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Abstract

Stress–strain response under constant and variable strain-rate is studied for selected models
of inelastic behavior. The derived closed-form solutions for uniaxial loading enable simple
evaluation of the strain-rate effects on the material response. The effect of an abrupt change of
strain-rate is also examined. Non-Newtonian viscosity which decreases with an increasing

strain-rate is incorporated in the analysis. Parabolic and hyperbolic hardening are used to
describe the plastic response in monotonic loading. A three-dimensional generalization of an
elastic–viscoplastic model is employed to study the stress relaxation in simple shear. A com-

bined isotropic–kinematic hardening and the concept of overstress are used in the analysis.
The unloading nonlinearity of the stress–strain curve is then discussed.
# 2002 Published by Elsevier Science Ltd.
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1. Introduction

The objective of this paper is an evaluation of the strain-rate effects in different
rheological models of inelastic response. Two appealing models are considered
based on serial and parallel combinations of elastic, viscous and plastic elements,
recently used in the constitutive analysis of polymeric materials by Bardenhagen et
al. (1997), and Zerilli and Armstrong (2000). A third rheological model considered is
a generalized viscoelastic–viscoplastic model. The elastic response is governed by
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linear or nonlinear elasticity, and the viscous response by non-Newtonian viscosity
which is a decreasing function of strain-rate. The plastic element in monotonic
loading is characterized by either parabolic or hyperbolic type of hardening. In the
case of parabolic hardening, the flow stress is related to plastic strain by (Fig. 1)

�p ¼ Yþ �̂p � Yð Þ
"p

"̂p
2�

"p

"̂p

� �
; ð1Þ

where Y is the initial yield stress, and "̂p is the plastic strain at the apex of the plastic
stress–strain curve with the stress �̂p. The hyperbolic-type of hardening is described
by

�p ¼ Ŷ �
Ŷ � Y

1þ "p="̂p
: ð2Þ

The limiting stress at zero saturation hardening-rate is Ŷ. The scaling strain "̂p in
Eq. (2) is conveniently specified by requiring that the initial hardening rate is equal
to a prescribed value k0 (Fig. 2). This gives "̂p ¼ ðŶ � YÞ=k0. In addition, an expo-
nential type of saturation hardening is used, which is specified by

�p ¼ Yþ Ŷ � Y
� �

1� exp �
"p

"̂p

� �� �
: ð3Þ

In a three-dimensional generalization the plastic behavior is governed by either
isotropic or anisotropic hardening. In the latter case a combined isotropic-kinematic
hardening with Prager’s evolution of the back stress is utilized. The equations are

Fig. 1. Parabolic hardening plastic stress–strain curve when: (a) �̂p > Y, and (b) �̂p < Y. The initial yield

stress of the material is Y.
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applied to study the simple shear problem of an elastic–viscoplastic material. The
viscosity � is assumed to decrease with the strain-rate 	 according to

� 	ð Þ ¼ �1 þ
�0 � �1

1þ 	=	rð Þ
2

� �n : ð4Þ

The viscosity parameters in the limit as 	 ! 0 and 	 ! 1 are denoted by �0
and �1, respectively, and the scaling value of 	 is denoted by 	r. This representation
of � was proposed by Bird et al. (1977), and later used by Bardenhagen et al. (1997).
Another dependence of the viscosity on the strain-rate was proposed and used by
Khan and Zhang (2001).
The obtained results reproduce some of the versatile features of uniaxial response

observed in polymeric materials, such as apparent softening or nonlinearities on
unloading from an elastoplastic state. Numerical tests under constant strain-rate
and piece-wise linear strain histories are considered, as well as under the stress
relaxation and recovery conditions. This facilitates the selection of a suitable model
for a particular material in the relevant range of application, and the specification of
the corresponding material parameters. Related work was recently done by Khan
and Liang (2000), and Khan and Zhang (2001), who modeled viscoelastic and
viscoplastic deformation of BCC metals and polytetrafluoroethylene by a series
connection of viscoelastic and viscoplastic elements. Both qualitative and quantita-
tive agreement with experimental data was achieved for uniaxial static and dynamic
compression, creep, and relaxation tests. Bardenhagen et al. (1997) previously
modeled the stress relaxation and recovery response of an epoxy resin with a
satisfactory agreement with experimental data under uniaxial loading condi-
tions. Isothermal conditions are considered, although the temperature effects
may be important, particularly in temperature sensitive polymers and at very high
strain-rates.

