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Abstract

Three different structures of the evolution equation for the rest stress are derived. They cor-
respond to different models of viscoplastic response, constructed by three-dimensional gen-
eralization of simple one-dimensional rheological models. Isotropic, kinematic and combined
isotropic–kinematic hardening, with an evolution equation for the back stress, are incorporated

in the constitutive framework. The results may be of interest in the analytical and numerical
studies of the rate-dependent inelastic response. # 2002 Elsevier Science Ltd. All rights
reserved.

Keywords: B. Elastic-viscoplastic material; Rheological models; Rest stress; Back stress

1. Introduction

There are two types of constitutive equations used for the rate-dependent plastic
response of metals and alloys. In one approach, there is no yield surface in the
model and plastic deformation commences from the onset of loading, although it
may be exceedingly small below certain levels of applied stress. This type of model-
ing is particularly advocated by researchers in materials science, who view inelastic
deformation process as inherently time-dependent. For example, this view is sup-
ported by the dislocation dynamics study of crystallographic slip in metals, e.g.
Johnston and Gilman (1959). Since there is no separation of time-independent and
creep effects, the modeling is often referred to as the unified creep–plasticity theory
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(Hart, 1970; Krieg, 1977; Miller, 1987). In his analysis of rate-dependent behavior of
metals, Rice (1970, 1971) showed that plastic rate of deformation can be derived
from a scalar flow potential � as its gradient

Dp ¼
@� �; �;Hð Þ

@�
; ð1Þ

provided that the rate of shearing on any given slip system within a crystalline grain
depends on local stresses only through the resolved shear stress. The history of
deformation is represented by the pattern of internal rearrangements H, and the
absolute temperature is �. Geometrically, the plastic part of the rate of deformation
is normal to surfaces of constant flow potential in stress space. Time-independent
behavior can be recovered under certain idealizations—neglecting creep and rate
effects—as an appropriate limit.
The power-law representation of the flow potential has been often utilized,

� ¼
2�
: 0

mþ 1
J1=22 =k
� �m

J1=22 ; J2 ¼
1

2
�0 : �0; ð2Þ

where k=k(�, #) is the reference shear stress, dependent on the temperature and
equivalent plastic strain

# ¼

ðt
0

2Dp : Dpð Þ
1=2dt: ð3Þ

The trace product is denoted by : and �
: 0 is the reference shear strain rate. The

material rate-sensitivity parameter is m. The corresponding plastic part of the rate of
deformation is from Eq. (1),

Dp ¼ �
: 0 J1=22 =k
� �m �0

J1=22
: ð4Þ

Similar expressions can be obtained with other choices of the flow potential func-
tion, such as those corresponding to Bodner and Partom (1975), Ponter and Leckie
(1976), or Johnson and Cook (1983) model. Since there is no yield surface and
loading/unloading criteria in unified creep–plasticity theory, some authors refer to
these constitutive models as nonlinearly viscoelastic models. However, by using an
appropriate large value of the parameter m, the rate-dependent model is able to repro-
duce almost rate-independent behavior. The function xm can in that sense be viewed as
the regularizing function (x stands for J2

1/2/k). Other examples of regularizing functions
include tanh (x/m) and [exp (x)�1]m.
Another type of modeling of rate-dependent inelastic response is frequently

employed in high strain-rate dynamic problems. This is referred to as viscoplastic
modeling (Sokolovskii, 1948; Malvern, 1951; Perzyna, 1963, 1966). There are two
surfaces in the model. The dynamic loading surface carries the current stress state

896 V.A. Lubarda, D.J. Benson / International Journal of Plasticity 18 (2002) 895–918



and encloses the static yield surface associated with quasi-static loading. The plastic
rate of deformation is codirectional with the outer normal to the loading surface. Its
magnitude is proportional to a scalar overstress, defined by the positive difference
between the measures of dynamic and static states of stress. For example, if the
static yield surface is defined by the von Mises condition

f ¼
1

2
� : �� k2 #ð Þ ¼ 0; ð5Þ

the dynamic loading surface is

f̂ ¼
1

2
�0 : �0 � k̂2 ¼ 0; ð6Þ

The deviatoric stress tensor in quasi-static loading, at a given level of generalized
plastic strain #, is �, which is referred to as the rest stress. The scalar overstress
measure is defined by

J1=22 � k #ð Þ; J1=22 ¼
1

2
�0 : �0

� �1=2
: ð7Þ

The plastic rate of deformation is then

Dp ¼
1

�
1�

k #ð Þ

J1=22

" #
@f̂

@�
¼
1

�
1�

k #ð Þ

J1=22

" #
�0; 1�

k #ð Þ

J1=22
> 0; ð8Þ

where � is the viscosity coefficient. In a quasi-static test, the viscosity coefficient is
equal to zero, while J1=22 =k(#).
In an alternative approach, introduce the static yield surface f(�)=0, and define

the plastic rate of deformation as

Dp ¼
1

�
�0 � �ð Þ: ð9Þ

This applies when f(�)>0, so that the current stress state 
 is outside the static yield
surface f(�)=0. The constitutive formulation can then proceed by constructing an
evolution or growth equation for the rest stress �, and an appropriate expression for the
viscosity parameter �. In general, it is not required that �0 and � are coaxial tensors,
although for some models or for some loading paths they may be. The rest stress con-
sidered in this paper is related to equilibrium stress of Krempl’s (1996)model, where there
is no static yield surface and the equilibrium stress grows from the zero initial value (see
also Krempl and Gleason, 1996). The objective of this paper is a derivation of the evo-
lution equation for the rest stress. After giving a brief summary of some basic results from
the rate-independent plasticity, needed for the constitutive analysis presented in this
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paper, we deduce three different evolution equations for the rest stress. Two of them
follow from the constitutive models in which the decomposition of the rate of
deformation appears, while in one the stress rate decomposition is used. The utilized
constitutive models are obtained by three-dimensional generalization from simple
one-dimensional rheological models. This facilitates physical interpretation of the
resulting expressions and enables evolution equations to be derived, under certain
assumptions, rather than postulated. Isotropic, kinematic and combined isotropic–
kinematic hardening are all encompassed by the presented framework. In the latter two
cases, an evolution equation for the back stress is also used to account for aniso-
tropic hardening. Derived results may be of importance in analytical and numerical
evaluations of rate-dependent material response, under high strain-rate proportional
and non-proportional loading.

