr ia te  bounda ry  condit ions at r - a and r = c, where the plastic 
f ront  has just  arrived. Recall that  at r = a we have 3 ~ / O t  = 0, as ~o(a,t)  = 0, while 

O0 
at r = c we have c~, = o~ = o~,, = 0 and o,., = ~ ,  as no plastic de format ion  yet oc- 

curred at interface r = c. The funct ion H ( t )  in eqn (62) can then clearly be expressed 
O0 

as H ( t )  = - ~  c 2 ( t ) .  O f  course,  at r = c we also have c0 = g2. 

In the integrat ion procedure  o f  solving eqns (59) and (60), it is convenient  to take 
monotonical ly increasing angle 1"2 as the measure o f  "time" t, so that the governing equa- 
tions o f  the problem in the region a _< r < c become:  

3/2 
(63) 

1 d H  _ 2 / Oo~ 1 O2w ] 1 O2c0 (64) 
r 2 d12 Sr~f f '~  + "2 r OrOJ2/ + 2 hr  OrO-~" 

These equat ions are solved numerical ly by an adequate  finite difference,  step-by-step 
procedure following advance o f  the plastic region. The impor tant  feature o f  these equa- 
tions and hence o f  the utilized kinematic hardening model  is, however,  that  after a 
certain amount  o f  plastic deformation,  the instant is reached when further plastic defor- 
mat ion  is accompanied  by decreasing load, which is physically an unacceptable behav- 
ior. Indeed,  f rom eqn (64) at r = a, d H / d l 2  becomes equal to zero when 

1 
S , +  ~ h  = 0 ,  (65) 

hence shear stress O'r0 at that  instant reaches its ex t remum (maximum),  and further  
de fo rmat ion  would  be fol lowed by decreasing stress, clearly an unrealistic behavior.  
That  condi t ion (65) will be at tained after some amoun t  o f  plastic de fo rmat ion  is cer- 
tain since f rom eqns (59) and (60) at r = a, upon  integrat ion 

a L = -c~}  - ho~r, (66) 

hence - h  ___ o~, _< 0, and Sr(  =- a t )  is negative. It turns out ,  therefore,  that  the consid- 
ered model o f  kinematic hardening gives qualitatively acceptable results only in the lim- 
ited range o f  stress and de fo rmat ion  (until condi t ion  (65) is reached). This is fully 
conf i rmed by numerical  solution o f  eqns (63) and (64). For  example, for h = a0, the 
plastic zone reaches the radius c = 1.16a, when condit ion (65) is attained, angle t2 being 
0.040 rad,  whereas the corresponding plastic strain at r = a is g'p = 0.35. For  higher 
rates o f  hardening, a higher extent o f  plastic region is attained before the critical instant 
is reached (for h = 1.5ao: c = 1.29a, I2 --- 0.084 rad,  ff, p(r ----- a )  = 0.42, while for h = 
200: c = 1.42a, J2 = 0.13 rad, E p ( r  = a) = 0.52). Note that  the angle change ~0 = co(r, I2) 
is independent  o f  the (initial) yield stress Oo, as is clear f rom eqns (63) and (64), since 
Sr, H ,  and h are all p ropor t iona l  to Oo (of  course,  the generalized plastic strain E'p is 
also independent  o f  Oo). Figures 2 to 5 present numerical ly obta ined stress and defor-  
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~tressx~ 
[MPa] 

140 

130 
120 

'00 t o , ~  Or, 

o .o, .o, .o, o ,  .o9 

Fig .  2.  St ress  v a r i a t i o n  a t  r = a .  

mation distribution when h = 1.5ao. For comparison, corresponding isotropic harden- 
ing solution is also plotted (eqns (27), (37), and (40) with a0/# = 0 and m = 2.25). 
Figure 2 gives the stress variation at inner radius r = a, as the angle of rotation/2 is being 
increased from zero to critical value/2c = 0.084 rad, as previously discussed. Figure 3 
shows the stress distribution in the plastic region (a - r _ c) at the instant when/2 = 
/2c, while Fig. 4 gives the extent of the plastic region c as a function of the angle/2. 
Finally, Fig. 5 presents the plastically deformed shape of the initially straight line (~b = 
const.), i.e. the function o~ = o~(r) at the instant/2 =/2~. Outside the plastic region 
(c ___ r _< b), the angle w = const. - /2c  as that region is not deformed but only rigidly 
rotated for the angle/2~. No normal stresses exist there, whereas shear stress is simply 
determined from the moment equilibrium equation. Note that the kinematic hardening 
plasticity model gives softer response than the isotropic hardening, which is due to the 
presence of growing back stress which, as a residual stress on microlevel, helps macro- 
scopic stress in producing a given amount of plastic deformation. 

VII .  D I S C U S S I O N  

A quite analogous situation with anomalous stress-deformation behavior after a cer- 
tain amount of prior plastic deformation was observed by NAOTEGXAZ ~ JONG [1982] 
in the problem of large simple shear of rectangular block. LEE et al. [1983] consequently 
suggested that, in place of the average spin W, the spin of the specific lines of material 
elements, such as are directions o f  the eigenvectors of  ot (which may be considered to 
carry the major influence of the back stress), should be used as an appropriate spin in 
the evolution law (55). This choice of the spin W* eliminates the spurious oscillation of 
stresses obtained at large finite strain by using the conventional (average) spin W. The 
use of the average spin within the considered anisotropic model is indeed the reason for 
the onset of unrealistic behavior after a certain amount of  plastic deformation. If  a 
modified spin has been used, that does not make the right hand side of  eqn (64) equal 
to zero at any (however large) stage of  deformation; steady growth of the stress distri- 
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bution would be achieved corresponding to continuing plastic deformation. At moderate 
finite strain, however, where the generalized plastic strain is below a certain limit, the 
use of either spin leads to approximately the same results (for example, LEE et al. [1981] 
obtained this in the range of/~p < -0.5),  which agrees with findings obtained here that 
oscillations start approximately at that amount of (maximum) generalized plastic strain. 
Further development of the kinematic and, more generally, anisotropic hardening 
plasticity theory is needed to obtain satisfactory results at arbitrary strain with respect 
to both qualitatively and quantitatively correct prediction of stress-deformation distri- 
bution. For example, FARDSHISHEH & ONAT [1974] suggested, in place of eqn (54), a 
more general structure of the evolution law 

= f(t~, DP),  (67) 
~ t  

where f is an isotropic tensor function of a and D p, while ~)/~)t is the Jaumann 
derivative with respect to total spin W. Further development of the evolution law struc- 
ture based on the representation theorems of isotropic tensor functions is given by 
ACAn-TEH~.NI et al. [1986] and L t r B ~ A  [1987]. This, however, still corresponds to 
the simplest model of the plastic anisotropy, the shift of the yield surface in stress space. 
The theory that includes the shape changes of the yield surface or other more involved 
complexities introduced to adequately represent experimentally observed anisotropic 
hardening effects is inevitably needed in order to accurately predict the complicated 
stress-deformation behavior that occurs in many technological processes of plastic form- 
ing, such as extrusion or drawing. 
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