Fig. 2. Hyperbolic hardening plastic stress–strain curve. The initial yield stress is Y, the initial hardening

rate is k0, and the saturation hardening rate is Ŷ.
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2. Viscoelastic–plastic model

A series connection of elastic, viscous and plastic elements was considered by
Zerilli and Armstrong (2000) as a simple one-dimensional model of polymeric
response. We restrict investigations in this section to uniaxial (strain controlled)
tension under constant rate of strain "

:
¼ 	 ¼ const. If the applied stress is below the

initial yield stress Y, the behavior is governed by the Maxwell viscoelastic element.
The stress response is

� ¼ �� 1� exp �
E"

��

� �� �
; " ¼ �

��

E
ln 1�

�

��

� �
; ð5Þ

where E is the elastic modulus, and � the viscosity coefficient. The stress parameter
�� ¼ �	 is explicitly introduced, since it repeatedly appears in the analysis presented
in this paper. The plastic element activates at the stress level Y and the correspond-
ing strain "Y ¼ " Yð Þ. For "Y to be finite it is required that �� > Y. Beyond the strain
level "Y the total rate of strain is the sum of elastic, viscous and plastic contributions,
such that

"
:
¼

1

E
�
:
þ
1

�
� þ "

:p: ð6Þ

In the domain of large strains the longitudinal strain " is defined as the logarithmic
strain, and the stress � is the Cauchy stress. In the case of parabolic hardening, from
Eq. (1) there follows

"
:p ¼ 	

"̂p�
:

2 �̂p � Yð Þ �̂p � �ð Þ½ �
1=2

; � 6¼ �̂p: ð7Þ

The plus sign in Eq. (7) applies in the ascending, and the minus sign in the des-
cending portion of the stress–strain curve. The substitution of Eq. (7) into Eq. (6)
yields a differential equation

1	
E"̂p

2 �̂p � Yð Þ �̂p � �ð Þ½ �
1=2

( )
�
:
þ
E

�
� ¼ E	: ð8Þ

This allows a closed form solution. When �̂p is the maximum achievable stress, the
resulting stress–strain relationship is

" ¼ �
��

E
ln 1�

�

��

� �
�

��"̂p

2 �̂p � Yð Þ
1=2 �̂p � ��
�� ��1=2 �m Y; ��; �̂p; �ð Þ: ð9Þ
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The function �m is defined by

Fm ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂p � �

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂p � ��

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂p � �

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂p � ��

p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂p � Y

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂p � ��

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂p � Y

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂p � ��

p

�����
�����; ð10Þ

provided that Y < �� < �̂p and � < ��. If �� > �̂p, the function �m is

1

2
�m ¼ 	tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂p � �

�� � �̂p

r
� tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂p � Y

�� � �̂p

r
: ð11Þ

The plus sign applies in the ascending, and the minus sign in the descending portion
of the stress–strain curve. If �� ¼ �̂p, the stress–strain response is

" ¼ �
��

E
ln 1�

�

��

� �
þ

��"̂pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� � Y

p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�� � �
p �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� � Y

p

� �
: ð12Þ

When �̂p is the minimum stress, the stress–strain relationship becomes

" ¼ �
��

E
ln 1�

�

��

� �
þ

��"̂p

2 Y� �̂pð Þ
1=2 �� � �̂pð Þ

1=2
�m Y; ��; �̂p; �ð Þ: ð13Þ

The function �m is

�m ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� � �̂p

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� � �̂p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� � �̂p

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� � �̂p

p

�����
�����
	1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y� �̂p

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� � �̂p

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y� �̂p

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� � �̂p

p

�����
�����

 !
: ð14Þ

The plus sign in the exponent applies to the descending, and the minus sign to the
ascending portion of the stress–strain curve. The polymeric materials often show an
initial descending portion of the stress-strain curve in the inelastic range, followed by
an ascending (hardening) range, e.g. Boyce et al. (1988). It is noted that in the case
when �̂p is the minimum stress, we have �� > Y > �̂p and � < ��. The inequality
�� 4 �̂p does not arise because it is assumed that "Y is finite, and thus �� > Y.
Numerical results are shown in Figs. 3–5. The stress–strain curves in Fig. 3 are