2. Rate-independent plasticity

The basic constitutive structure of rate-independent plasticity with isotropic and
kinematic hardening is reviewed in this section, since these results will be used in the
constitutive elaboration of rate-dependent plasticity in subsequent sections. The
one-dimensional spring—friction element is shown in Fig. 1. The elastic modulus is
E. The elastic range is exceeded when applied stress exceeds the current yield stress

Y. The total strain rate is the sum of elastic and plastic parts, such that

"
:
¼

1

E
þ
1

Hp

� �


:
; ð10Þ

where HP=d
/d�P is the instantaneous plastic modulus.
A three-dimensional generalization of Eq. (10) is an expression for the rate of

deformation tensor D in terms of instantaneous elastic and plastic compliance ten-
sors and an objective stress rate. For example, we can write

D ¼ Me þMpð Þ : �
�

; ð11Þ

where

�
�

¼ �
�

þ �trD; �
�

¼ �
:
�W	�þ �	W: ð12Þ

The Cauchy stress tensor is �, the material spin tensor isW, the superposed circle
designates the Jaumann corotational rate and # tr stands for the trace. The material

Fig. 1. The spring-friction element simulating one-dimensional elastoplastic response. The elastic mod-

ulus is E and the current yield stress is �Y.
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time derivative of �, on some quasi-static scale, is denoted by �
:
. The elastic and

plastic compliance tensors corresponding to �
�

are Me and Mp. For infinitesimally
small elastic components of strain, the elastic compliance tensor of an isotropic
material is

Me ¼
1

2

Jþ

1

3�
K; ð13Þ

where 
 and � are the elastic shear and bulk moduli. The base tensors J and K sum to
give the fourth-order unit tensor, J+K=I. The rectangular components of I and K are

Iijkl ¼
1

2
�ik�jl þ �il�jk
� 	

; Kijkl ¼
1

3
�ij�kl: ð14Þ

The components of the second-order unit tensor are the Kronecker deltas �ij.

2.1. Isotropic hardening

If plasticity is governed by isotropic hardening and an associative flow rule with a
von Mises yield condition

1

2
�0 : �0 � k2 #ð Þ; ð15Þ

where k(#) is the yield stress in simple shear, the instantaneous plastic compliance
tensor is

Mp ¼
1

2hp
�0 
 �0

�0 : �0
: ð16Þ

The plastic modulus in a simple shear test is hp ¼ dk=d#, and 
 stands for the tensor
outer product (the rectangular components of �0 
 �0 being 
0ij


0
kl). The equivalent

plastic strain is defined by Eq. (3). The elastoplastic constitutive structure is conse-
quently

D ¼
1

2

Jþ

1

3�
Kþ

1

2hp
�0 
 �0

�0 : �0

� �
: �

�

: ð17Þ

If a material is in the hardening range (hp>0), the plastic loading condition is
�0 : �

�

> 0. The inverted constitutive structure, expressing the stress rate in terms
of the rate of deformation, is

�
�

¼ 2
Jþ 3�K�
2


1þ hp=


�0 
 �0

�0 : �0

� �
: D: ð18Þ
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The corresponding plastic loading condition is �0: D>0.
It is noted that the plastic rate of deformation can be expressed either in terms of

the stress rate or the total rate of deformation, as

Dp ¼
1

2hp
�0 
 �0

�0 : �0
: �

�

¼
1

1þ hp=


�0 
 �0

�0 : �0
: D: ð19Þ

In performing the inverse operation in Eq. (17), the following result may be con-
veniently used. The fourth-order tensor

H ¼ aJþ bKþ c
�0 
 �0

�0 : �0
; ð20Þ

where a, b and c are scalar parameters and �0 is a deviatoric second-order tensor,
has the inverse

H�1 ¼
1

a
Jþ

1

b
K�

c

a aþ cð Þ

�0 
 �0

�0 : �0
; ð21Þ

This can be easily verified by noting that J : J ¼ J and K : K ¼ K, as well as J:
K ¼ K : J ¼ 0. In the trace operation with any second-order tensor A, the tensor J
extracts its deviatoric part, while the tensor K extracts its spherical part (J : A ¼ A0

and K : A ¼ A� A0). Thus, J : �0 ¼ �0 and K : �0 ¼ 0. The tensors J and K have
been frequently employed in the constitutive studies (e.g. Hill, 1965). Note that a
deviatoric tensor N=�0/||�0|| has only four independent components, since
||N||=(N: N)1/2=1 (e.g. van Houtte, 1994). The fourth-order tensor N
N in
general has fourteen linearly independent components.

2.2. Kinematic hardening

According to the linear kinematic hardening model, the yield surface in stress space
translates in the direction of plastic rate of deformation. At an arbitrary instant of
deformation the center of the yield surface is at the stress point �, such that

1

2
�0 ��ð Þ : �0 � �ð Þ ¼ k20: ð22Þ

The constant radius of the yield surface is k0, the initial yield stress in simple shear.
The deviatoric stress � is referred to as the back stress. The evolution equation for
this stress is, according to Prager’s (1956) linear kinematic hardening model,

�
�

¼ 2hpDp; �
�

¼ �
�

þ �trD: ð23Þ

The ordinary Jaumann derivative is used to make the evolution equation objec-
tive. Other derivatives were also considered in the literature (e.g. Lee et al., 1983).
The instantaneous plastic compliance tensor is consequently
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Mp ¼
1