obtained from Eqs. (9) and (10). Since in this case � < �� < �̂p, the peak stress level
�̂p is never reached, and the response beyond the initial yield stress is always in the
hardening range. Both, the current flow stress and the hardening rate increase with
the increasing value of the parameter �� ¼ �	. The initial yield stress Y is assumed
to be independent of the strain-rate and equal to 100 MPa. Other parameters are
E ¼ 15Y, �̂p ¼ 2Y, and "̂p ¼ 0:3. If �� 4Y, the response is purely viscoelastic
throughout the course of deformation, and � ! �� in the limit as " ! 1. Fig. 4
gives the stress–strain curves obtained from Eqs. (9) and (11) for the representative
values of �� that are greater than �̂p. Although Y and �̂p are both assumed to be
strain-rate independent, the results indicate the features of an apparent ‘‘brittle-to-
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Fig. 3. The stress–strain curves in uniaxial tension for viscoelastic–plastic model in the case of parabolic

hardening, when �̂p > Y and �� 4 �̂p. The curves correspond to indicated values of the stress parameter

��. The material parameters are E ¼ 15Y, �̂p ¼ 2Y, "̂p ¼ 0:3, and Y=100 MPa.

Fig. 4. The stress–strain curves for viscoelastic–plastic model in the case of parabolic hardening, when

�̂p > Y and �� 5 �̂p. The material parameters are E ¼ 15Y, �̂p ¼ 2Y, "̂p ¼ 0:3, and Y=100 MPa.
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ductile’’ transition with a decrease of ��. The deformation beyond the peak stress
levels is assumed to be uniform (without a localization). The results in Fig. 5 are
obtained from Eqs. (13) and (14). Purely viscoelastic response occurs for �� 4Y,
while plasticity can take place only for �� > Y. The initial softening range is fol-
lowed by the hardening range, the former being more extended smaller the value of
the parameter ��.
The established dependence of the stress–strain response on the parameter �� ¼

�	 can be conveniently used to examine the effects of strain rate. Suppose that the
viscosity depends on strain-rate according to Eq. (4). If the values �0=200 GPa s,
�1=20 kPa s, 	r=0.3�10�3 s�1, and n=0.465 are adopted, an increase of strain
rate from 100 to 1000 s�1 results in an increase of stress from 132 to 152.5 MPa, at
the strain level of one-half. The viscosity parameter at the strain-rate of 10 s�1 is
equal to 12.46 MPa s, at 100 s�1 it is 1.48 MPa s, and at 1000 s�1 it is equal to 0.192
MPa s. The analysis can also be extended to include a pressure dependence by
assuming that the viscosity depends on the superposed pressure (e.g., Argon, 1973;
Zerilli and Armstrong, 2000). The effects of increasing pressure are similar to the
effects of increasing strain-rate, since both elevate the flow stress and the hard-
ening rate at a given level of strain. It should also be indicated that we assumed
that the viscosity parameter depends on the total strain-rate, rather than its own
(viscous) strain-rate, which significantly simplifies the analysis and enables the
closed-form solutions.
In the case of hyperbolic hardening and Eq. (2), the rate of plastic strain is

"
:p ¼ "̂p

Ŷ � Y

Ŷ � �
� �2 �: ; ð15Þ

Fig. 5. The stress–strain curves for viscoelastic–plastic model in the case of parabolic hardening, when

�̂p < Y and �� 5Y. The material parameters are E ¼ 15Y, �̂p ¼ 0:8Y, "̂p ¼ 0:1, and Y=100 MPa.
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and substitution into Eq. (6) yields a differential equation

1þ E"̂p
Ŷ � Y

Ŷ � �
� �2

2
64

3
75�: þ E

�
� ¼ E	: ð16Þ

The resulting stress–strain expression is

" ¼ �
��

E
ln 1�

�

��

� �
� "̂p

Ŷ � Y

Ŷ � ��
� Y; Ŷ; ��; �
� �

; ð17Þ

where

� ¼
��

Ŷ � �
�

��

Ŷ � Y
�

��

Ŷ � ��
ln

�� � Y

Ŷ � Y
�
Ŷ � �

�� � �

�����
�����: ð18Þ

If �� ¼ Ŷ, in place of Eq. (17), we have

" ¼ �
��

E
ln 1�

�

��

� �
þ "̂p

�� Ŷ � Y
� �

2

1

�� � �ð Þ
2
�

1

�� � Yð Þ
2

� �
: ð19Þ

Fig. 6 shows shows the stress-strain curves when �� is equal to 1.5Y, 2Y, and 3Y.
The limiting stress value used in the calculation was Ŷ ¼ 2Y. The other material
parameters were E=15Y, Ŷ ¼ 2Y, Y=100 MPa, and "̂p ¼ 0:2.

Fig. 6. The stress–strain curves for viscoelastic–plastic model in the case of hyperbolic hardening, when

Ŷ ¼ 2Y. The material parameters are E ¼ 15Y, "̂p ¼ 0:2, and Y=100 MPa.
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The generalizations of the simple one-dimensional model leading to Eq. (6) can be
made by using the network of parallel viscoelastic elements connected in series with
a plastic element (as in Zerilli and Armstrong, 2000). A nonlinear viscosity law in
which the viscous part of strain rate depends nonlinearly on stress can also be used.
These generalizations may be particularly important for reproducing the behavior
observed in creep and relaxation tests.

3. Viscoelastic–elastoplastic model

A parallel connection of the viscoelastic and elastoplastic element was considered
by Bardenhagen et al. (1997) as another one-dimensional model of polymeric
response (Fig. 7). If "4Y=E, the stress is � ¼ E"þ �v, where �v is the part of stress
carried by the viscoelastic element. This is governed by

"
:
¼

1

E0
�
: v þ

1

�
�v: ð20Þ

In the constant strain-rate test "
:
¼ 	 ¼ const:, the integration gives

�v ¼ �� 1� exp �
E0"

��

� �� �
; �� ¼ �	: ð21Þ

If "5Y=E, the total stress is

� ¼ �p þ �v ¼ �p þ �� 1� exp �
E0"

��

� �� �
; ð22Þ

Fig. 7. Viscoelastic–elastoplastic model of uniaxial response, comprised of a parallel connection of vis-

coelastic and elastoplastic elements. The elastic moduli are E and E0, the viscosity coefficient is �, and the

initial yield stress of the plastic element is Y.
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where �p is the part of stress carried by the elastoplastic element. In the case of
parabolic hardening, from Eq. (1) we can write

Yþ �̂p � Yð Þ
"p

"̂p
2�

"p

"̂p

� �
¼ E "� "pð Þ: ð23Þ

Solving for the plastic strain "p in terms of the total strain " gives

"p

"̂p
¼ 1þ

1

2 �̂p � Yð Þ
E"̂p � �̂2 � 4 �̂p � Yð Þ E"� Yð Þ

� �1=2n o
; ð24Þ

where

�̂ ¼ E"̂p þ 2 �̂p � Yð Þ: ð25Þ

If �̂p > Y, the inequality holds

E"̂p < �̂2 � 4 �̂p � Yð Þ E"� Yð Þ
� �1=2

ð26Þ

in the range "p < "̂p. If �̂p < Y, the opposite inequality applies in (26) in the range
"p < "̂p. Both are ensured when

" < "̂p þ
�̂

E
: ð27Þ

For strain levels greater than that given by the right-hand side of (27), a descend-
ing portion of the stress–strain response is reached in the first case, and the ascend-
ing portion in the second case. Furthermore, the collection of terms under the
square-root sign in Eq. (24) must be non-negative. This is always the case when
�̂p < Y, and is also the case when �̂p > Y provided that

" < "̂p þ
�̂

E
þ

E"̂p2

4 �̂p � Yð Þ
: ð28Þ

This sets the limiting value of strain, for the considered material model with a soft-
ening range, that can be reached in a test under constant rate of strain.
Returning to Eq. (24), its substitution into �p ¼ E "� "pð Þ gives

�p ¼ E"�
E"̂p

2 �̂p � Yð Þ
�̂ � �̂2 � 4 �̂p � Yð Þ E"� Yð Þ

� �1=2n o
: ð29Þ

The total stress follows from Eq. (22). The strain-rate dependence is present only in
the expression for the viscous part of stress �v. The results are shown in Fig. 8 for
�̂p ¼ 2Y and "̂p ¼ 0:3. The elastic properties were E ¼ 10Y and E0 ¼ 7Y, and
Y=100 MPa. The limiting strain value is 0.724. Fig. 9 is obtained for �̂p ¼ 0:5Y and
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"̂p ¼ 0:3. It is characterized by an increasing rate of hardening with progression of
deformation in the inelastic range.
For hyperbolic hardening and Eq. (2), we have

�p ¼
1

2
E "þ "̂pð Þ þ Ŷ
h i

�
1

2
E "� "̂pð Þ � Ŷ
h i2

þ4E"̂p E"� Yð Þ

� �1=2

: ð30Þ

The total stress � is again obtained from Eq. (22). The results are given in Fig. 10.
The viscosity � was determined from Eq. (4). The values �0=161 GPa s, �1=16 kPa

Fig. 8. The stress–strain curves in uniaxial tension for viscoelastic–elastoplastic model in the case of

parabolic hardening, for the strain-rates 	=10, 100, and 1000 s�1. The material parameters are E ¼ 10Y,

E0 ¼ 7Y, �̂p ¼ 2Y, "̂p ¼ 0:3, and Y=100 MPa.