2hp
�0 � �ð Þ 
 �0 � �ð Þ

�0 � �ð Þ : �0 ��ð Þ
: ð24Þ

This gives rise to the elastoplastic constitutive structure

D ¼
1

2

Jþ

1

3�
Kþ

1

2hp
�0 ��ð Þ 
 �0 � �ð Þ

�0 ��ð Þ : �0 � �ð Þ


 �
: �

�

: ð25Þ

The plastic loading condition in the hardening range is �0 � �ð Þ : �
�

> 0. The
inverted form is

�
�

¼ 2
Jþ 3�K�
2


1þ hp=


�0 � �ð Þ 
 �0 ��ð Þ

�0 � �ð Þ : �0 ��ð Þ


 �
: D; ð26Þ

provided that �0 � �ð Þ : D > 0.
The evolution equation (23) can be expressed in terms of the stress rate, or the rate

of deformation, as

�
�

¼
�0 � �ð Þ 
 �0 � �ð Þ

�0 � �ð Þ : �0 � �ð Þ
: �

�

; �0 � �ð Þ : �
�

> 0; ð27Þ

�
�

¼
2hp

1þ hp=


�0 ��ð Þ 
 �0 � �ð Þ

�0 ��ð Þ : �0 � �ð Þ
: D; �0 � �ð Þ : D > 0: ð28Þ

A nonlinear kinematic hardening model of Armstrong and Frederick (1966) is
obtained if, instead of Eq. (23), the evolution equation for � is taken to be

�
�

¼ 2hDp þ c� Dp : Dpð Þ
1=2; ð29Þ

where h>0 and c<0 are appropriate material parameters. This expresses �
�

as a
homogeneous function of degree one in the components of Dp. The added nonlinear
term in Eq. (29) is sometimes referred to as a recall term (Chaboche, 1989). It fol-
lows that

Dp ¼
1

2h 1þmð Þ

�0 � �ð Þ 
 �0 � �ð Þ

�0 � �ð Þ : �0 ��ð Þ
: �

�

; ð30Þ

where

m ¼
c

2h

�0 � �ð Þ : �

�0 � �ð Þ : �0 � �ð Þ½ �
1=2
: ð31Þ

In modeling cyclic plasticity it may be convenient to additively decompose � into
two or more constituents, and construct separate evolution equation for each of
these (e.g. Moosbrugger and McDowell, 1989). Such an approach has also been
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employed in viscoplastic modeling which incorporates the concept of back stress.
See also Lubarda et al. (1993).

2.3. Combined isotropic–nonlinear kinematic hardening

In the case of combined isotropic–kinematic hardening, the yield surface trans-
lates and expands, such that

1

2
�0 ��ð Þ : �0 � �ð Þ ¼ k2� #ð Þ; ð32Þ

where � represents its current center and k�(#) its current radius. With the non-
linear evolution equation for the back stress given by Eq. (29), we obtain

Dp ¼
1

2hp� þ 2h 1þmð Þ

�0 � �ð Þ 
 �0 � �ð Þ

�0 � �ð Þ : �0 � �ð Þ
: �

�

: ð33Þ

The rate of the yield surface expansion is specified by hp�=dk� /d#, and m is defined
by Eq. (31). This encompasses isotropic and kinematic hardening models. In the
former case hp�=hp (plastic tangent modulus in simple shear), while in the latter case
hp�=0.

3. Viscoplasticity

The simplest viscoplasticity model is based on the spring–dashpot–friction element
shown in Fig. 2. The elastic modulus is E, the viscosity coefficient is �, and the yield
stress is 
Y. The total strain rate is the sum of the elastic part �

:e ¼ 

:
=E, and the

plastic part

�
:p ¼

1

�

 � 
Yð Þ; 
 > 
Y: ð34Þ

The stress difference 
�
Y>0 is the portion of applied stress carried by the dashpot,
usually referred to as the overstress. The strain rates in the dashpot element and
parallel friction element are equal to each other, so that

Fig. 2. One-dimensional viscoplastic model. A dashpot with viscosity � is connected in parallel to a fric-
tion element with the current yield stress 
Y. The elastcic modulus of the spring element is E.
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1

Hp


:
Y ¼

1

�

 � 
Yð Þ; 
 > 
Y; ð35Þ

where Hp=ds/dEp is the instantaneous plastic modulus. For 
<
Y, only elastic
deformation takes place and �

:
¼ 

:
=E.

A three-dimensional generalization of Eq. (34) is obtained by introducing the
static yield surface f(�)=0 for the rest stress �, and by defining the plastic rate of
deformation as

DP ¼
1

�
�0 � �ð Þ: ð36Þ

This holds for f(�)>0, so that the current stress state is outside the static yield
surface. If fð�Þ40, only elastic deformation takes place (Dp=0). The deviatoric rest
stress � represents the equilibrium stress under quasistatic loading conditions (visc-
osity � is then equal to zero). The stress difference �0–� is the overstress tensor. The
viscosity parameter � is, in general, a scalar function of the overstress and other
variables introduced in the specific material model. To complete the analysis, a
constitutive expression for the rest stress � must be provided. This can be accom-
plished by constructing either an evolution-type equation for the objective rate of
the rest stress, or an explicit equation for the rest stress itself. The two approaches
are considered below.

3.1. Evolution equation for the rest stress

An evolution equation for the rest stress can be constructed with the help of the
three-dimensional generalization of Eq. (35). For example, with the isotropic hard-
ening model of Section 2.1 and with the von Mises static yield condition of Eq. (5),
we have

1

2hp
�
 �

� : �
: �

�

¼
1

�
�0 � �ð Þ: ð37Þ

This shows that Dp is codirectional with @f/@�=�, and that � and �0�� are
coaxial tensors. The plastic modulus at the equivalent plastic strain, # is hp. In the
hardening range, � : �

�

> 0 and hp>0. By taking the trace product of (37) with �,
there follows

1

2hp
� : �

�

¼
1

�
� : �0 � �ð Þ: ð38Þ

This suggests that the evolution equation for � can be represented by

�
�

¼
2hp

�
�0 � �ð Þ þ B; ð39Þ
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where B is the second-order deviatoric tensor orthogonal to the rest stress, i.e., B:
�=0. In order that the principal directions of � remain parallel to those of stress �0,
we define B to be proportional to the component of stress rate �

� 0 tangent to the
static yield surface, thus normal to �. Such a tensor is

B ¼ ’ �
� 0 �

�0 
 �0

�0 : �0
: �

�

� �
; ð40Þ

where ’ is a scaling parameter, given by

’ ¼
� : �

�0 : �0

� �1=2
: ð41Þ

Consequently, the evolution equation for the rest stress becomes

�
�

¼
2hp

�
�0 � �ð Þ þ ’ �

� 0 �
�0 
 �0

�0 : �0
: �

�

� �
: ð42Þ

In the case of kinematic hardening considered in Section 2.2 and the static yield
condition defined by

f ¼
1

2
�� �ð Þ : �� �ð Þ � k20 ¼ 0; ð43Þ

where � is the current center of the surface f=0, we have, in place of Eq. (38),

1

2hp
���ð Þ 
 �� �ð Þ

���ð Þ : �� �ð Þ
: �

�

¼
1

�
�0 � �ð Þ: ð44Þ

The tensors (���) and (�0��) are coaxial, so that (���) : (�0��)>0. In the
hardening range, the condition (���) : �

�

>0 holds. Upon taking the trace product
of (44) with (�–�), there follows

1

2hp
�� �ð Þ : �

�

¼
1

�
�� �ð Þ : �0 � �ð Þ: ð45Þ

This again suggests an evolution equation for the rest stress � of the type given by
Eq. (39). The tensor B meets the orthogonality condition B: (�–�)=0. A repre-
sentation for B, ensuring that the principal directions of ��� remain parallel to
those of �0��, is

B ¼ ’ �
� 0 �

�0 ��ð Þ 
 �0 � �ð Þ

�0 ��ð Þ : �0 � �ð Þ
: �

�


 �
; ð46Þ

where
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’ ¼
�� �ð Þ : �� �ð Þ

�0 � �ð Þ : �0 � �ð Þ


 �1=2
: ð47Þ

Thus, the evolution equation for the rest stress is

�
�

¼
2hp

�
�0 � �ð Þ þ ’ �

� 0 �
�0 � �ð Þ 
 �0 � �ð Þ

�0 � �ð Þ : �0 � �ð Þ
: �

�


 �
: ð48Þ

The evolution equation for the back stress �, accompanying (48), is in the case of
linear kinematic hardening,

�
�

¼ 2hpDp ¼
2hp

�
�0 � �ð Þ: ð49Þ

If combined isotropic–kinematic hardening is used, with the yield condition

f ¼
1

2
�� �ð Þ : �� �ð Þ � k2� #ð Þ ¼ 0; ð50Þ

and with an evolution equation for � corresponding to nonlinear kinematic hard-
ening defined by Eq. (29), the parameter hp in Eq. (48) is replaced with

hp
 ¼ hp� þ h 1þmð Þ: ð51Þ

Here, hp� ¼ dk�=d# and m is defined by Eq. (31), in which �
0 is replaced with �, i.e.

m ¼
�

2h

�� �ð Þ : �

�� �ð Þ : �� �ð Þ½ �
1=2

¼
c

2h

�� �ð Þ : �ffiffiffi
2

p
k�

: ð52Þ

The parameters h and c appear in the evolution equation for the back stress �, given
by Eq. (29).

3.2. Explicit equation for the rest stress

Instead of constructing an evolution equation for the objective rate of the rest
stress, we may directly construct an explicit equation for the rest stress itself. For
example, suppose that principal directions of � and 
0 coincide, so that

� ¼ ’�0; ð53Þ

where ’ is an appropriate scalar function. The corresponding plastic rate of defor-
mation is from Eq. (36)
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Dp ¼
1

�
1� ’ð Þ�0: ð54Þ

The plastic loading condition �: (�0��)>0 gives ’(1–’)>0, i.e.

0 < ’ < 1: ð55Þ

If the scalar parameter ’ is defined by

’ ¼
k #ð Þ

J1=22
; J2 ¼

1

2
�0 : �0; ð56Þ

where k=k(#) is the static yield stress in a simple shear test, Eq. (54) reproduces the
well-known expression of the Sokolovskii–Malvern–Perzyna viscoplastic overstress
theory

Dp ¼
1

�
1�

k

J1=22

 !
�0; 1�

k

J1=22
> 0: ð57Þ

To make the contact with results presented in Section 3.1, we differentiate (53) to
obtain

�
�

¼ ’
:
�0 þ ’�

� 0: ð58Þ

Since

’2 ¼
� : �

�0 : �0
; ð59Þ

there follows

’
:

’
¼

� : �

� : �
�

�0 : �
�

�0 : �0
: ð60Þ

Substituting Eq. (60) into (58) gives

�
�

¼
�
 �

� : �
: �

�

þ ’ �
� 0 �

�0 
 �0

�0 : �0
: �

�

� �
; ð61Þ

which is, in view of Eq. (37), exactly the evolution equation (42).
Suppose next that the static yield surface expands and translates according to

combined isotropic–kinematic hardening model considered in Section 2.3, so that
Eq. (50) holds. If the loading surface encloses the static yield surface, being also
centered at the back stress �, then
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f̂ ¼
1

2
�0 � �ð Þ : �0 ��ð Þ � k̂2 ¼ 0: ð62Þ

The current radius of the static yield surface is k� (#) and the current radius of the
loading surface is k̂. In this model, the equation for the rest stress � is

� ¼ ’�0 þ 1þ ’ð Þ�: ð63Þ

This can be equivalently expressed as either of

�0 � � ¼ 1� ’ð Þ �0 � �ð Þ; �0 � � ¼
1

’
�� �ð Þ: ð64Þ

When Eq. (63) is substituted into Eq. (36), the plastic rate of deformation becomes

Dp ¼
1

�
1� ’ð Þ �0 � �ð Þ: ð65Þ

The loading condition,

���ð Þ : �0 � �ð Þ > 0; ð66Þ

becomes

’ 1� ’ð Þ �0 � �ð Þ : �0 ��ð Þ > 0: ð67Þ

This is clearly satisfied when ’ is in the range 0<’<1. By defining ’ to be

’ ¼
k�

k̂
¼ �� �ð Þ : �� �ð Þ½ �

1=2= �0 � �ð Þ : �0 � �ð Þ½ �
1=2; ð68Þ

the plastic rate of deformation (65) can be written as

Dp ¼
1

�
1�

k�

k̂

� �
�0 � �ð Þ; 1�

k�

k̂
> 0: ð69Þ

The total rate of deformation is obtained by summing the elastic and plastic rates
of deformation,

D ¼
1

2

Jþ

1

3�
K

� �
: �

�

þ
1

�
1�

k�

k̂

� �
�0 ��ð Þ: ð70Þ

The inverted form is
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�
�

¼ 2
Jþ 3�Kð Þ : D �
2


�
1�

k�

k̂

� �
�0 � �ð Þ: ð71Þ

An accompanying evolution equation for the back stress �, of nonlinear kinematic
hardening type, is given by Eq. (29).
Returning to Eq. (69), the plastic rate of deformation can be rewritten as

Dp ¼
k�
�

k̂ � k�
k�

�0 � �

k̂
; k̂ > k�: ð72Þ

This is recast in this form to make the generalization which incorporates a drag
strength d, such that

Dp ¼ g sð Þ
�0 ��

�0 ��k k
; s ¼

�0 � �k k �
ffiffiffi
2

p
k�

� �
d

; ð73Þ

where

�0 � �
�� �� ¼ �0 � �ð Þ : �0 � �ð Þ½ �

1=2
¼

ffiffiffi
2

p
k̂: ð74Þ

The Macauley brackets are denoted by h i, with  
� �
=0 if c<0 and  

� �
¼  if c50.

The scalar function g typically depends nonlinearly on s and has a dimension of the
strain rate (t�1). Evidently, ||Dp||=g(s). The constitutive structure (73) has been
frequently employed in recent studies of viscoplastic response (e.g. Chaboche, 1989;
Bammann, 1990; McDowell, 1992; Freed et al., 1991). The drag strength d can be
either constant, or an evolving parameter. In the latter case, its appropriate evolu-
tion equation must be additionally supplied. For details, see Chaboche (1993, 1996)
and Freed and Walker (1993).

4. Modified viscoplastic model and evolution equation for the rest stress

The evolution equations for the rest stress (42) or (48) were derived by recognition
of the mathematical representation of the tensor B arising from its orthogonality
property with the tensors � or �–�, and from the requirement for continuing
coaxiality of the tensors �0 and �, or �0�� and �–�, respectively. We now present a
derivation of another evolution equation for the rest stress, which is not character-
ized by such coaxiality, and which is based on a three-dimensional extension of the
one-dimensional model depicted in Fig. 3. A parallel connection of an elastoplastic
and viscous element is attached in series to an elastic element. The elastic part of the
strain rate is �

:e ¼ 

:
=E. The inelastic part of the strain rate can be calculated from

either of
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�
:p ¼

1

�

 � 
pð Þ ¼

1

E�
þ
1

Hp

� �


: p; ð75Þ

provided that 
p=
Y (and 

: p>0). If 
p<
Y (or 


p=
Y, but 

: p<0), Eq. (75) is

replaced with

�
:p ¼

1

�

 � 
pð Þ ¼

1

E�


: p: ð76Þ

Consequently, the total strain and stress rates are

�
:
¼
1

E


:
þ
1

�

 � 
pð Þ; ð77Þ



:
¼ E�

:
�
E

�

 � 
pð Þ: ð78Þ

The 
p part of the stress is determined by integration from



: p ¼

1

�
E� �

E�

1þHp=E�

 !

 � 
pð Þ; 
p ¼ 
Y: ð79Þ

If 
p<
Y, then



: p ¼

E�

�

 � 
pð Þ: ð80Þ

A three-dimensional generalization of Eq. (77) is

D ¼
1

2

Jþ

1

3�
K

� �
: �

�

þ
1

�
�0 � �ð Þ; ð81Þ

where � is again the rest stress. Similarly, Eq. (78) becomes

Fig. 3. One-dimensional viscoplastic model with a dashpot of viscosity � connected in parallel with an
elastoplastic spring-friction element (E� ; 
Y). The elastic modulus of an additional spring element attached
in series is E.
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�
�

¼ 2
Jþ 3�Kð Þ : D �
2


�
�0 � �ð Þ: ð82Þ

The generalization of Eq. (75) is

1

�
�0 � �ð Þ ¼

1

2

�
�

þ
1

2hp
�
 �

� : �
: �

�

; ð83Þ

which preserves the deviatoric character of the tensors on both sides of the equation.
Solving for the Jaumann rate of the rest stress gives the evolution equation

�
�

¼
2
�

�
J�

1

1þ hp=
�

�
 �

� : �


 �
: �0 � �ð Þ: ð84Þ

The principal directions of �0 and � in general do not coincide, since �
�

is not
necessarily codirectional with �. Indeed, if �0 would be codirectional with �, then
Eq. (84) would imply that �

�

is codirectional with �, as well. This is in general not the
case, because there is an additional contribution to �

�

, perpendicular to �; see Eq.
(61).
Eqs. (83) and (84) hold provided that

1

2
� : � ¼ k2 #ð Þ; �

�

: � > 0: ð85Þ

Otherwise, Eq. (84) is replaced with

�
�

¼
2
�

�
�0 � �ð Þ: ð86Þ

In Eqs. (83)–(85) the modulus hp is defined by hp=dk/d#, where

# ¼

ð
t
0 2D

p : Dpð Þ
1=2dt ð87Þ

The plastic rate of deformation, associated with elastoplastic material segments
corresponding to (E� , 
Y) element in Fig. 3, is given by

Dp ¼
1

�
�0 � �ð Þ �

1

2
�
�
�

¼
1

�

1

1þ hp=
�

�
 �

� : �
: �0 � �ð Þ: ð88Þ

In view of (84) it follows that Dp, but not Dp=(�0��)/� is codirectional with �. It
can also be easily verified that the evolution equation (84) satisfies the consistency
condition