Fig. 9. The stress–strain curves for viscoelastic–elastoplastic model in the case of parabolic hardening, for

the strain-rates 	=10, 100, and 1000 s�1, and the material parameters E ¼ 10Y, E0 ¼ 7Y, �̂p ¼ 0:5Y,

"̂p ¼ 0:3, and Y=100 MPa.
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s, 	r=0.125�10�3 s�1, and n ¼ 0:465 were used, which correspond to an epoxy resin
(Bardenhagen et al., 1997). These values can be adjusted for other materials in
accordance with experimental data [for example, see Khan and Zhang’s (2001) pro-
posal for a polytetrafluoroethylene data].

4. Stress response for a piecewise–linear strain history

Having a closed form solution for the stress–strain response under constant strain-
rate enables a derivation of the solution for any piecewise–linear strain history that
gives rise to monotonic loading (without unloading of the plastic element). This is
here demonstrated for the viscoelastic–elastoplastic material model shown in Fig. 7.
Suppose that the strain level "0 is reached at the strain-rate 	 ¼ 	0, and that sub-
sequent strain segments "i � "i�1 are imposed at the strain rates 	 ¼ 	i

(i ¼ 1; 2; . . . ; n). Beyond the strain level " ¼ "n, the strain-rate is kept at the constant
value 	 ¼ 	n. In each case the stress response is the sum of viscoelastic and plastic
contributions, � ¼ �v þ �p. The plastic contribution is given by Eq. (29) in the case
of parabolic hardening, and by Eq. (30) in the case of hyperbolic hardening. The
viscoelastic contribution can be determined from the recursive formula

�v ¼ ��
i � ��

i � �v
i�1

� �
exp �

E0 "� "i�1ð Þ

��
i

� �
; i ¼ 1; 2; 3; . . . ; n; ð31Þ

which applies in the range "i�1 4 "4 "i. In this range the strain-rate is 	 ¼ 	i, and
the stress parameter ��

i ¼ �	i. The viscoelastic stress at the strain level " ¼ "i�1 is
denoted by �v

i�1.

Fig. 10. The stress–strain curves in uniaxial tension for viscoelastic–elastoplastic model in the case of

hyperbolic hardening described by Eq. (2), corresponding to strain-rates 	=10, 100, and 1000 s�1. The

material parameters are E ¼ 10Y, E0 ¼ 7Y, Ŷ ¼ 2Y, "̂p ¼ 0:2, and Y=100 MPa.
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Consider the piecewise-linear strain histories OA0A1A2A3 and OA0
0A

0
1A2A3, sym-

metric about the path of constant strain-rate " ¼ 	1t (Fig. 11). The strain-rate along
the segment OA0 is 	0 < 	1, and along the segment A1A2 it is 	2 > 	1. The strain-
rate along the segment OA0

0 is 	0
0 ¼ 	2, and along the segment A0

1A
0
2 it is 	0

2 ¼ 	0.
The strain-rates along the segments A0A1 and A0

0A
0
1 are both equal to 	1. The points

A0 and A1 are selected so that the points B and C divide the segment OA2 symme-
trically in the ratio 1:k, i.e. the lengths OB ¼ OA2= kþ 1ð Þ and OC ¼ kOA2= kþ 1ð Þ,
for some k. Suppose that the coordinates of the point A2 t2; "2ð Þ are t2 ¼ kþ 1ð Þ
 and
"2 ¼ kþ 1ð Þ	1
, where 
 is a suitable time scale. It is readily found that

t0


¼

1þ 	2
1


2

1þ 	0	1
2
;
t1


¼

k 1þ 	2
1


2
� �

þ 	1 	1 � 	0ð Þ
t0

1þ 	2
1


2
; ð32Þ

"0 ¼ 	0t0; "1 ¼ 	0t0 þ 	1 t1 � t0ð Þ; ð33Þ

and

t00


¼

2	1
"0 þ 1� 	2
1


2
� �

t0=


1þ 	2
1


2
;
t01


¼

2	1
"1 þ 1� 	2
1


2
� �

t1=


1þ 	2
1


2
; ð34Þ

"00 ¼
2	1t0 � 1� 	2

1

2

� �
"0

1þ 	2
1


2
; "01 ¼

2	1t1 � 1� 	2
1


2
� �

"1

1þ 	2
1


2
: ð35Þ

For k ¼ 1 the points A0 and A1, and A0
0 and A0

1 coincide, so that "0 ¼ "1 and
"00 ¼ "01. Fig. 12 shows the corresponding stress for the strain path OA0A2A3 in the