910 V.A. Lubarda, D.J. Benson / International Journal of Plasticity 18 (2002) 895–918



� : �
�

¼ 2khp 2Dp : Dpð Þ
1=2; ð89Þ

which follows from Eq. (85).
In the case of linear kinematic hardening, the evolution equation for �, replacing

Eq. (84), is

�
�

¼
2
�

�
J�

1

1þ hp=
�

�� �ð Þ 
 �� �ð Þ

�� �ð Þ : �� �ð Þ


 �
: �0 � �ð Þ: ð90Þ

The accompanying evolution equation for the back stress � is

�
�

¼ 2hpDp ¼ 2hp
1

�

0 � �ð Þ �

1

2
�
�
�


 �
: ð91Þ

Upon substitution of (90), this can be written as

�
�

¼
1

�

2hp

1þ hp=
�

���ð Þ 
 �� �ð Þ

���ð Þ : ���ð Þ
: �0 � �ð Þ: ð92Þ

If combined isotropic–kinematic hardening is used, with the yield condition (50)
and the evolution equation for � given by (29), the parameter hp in Eq. (90) should
be replaced with the parameter hp
 of Eq. (51), while Eq. (92) generalizes to

�
�

¼
1

�

2h

1þ hp
=
�
�� �þ

cffiffiffi
2

p
k�
h
�

� �
�� �ð Þ : �0 � �ð Þ

�� �ð Þ : �� �ð Þ
: ð93Þ

An equivalent representation, explicitly involving the parameter m from Eq. (52), is

�
�

¼
1

�

2h

1þ hp
=
�

�� �ð Þ 
 �� �ð Þ

�� �ð Þ : �� �ð Þ
þm

�
 �� �ð Þ

� : �� �ð Þ


 �
: �0 � �ð Þ: ð94Þ

5. Evolution of the rest stress in the Bordenhagen–Stout–Gray viscoplastic model

Bardenhagen et al. (1997) suggested a viscoplastic model that is a three-dimen-
sional generalization of the one-dimensional model shown in Fig. 4. The viscoelastic
Maxwell element (E~ ; �) is connected in parallel to an elastoplastic element (E� ; 
Y).
The stress is carried by both elements, 
 =
v+
p. The stress rate can be written as
the sum of viscous and plastic parts, such that



:
¼ 

: v þ 


: p: ð95Þ
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The two elements deform equally, and the rate of strain can be expressed as either

�
:
¼
1

E~


: v þ

1

�

v; ð96Þ

or

�
:
¼

1

E�
þ
1

Hp

� �


: p; for 
p ¼ 
Y and 


: p > 0: ð97Þ

For 
p<
Y, or 

p=
Y and 


p40, no plastic deformation takes place and, instead
of (97), we have �

:
=

:p/E� . The viscous part of the stress rate is, from Eq. (96),



: v ¼ E~ �

:
�
E~

�

v ¼ E~ �

:
�
E~

�

 � 
pð Þ: ð98Þ

The plastic part is, from Eq. (97),



: p ¼

1

E�
þ
1

Hp

� ��1

�
:
¼ E� �

E�

1þHp=E�

 !
�
:
: ð99Þ

Substitution of Eqs. (98) and (99) into Eq. (95) gives



:
¼ E�

E�

1þHp=E�

 !
�
:
�
E~

�

 � 
pð Þ: ð100Þ

The modulus E ¼ E~ þ E� is the overall, equivalent elastic modulus of the material.
The plastic part of stress 
p is determined by integration from Eq. (99) with the
initial condition 
p=0 when E=0. Only elastic deformation takes place in the elas-
toplastic element for 
p<
Y.

Fig. 4. One-dimensional viscoplastic model in which a viscoelastic spring-dashpot element (E~ ; �) is con-
nected in parallel to an elastoplastic spring-friction element (E� ; 
Y).
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A three-dimensional generalization of the stress rate decomposition in Eq. (95) is

�
�

¼ �
� v þ �

� p ð101Þ

The viscous part of the rate of stress is, by extending Eq. (98),



� v ¼ 2
~Jþ 3�~Kð Þ : D �

2
~

�
�0 � �ð Þ ð102Þ

The deviatoric part of the plastic stress �p is denoted by �. Since �
� v in Eq. (102)

depends on the stress difference (�0��), we shall again refer to � as the rest stress.
The plastic part of the rate of stress is obtained by generalizing Eq. (99) as

�
� p ¼ 2
�Jþ 3��K�

2
�

1þ hp=
�

�
 �

� : �

� �
: D; � : D > 0: ð103Þ

The rest stress is assumed to be on the yield surface

1

2
� � ¼ k2 #ð Þ: ð104Þ

Here,

�
:
¼ 2Dp : Dpð Þ

1=2
¼

ffiffiffi
2

p

1þ hp=
�

� : D

� : �ð Þ
1=2
; ð105Þ

where Dp is the plastic part of the rate of deformation due to stress rate 

� p. This is

Dp ¼
1

2hp
�
 �

� : �
: 


� p ¼
1

1þ hp=
�

�
 �

� : �
: D: ð106Þ

If (104) holds, but �:D40, or if �:�<2k2(#), Eq. (103) is replaced with

�
� p ¼ 2
�Jþ 3��Kð Þ : D: ð107Þ

The evolution equation for the rest stress follows from Eq. (103), by taking its
deviatoric part,

�
�

¼ 2
� J�
1

1þ hp=
�

�
 �

� : �

� �
: D; � : D > 0: ð108Þ

If (104) holds, but �:D40, or if �:�<2k2(#), Eq. (108) is replaced with

�
�

¼ 2
�D: ð109Þ
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The overall constitutive structure follows by substituting Eqs. (102) and (103) into
Eq. (101),

�
�

¼ Le �
2


1þ hp=
�

�
 �

� : �

� �
: D � 2


~

�
�0 � �ð Þ; � : D > 0: ð110Þ

Otherwise,

�
�

¼ Le : D �
2
~

�
�0 � �ð Þ ð111Þ

The overall elastic stiffness tensor is

Le ¼ 2
Jþ 3�K ð112Þ

where


 ¼ 
~ þ 
� � ¼ �~ þ �� ð113Þ

These are the true elastic shear and bulk moduli of the material. The modulus 
� < 

in Eq. (110) may be viewed as an additional material parameter, while 
~ ¼ 
� 
� .
The considered model can be extended by replacing the isotropic hardening yield

condition for the rest stress in Eq. (104) with the kinematic hardening condition