Fig. 11. Piecewise–linear strain paths OA0A1A2A3 and OA0
0A

0
1A2A3, symmetric about the constant strain-

rate path OA2A3. The strain-rate along the segments OA0 and A0
1A2 is 	0, along the segments A1A2 and

OA0
0 it is 	2 > 	0, and along A0A1, A

0
0A

0
1 and OA2A3 it is 	1, where 	0 < 	1 < 	2.
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case when 	0=50 s�1 and 	1=200 s�1. The strain-rate 	2 ¼ 	0
0 ¼ "00=t

0
0=562 s�1 and

	0
2 ¼ 	0. The time scale is selected to be 
=250�1 s, so that "2 ¼ 2	1
 ¼ 1:6. Con-

sequently, Eqs. (32) and (33) give t0=0.5655�10�2 s and "0 ¼ 0:2828. The elastic
constants are E ¼ 10Y and E0 ¼ 7Y, where Y=100 MPa. The hyperbolic hardening
of Eq. (30) was used to describe the plastic part of the response. The viscosity
parameter � is taken to depend on the strain-rate according to Eq. (4). The stress–
strain relationship corresponding to strain path OA0

0A2A3 is also shown in Fig. 12.
In this case from Eqs. (34) and (35) it is found that t00=0.2345�10�2 s and
"00¼ 1:3172. The curves shown in Fig. 12 illustrate a gradual transition and the stress
adjustment during monotonic loading, as the strain-rate is abruptly increased or
decreased from its current value. At the strain levels sufficiently greater than "2, both
curves approach the stress–strain curve obtained in the test at constant strain-rate 	1

from the onset of deformation. Related discussion in the context of rate-dependent
metal plasticity can be found in the papers by Krieg et al. (1987), and Bammann
(1990).

5. Viscoelastic–viscoplastic model

The well-known one-dimensional rheological model depicted in Fig. 13, often used
to describe viscoplastic response of metals (e.g., Malvern, 1951; Perzyna, 1966), does
not allow a closed form solution for either parabolic or hyperbolic hardening plas-
ticity. For example, in the case of parabolic hardening, a quasi-linear differential
equation for the plastic strain is obtained

�"
:p þ a"p þ b"p2 ¼ E"� Y; ð36Þ

Fig. 12. The stress adjustment to an abrupt change of strain-rate during the loading program. The solid

curve corresponds to the strain path OA0A2A3, and the dotted curve to the strain path OA0
0A2A3.
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with the initial condition "p ¼ 0 when " ¼ Y=E. The parameters a and b are

a ¼ Eþ 2
�̂p � Y

"̂p
; b ¼ �

�̂p � Y

"̂p2
: ð37Þ

Eq. (36) is a particular case of the Riccati’s differential equation (e.g., Ince, 1956),
which in general requires a numerical treatment. In the constant strain-rate test
"
:
¼ 	, the time-rate of plastic strain can be expressed as "

:p ¼ 	d"p=d", and Eq. (36)
becomes

��
d"p

d"
þ a"p þ b"p2 ¼ E"� Y; �� ¼ �	: ð38Þ

Once the plastic strain is determined by numerical integration, the total stress is
equal to � ¼ E "� "pð Þ. In the case of linear hardening, however, there is a closed
form solution. If �p ¼ Yþ k0"

p, the plastic strain is readily found to be

"p ¼
E

Eþ k0
"�

Y

E

� �
�

E��

Eþ k0ð Þ
2

1� exp �
Eþ k0
��

"�
Y

E

� �� �� �
: ð39Þ

A combined viscoelastic–viscoplastic model is shown in Fig. 14. Two viscous ele-
ments are introduced, one with the viscosity � and the other with the viscosity �.
Both viscosities are strain-rate dependent, but may be quite different, since they
generally account for different microscopic deformation mechanisms and different
time scales. Representative values of � for some materials can be found in Cristescu
and Suliciu (1982). The total stress can be expressed as

� ¼ �p þ �"
:p; ð40Þ

Fig. 13. Elastic–viscoplastic model of uniaxial response. Elastic element is connected in series with a vis-

coplastic element, comprised of a parallel connection of the viscous and plastic elements. The elastic

modulus is E, the viscosity coefficient is �, and the initial yield stress of plastic element is Y.
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where "
:p is the rate of strain in the plastic element. If plastic hardening is linear,