1

2
�� �ð Þ : �� �ð Þ ¼ k20; k0 ¼ const:; ð114Þ

where � is the back stress. The plastic part of the rate of stress is in this case

�
� p ¼ 2
�Jþ 3��K�

2
�

1þ hp=
�

�� �ð Þ 
 �� �ð Þ

�� �ð Þ : �� �ð Þ


 �
: D; ð115Þ

with �� �ð Þ : D > 0. The corresponding evolution equation for � is

�
�

¼ 2
� J�
1

1þ hp=
�

���ð Þ 
 �� �ð Þ

�� �ð Þ : �� �ð Þ


 �
: D; ���ð Þ : D > 0: ð116Þ

Otherwise, Eqs. (107) and (109) apply. The overall constitutive structure is conse-
quently

�
�

¼ L�
2
�

1þ hp=
�

�� �ð Þ 
 �� �ð Þ

�� �ð Þ : �� �ð Þ


 �
D �

2
�

�
; 
0 � �ð Þ; ð117Þ

with �� �ð Þ : D > 0.
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Otherwise, Eq. (111) applies. For linear kinematic hardening the evolution of the
back stress is

�
�

¼ 2hpDp; ð118Þ

where Dp is plastic part of the rate of deformation due to stress rate �
� p. This is

Dp ¼
1

2hp
�� �ð Þ 
 ���ð Þ

�� �ð Þ : �� �ð Þ
: �

� p ¼
1

1þ hp=
�

�� �ð Þ 
 �� �ð Þ

�� �ð Þ : �� �ð Þ
: D; ð119Þ

by extending the results from Eq. (19). The evolution equation for the back stress
(118) is accordingly

�
�

¼
2hp

1þ hp=
�

�� �ð Þ 
 ���ð Þ

�� �ð Þ : ���ð Þ
: D; �� �ð Þ : D > 0: ð120Þ

This representation can also be deduced directly from Eq. (28), by appropriate
identification of stress tensors and material parameters.
If combined isotropic–kinematic hardening is used, with the yield condition (50)

and the evolution equation for � of nonlinear kinematic hardening type

�
�

¼ 2hDp þ c� Dp : Dpð Þ
1=2; ð121Þ

then the parameter hp in Eqs. (115)–(117) and (119) is replaced with the parameter
hp

 of Eq. (51). Furthermore, Eq. (120) generalizes to

�
�

¼
2h

1þ hp

�
�� �þ

Cffiffiffi
2

p
k�
h
�

� �
���ð Þ : D

�� �ð Þ : �� �ð Þ
; ���ð Þ : D > 0: ð122Þ

An equivalent representation, involving the parameter m of Eq. (52), is

�
�

¼
2h

1þ hp

�

�� �ð Þ 
 �� �ð Þ

�� �ð Þ : �� �ð Þ
þm

�
 ���ð Þ

� : ���ð Þ


 �
: D: ð123Þ

5.1. Viscoplastic rate of deformation

With the help of Eqs. (20) and (21), it is straightforward to invert Eq. (110) and
obtain

D ¼
1

2

Jþ

1

3�
Kþ

 

2


�
 �

� : �

� �
: �

�

þ
1

�


~




0 � �þ  

� : 
0 � �ð Þ

� : �
�


 �
: ð124Þ

The scalar parameter  is
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 ¼

� =


hp=
� þ 
~ =

: ð125Þ

By taking the trace product of (124) with �, and by imposing the condition �:D>0
of Eq. (110), we find that Eq. (124) applies when � satisfies (104) and

� : �
�

> �
2

�

~ � : 
0 � �ð Þ½ �: ð126Þ

Otherwise, Eq. (124) is replaced with

D ¼
1

2

Jþ

1

3�
K

� �
: �

�

þ
1

�


~




0 � �ð Þ: ð127Þ

The portion of the total rate of deformation, given by

De ¼
1

2

Jþ

1

3�
K

� �
: �

�

ð128Þ

can be interpreted as the elastic rate of deformation that would occur if both viscous
and plastic deformation mechanisms were momentarily frozen. The remaining part
of the rate of deformation in Eq. (124) is the viscoplastic part,

Dp ¼
1

�


~



�0 � �ð Þ þ

 

2


�
 �

� : �
: �

�

þ
2
~

�

0 � �ð Þ


 �
: ð129Þ

Both rate-dependent viscous and rate-independent plastic processes simulta-
neously take place and contribute to Dp in Eq. (129). If the current state of stress is
such that the rest stress � is inside the yield surface (104), or if it is on the surface
(104) but

� : �
� 4�

2

�

~ � : �0 � �ð Þ½ �; ð130Þ

the inelastic rate of deformation is solely due to the viscous contribution, i.e.

Dp ¼
1

�


~



�0 � �ð Þ: ð131Þ

In the case of linear kinematic hardening, the elastic part of the rate of deforma-
tion is still given by Eq. (125), but the viscoplastic part is governed by

Dp ¼
1

�


~



�0 � �ð Þ þ

 

2


�� �ð Þ 
 ���ð Þ

�� �ð Þ : ���ð Þ
: �

�

þ
2
~

�

0 � �ð Þ


 �
: ð132Þ
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For combined isotropic–nonlinear kinematic hardening, the parameter  is specified
by Eq. (125), in which hp is replaced with hp
 .

6. Conclusion

The objective of this paper is to examine a tensorial structure of an evolution equa-
tion for the rest stress in viscoplastic modeling of rate-dependent material response.
Three different representations of the evolution equation are derived, under certain
assumptions, rather than postulated. This was accomplished by suggested three-
dimensional generalization of several one-dimensional rheological models. In the case
of linear kinematic hardening with the back stress �, the evolution equations for the
rest stress � are given by Eqs. (48), (90) and (116). Each of these equations may be sui-
table to describe the growth of the rest stress, depending on the particular material
model and the range of application. With an appropriately specified viscosity func-
tion �, numerical study is needed to compare their predictions in high-strain rate,
creep, recovery and relaxation tests. In addition to isotropic and linear kinematic
hardening models, nonlinear kinematic hardening and combined isotropic–non-
linear kinematic hardening are included in the analysis. In the latter three cases, an
evolution equation for the back stress is incorporated in the constitutive framework,
which enables better description of nonproportional cyclic response. Work is in
progress to extend the present isothermal formulation to non-isothermal conditions.

Acknowledgements

Research funding provided by the Los Alamos National Laboratory is kindly
acknowledged. We also thank the reviewers for their comments and suggestions.

References

Armstrong, P.J., Frederick, C.O., 1966. A mathematical representation of the multiaxial Bauschinger

effect, G. E. G. B. Report RD/B/N, 731.

Bammann, D.J., 1990. Modeling temperature and strain rate dependent large deformations of metals.

Appl. Mech. Rev. 43, S312–S319.

Bardenhagen, S.G., Stout, M.G., Gray, G.T., 1997. Three-dimensional, finite deformation, viscoplastic

constitutive models for polymeric materials. Mech. Mater. 25, 235–253.

Bodner, S.R., Partom, Y., 1975. Constitutive equations for elastic–viscoplastic strain-hardening materials.

J. Appl. Mech 42, 385–389.

Chaboche, J.L., 1989. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plasti-

city 5, 247–302.

Chaboche, J.L., 1993. Cyclic viscoplastic constitutive equations. Part I: a thermodynamically consistent

formulation. J. Appl. Mech 60, 813–821.

Chaboche, J.L., 1996. Unified cyclic viscoplastic constitutive equations: development, capabilities, and

thermodynamic framework. In: Krausz, A.S., Krausz, K. (Eds.), Unified Constitutive Laws for Plastic

Deformation. Academic Press, San Diego, pp. 1–68.

V.A. Lubarda, D.J. Benson / International Journal of Plasticity 18 (2002) 895–918 917



Freed, A.D., Chaboche, J.L., Walker, K.P., 1991. A viscoplastic theory with thermodynamic considera-

tions. Acta Mech. 90, 155–174.

Freed, A.D.,Walker, K.P., 1993. Viscoplasticity with creep and plasticity bounds. Int. J. Plasticity 9, 213–242.

Hart, E.W., 1970. A phenomenological theory for plastic deformation of polycrystalline metals. Acta

Metall. 18, 599–610.

Hill, R., 1965. Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13, 89–

101.

Johnson, G.R., Cook, W.H., 1983. A constitutive model and data for metals subjected to large strains,

high strain rates, and high temperatures. In: Proceedings of the 7th International Symposium on Bal-

listics, The Hague, The Netherlands, pp. 1–7.

Johnston, W.G., Gilman, J.J., 1959. Dislocation velocities, dislocation densities, and plastic flow in LiF

crystals. J. Appl. Phys. 30, 129–144.

Krempl, E., 1996. A small-strain viscoplasticity theory based on overstress. In: Krausz, A.S., Krausz, K.

(Eds.), Unified Constitutive Laws for Plastic Deformation. Academic Press, San Diego, pp. 281–318.

Krempl, E., Gleason, J.M., 1996. Isotropic viscoplasticity theory based on overstress (VBO): the influence

of the direction of the dynamic recovery term in the growth law of the equilibrium stress. Int. J. Plas-

ticity 12, 719–735.

Krieg, R.D., 1977. Numerical integration of some new unified plasticity-creep formulations. In: Proc. 4th

SMIRT Conference, San Francisco, Paper M6/4.

Lee, E.H., Mallett, R.L., Wertheimer, T.B., 1983. Stress analysis for anisotropic hardening in finite-

deformation plasticity. J. Appl. Mech. 50, 554–560.

Lubarda, V.A., Sumarac, D., Krajcinovic, D., 1993. Preisach model and hysteretic behaviour of ductile

materials. Eur. J. Mech. A/Solids 12, 445–470.

Malvern, L.E., 1951. The propagation of longitudinal waves of plastic deformation in a bar of material

exhibiting a strain-rate effect. J. Appl. Mech. 18, 203–208.

McDowell, D.L., 1992. A nonlinear kinematic hardening theory for cyclic thermoplasticity and thermo-

viscoplasticity. Int. J. Plasticity 8, 695–728.

Miller, A.K., 1987. Unified Constitutive Equations for Creep and Plasticity. Elsevier Applied Science,

London.

Moosbrugger, J.C., McDowell, D.L., 1989. On a class of kinematic hardening rules for nonproportional

cyclic plasticity. J. Eng. Mater. Technol. 111, 87–98.

Perzyna, P., 1963. The constitutive equations for rate sensitive plastic materials. Q. Appl. Math 20, 321–

332.

Perzyna, P., 1966. Fundamental problems in viscoplasticity. Adv. Appl. Mech 9, 243–377.

Ponter, A.R.S., Leckie, F.A., 1976. Constitutive relationships for the time-dependent deformation of

metals. J. Eng. Mater. Technol 98, 47–51.

Prager, W., 1956. A new method of analyzing stresses and strains in work-hardening plastic solids. J.

Appl. Mech 23, 493–496.

Rice, J.R., 1970. On the structure of stress-strain relations for time-dependent plastic deformation in

metals. J. Appl. Mech 37, 728–737.

Rice, J.R., 1971. Inelastic constitutive relations for solids: an internal variable theory and its application

to metal plasticity. J. Mech. Phys. Solids 19, 433–455.

Sokolovskii, V.V., 1948. Propagation of elastic-viscoplastic waves in bars. Prikl. Mat. Mekh. 12, 261–280.

(in Russian)..

Van Houtte, P., 1994. Application of plastic potentials to strain rate sensitive and insensitive anisotropic

materials. Int. J. Plasticity 10, 719–748.

918 V.A. Lubarda, D.J. Benson / International Journal of Plasticity 18 (2002) 895–918