�p ¼ Yþ k0"
p, the total stress is

� ¼ Yþ k0"
p þ �"

:p; ð41Þ

and the substitution into Eq. (6) yields

"_€p þ
E

�
þ
Eþ k0

�

� �
"
:p þ

Ek0
��

"p ¼
E

��
�"
:
� Yð Þ: ð42Þ

In the constant strain-rate test, this becomes

"_€p þ b"
:p þ c"p ¼

c

k0
�� � Yð Þ; ð43Þ

where �� ¼ �	, and

b ¼
E

�
þ
Eþ k0

�
; c ¼

Ek0
��

: ð44Þ

The second-order linear differential equation (43) has a general solution

"p ¼
1

k0
�� � Yð Þ þ C1exp

�1"

	

� �
þ C2exp

�2"

	

� �
; ð45Þ

with the parameters

�1;2 ¼
1

2
�b	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4c

p� �
: ð46Þ

Fig. 14. Viscoelastic–viscoplastic model of uniaxial response. Viscoelastic element (E; �) is connected in

series with a viscoplastic element (�;Y).
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The condition b2 > 4c is guaranteed for k0 < E. The integration constants C1 and
C2 are determined from the conditions "p ¼ 0 and "

:p ¼ 0, when � ¼ Y and " ¼ "Y.
The latter condition on the rate of plastic strain follows directly from Eq. (40). Thus,

C1 ¼
�2

�1 � �2

��

k0
1�

Y

��

� �1þ�1�=E

; ð47Þ

C2 ¼ �
�1

�1 � �2

��

k0
1�

Y

��

� �1þ�2�=E

: ð48Þ

This specifies the plastic strain in Eq. (45). The corresponding rate is

"
:p ¼ �1C1exp

�1"

	

� �
þ �2C2exp

�2"

	

� �
: ð49Þ

Substituting Eqs. (45) and (49) into Eq. (41) gives the expression for the total stress

� ¼ �� þ k0 þ �1�ð ÞC1exp
�1"

	

� �
þ k0 þ �2�ð ÞC2exp

�2"

	

� �
: ð50Þ

The results are shown in Fig. 15. Three strain-rates 	=10, 100 and 1000 s�1 are
imposed. The material parameters were E ¼ 10Y, k0 ¼ 2Y, and Y=100 MPa. The
viscosity parameter � was calculated from Eq. (4) and the data listed in Section 3, while
� was assumed to be 5 times greater than �. The addition of the viscosity � provides a
nonlinear response on initial loading and viscoelastic unloading from an elastoplastic
state. Note that in the relaxation test ("

:
¼ 0 beyond some inelastic state of defor-

mation) the stress gradually relaxes to zero value, while for the model in Fig. 13 the
stress relaxation stops when � ¼ �p (current yield stress of plastic element).
Two particular cases of the considered model are of interest. For ideal plasticity

(k0 ¼ 0), in place of Eq. (50), we have

� ¼
�	

1þ �=�
1þ

Y

�	
� exp �

E"

�	
�
E "� "y
� �
�	

� �� �
; ð51Þ

where

"y ¼ �
�	

E
ln 1�

Y

�	

� �
: ð52Þ

If � ! 1, Eq. (51) reduces to

� ¼ Yþ �	 1� exp �
E "� "y
� �
�	

� �� �
; "y ¼

Y

E
: ð53Þ
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The last expression also follows directly from Eq. (39) by letting k0 ! 0, and by
making the identification �� ¼ �	. Finally, if � ! 0, Eq. (50) is replaced with

� ¼ �	 1� 1�
Y

�	

� �
exp �

Ek0
Eþ k0

E "� "y
� �
�	

� �� �
; ð54Þ

which is the stress response corresponding to viscoelastic–plastic model from Section
2, with the incorporated linear hardening plasticity. Other models of viscoplastic
response can also be constructed. For example, Khan and Zhang (2001) combined
in series a Zener standard solid (Maxwell viscoelastic element and elastic spring in
parallel) with a viscoplastic element; see also Sobotka (1984).

6. Stress relaxation in simple shear

The analysis presented in previous sections was restricted to one-dimensional
models of viscoplastic response. This can be variously generalized to two- and three-
dimensional states of stress and strain. For example, a three-dimensional general-
ization of the model shown in Fig. 14 gives in the case of isotropic hardening the
deviatoric part of the rate of deformation as the sum of viscoelastic and viscoplastic
parts, such that

D0 ¼
1

2
�
� 0 þ

1

�
�0 þDp; Dp ¼

1

�
1�

k

J1=2
2

* +
�0: ð55Þ

Fig. 15. The stress–strain curves in uniaxial tension for viscoelastic–viscoplastic model. The material

parameters are E ¼ 10Y, k0 ¼ 2Y, and Y=100 MPa. The viscous parameter � is determined from Eq. (4),

and � ¼ 5�.
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The prime designates a deviatoric part,  is the elastic shear modulus, and super-
posed � stands for the objective Jaumann derivative. The function �hi is defined by
xh i ¼ x if x > 0, and xh i ¼ 0 if x4 0. The second invariant of the deviatoric Cauchy
stress is J2 ¼ �0 : �0ð Þ=2, and

k ¼ k #ð Þ; # ¼

ðt
0

2Dp : Dpð Þ
1=2dt; ð56Þ

Fig. 16. The shear strain history consisting of the constant strain-rate and constant strain segments.

Along the two linear segments the strain rate is 10�2 s�1, and along the third it is 5�10�3 s�1.

Fig. 17. The shear stress vs. time change of an elastic–viscoplastic material corresponding to piece–wise

linear shear strain history from Fig. 16.
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is a scalar which specifies the size of the current static yield surface J2 ¼ k2. The
symbol : stands for the trace product. In the case of a combined isotropic-kinematic
hardening with the back stress �, the deviatoric part of the rate of deformation is

D0 ¼
1

2
�
� 0 þ

1

�
�0 þ

1

�
1�

ffiffiffi
2

p
k

�0 � �k k

* +
�0 � �ð Þ; ð57Þ

where �0 � �k k
2
¼ �0 � �ð Þ : �0 � �ð Þ. The Prager or Armstrong–Frederick evolu-

tion equation for the back stress can be used to specify the change of �. Other three-
dimensional models of viscoplastic response have recently been discussed by
Lubarda and Benson (2002a,b), and Krempl (2001).
Consider a stress relaxation in simple shear during the intervals of constant strain

shown in Fig. 16. The elastic–viscoplastic model of Eq. (57) with Prager’s evolution
of the back stress is used. The results of numerical integration employing a radial
return method are shown in Figs. 17 and 18. The elastic shear modulus was =1
GPa and the initial yield stress in quasi-static loading 70 MPa. The radius of the
yield surface saturates to 150 MPA at large values of # (saturation kinematic hard-
ening). The coefficient in the evolution equation for � was equal to 250 MPa, and
the viscosity parameter � was determined from Eq. (4) and the data listed in Section
3. The nature of stress relaxation along the plateaus of constant strain is governed
by the magnitude of �. Figs. 19 and 20 show the stress response to a loading–
unloading strain history in which the shear strain of 0.2 was reached in 20 s at con-
stant strain-rate, and then removed at the same magnitude of strain-rate. There is a
nonlinear plastic response in the early stage of the strain removal, because the vis-
cous stress decreases, while plastic stress increases, but less rapidly so that their sum

Fig. 18. The shear stress vs. shear strain corresponding to time histories of shear strain and shear stress

from Figs. 16 and 17. The stress dips correspond to stress relaxation during the intervals of constant

strain.
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continues to decrease. When the viscous stress becomes equal to zero, the visco-
plastic element locks up and further unloading takes place in a purely elastic man-
ner. The corresponding segments in Figs. 19 and 20 are linear. They can be made
nonlinear by either including viscoelastic effects, or by incorporating the elastic
response with a nonlinear rubber-type elasticity associated with the straightening of
the polymer’s long-chain molecules. The plastic flow takes place again when the
compressive yield stress is reached on the reversed loading.
More general constitutive models can be constructed by combining any number of

particular models, each of which may be designed to simulate a specific deformation

Fig. 19. The shear stress vs. time history of an elastic–viscoplastic material corresponding to a ramp-like

shear strain history with a constant magnitude of the strain-rate equal to 10�2 s�1. The viscosity �=7.5

GPa.

Fig. 20. The shear stress vs. shear strain corresponding to the prescribed cycle of shear strain.
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mechanism. The coefficients used to link these models can be specified by an
appropriate optimization procedure to achieve the best agreement with experimental
data. Such procedure has already been used in modeling the anisotropic hardening,
where different models are linked together in a weighted sum to reproduce the
behavior in cyclic creep and relaxation tests.
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