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Abstract

Expressions for the pressure-dependent apparent elastic constants of cubic crystals are derived in terms of their
original second- and third-order elastic constants. New expressions are obtained for the apparent compliances and their
pressure derivatives. Results are shown to be in agreement with those based on the apparent elastic moduli. ( 1998
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Apparent second-order elastic constants appear
in the relationship between the stress and strain
increments from the deformed reference configura-
tion. It is often important to know the dependence
of these constants on the applied pressure. The
corresponding apparent elastic moduli of cubic
crystals have been calculated by several authors
[1—3]. These constants appear in the relationship
between the speeds of longitudinal and transverse
waves in a crystal under hydrostatic and zero refer-
ence state of stress. This has been a basis for ultra-
sonic determination of the higher-order elastic
constants [4—6], and evaluation of anharmonic
properties of crystals, such as thermal expansion,
Grüneisen parameters, wave mixing and attenu-
ation, defect properties of crystals, etc. Apparent
elastic constants are also important in the analy-
sis of inelastic deformation processes under high

pressures, for example in impact and penetration
problems.

Previous studies reported in the literature were
devoted only to apparent elastic moduli. The objec-
tive of the present study was to complete this analy-
sis and obtain the corresponding results for the
apparent elastic compliances. We have, therefore,
derived the closed-form expressions for the appar-
ent second-order elastic compliances, and their
pressure derivatives, in terms of the original second-
and third-order elastic compliances of cubic crys-
tals. Obtained results are shown to be in agreement
with those based on the elastic moduli approach.

2. Tensors of second- and third-order elastic
constants

The strain energy per unit initial volume of an
elastic solid can be expanded in a Taylor series
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about the state of zero strain and stress as
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to third-order terms in the components of the Lag-
rangian strain E

ij
. The Lagrangian strain is used,

so that above is not effected by a superimposed
rigid-body rotation of the deformed configuration.
The constants C
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are the second-

and third-order elastic stiffness constants or elastic
moduli. Since they are appropriate strain gradients
of ' evaluated at zero strain, they possess the
obvious basic symmetries, such as C
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. Tables for the sec-
ond- and third-order independent elastic constants
in crystals for all crystallographic groups are well
known (e.g. [7]). For a cubic crystal belonging to
the Laue group CI (point groups O, O

)
and T

$
),

there are at most three independent second-oder
and six independent third-order elastic constants.

The symmetric Piola—Kirchhoff stress is the
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The Legendre transform of ' is the complementary
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The elastic constants D
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The components of the fourth-order tensor

C
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of the second-order elastic moduli of cubic
crystals, with respect to an arbitrary rectangular
basis, are readily found to be
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In Eqs. (5) and (6), d
ij

denotes the Kronecker delta,
while a

i
, b

i
and c

i
are the components of the ortho-

gonal unit vectors along the principal cubic axes.
The Voigt notation 11&1, 22&2, 33&3, 23&4,
13&5, 12&6 is employed to relate the constants
C

ijkl
and c

ij
. When c
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components of isotropic fourth-order tensor, the
constants c
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c
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The fourth-order tensor of the second-order elas-
tic compliances has the components D

ijkl
given by

the right-hand side of Eq. (5), in which the con-
stants c

ij
are replaced by d

ij
. The connections are
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Interchanging the symbols c and d in Eq. (7), the
relationships for the second-order stiffness con-
stants c

ij
in terms of the second-order compliances

d
ij

are obtained. Clearly, an assumed Cauchy sym-
metry for the elastic moduli does not result in the
corresponding symmetry for the elastic compli-
ances. Actually, from Eq. (7) it is evident that the
symmetry D

ijkl
"D

ikjl
(i.e. d
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"d
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) is out of

question for all cubic crystals with positive c
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,
since then d
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is negative, while d
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is always posit-

ive. Recall that the Born stability condition re-
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A comprehensive review of some fundamental
problems in crystal elasticity has been given in [8].

The components of the sixth-order tensor
C

ijklmn
of the third-order elastic moduli of cubic

crystals, with respect to an arbitrary rectangular
basis, can be written as [9]
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The following abbreviations were used:
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The tensors appearing on the right-hand side of Eq.
(8) are the base tensors for the sixth-order elastic
moduli tensor with cubic symmetry. The notation
such as a
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c
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designates the symmetriza-
tion with respect to i and j, k and l, m and n, and ij,
kl and mn. Other base tensors could be selected,
such as those used in [10]. For instance, it can be
shown that
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In the case of isotropy, b
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If a Cauchy type or Milder symmetry
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given by Eq. (8), with the constants c
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replaced by
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in view of tables for independent second- and third-
order elastic constants given in [7], the relation-
ships between the third-order elastic moduli and
compliances are
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If the symbols c and d are interchanged in Eqs.
(13)—(18), the inverse relationships, expressing c

ijk
in

terms of d
ijk

, are obtained.

3. Apparent elastic constants and their pressure
derivatives

The apparent second-order elastic constants play
an important role in the calculation of the third-
order elastic constants. Their pressure derivatives
appear in the relationship between the speeds of
longitudinal and transverse waves in the body un-
der hydrostatic and zero reference state of stress.
They can be used to determine the volume expan-
sion of self-strained isotropic elastic body, since the
average dilatation is dependent on the pressure
derivatives of the second-order bulk and shear
moduli. The apparent elastic constants are also of
importance in modeling inelastic deformation un-
der high pressures, to more accurately express elas-
tic part of the total strain increment in terms of an
applied stress increment.
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For the sake of comparison with the new results
presented for the apparent elastic compliances in
Section 3.2, we begin this section with the deriva-
tion of relevant results for the apparent elastic
moduli of cubic crystals.

3.1. Apparent elastic moduli

If a hydrostatic pressure p is applied to an un-
stressed configuration of a cubic crystal, the result-
ing deformation gradient is F0"0 I, 0(0)1.
(An analogous derivation proceeds in the case of
hydrostatic tension, when 0*1.) If an additional
stress is subsequently applied, which produces
infinitesimal elastic strain e

ij
and rotation u

ij
,

the corresponding deformation gradient is
Fe"I#+u, where u is the infinitesimal displace-
ment relative to the compressed configuration.
The total deformation gradient is F"FeF0"

0 (I#+u), and the Lagrangian strain components
are
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neglecting quadratic and higher-order terms in e.
The Cauchy stress p is related to symmetric

Piola—Kirchhoff stress S by p"(detF)~1FSFT.
Thus, in view of the expression for the deformation
gradient F,
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The quadratic terms in displacement gradient were
neglected.

In a hydrostatically compressed configuration,
F"F0"0 I, and p"!pI"S/0. From Eq. (20)
it, consequently, follows that
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cubic crystal. Substitution of Eq. (20) into Eq. (21),

therefore, gives
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to within linear terms in e.
On the other hand, the stress—strain response

from a hydrostatically compressed configuration
can be written as

p
ij
"!pd

ij
#C(p)

ijkl
e
kl
, (24)
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are the apparent second-order elastic
moduli in the compressed configuration. Compari-
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which defines the pressure-dependent apparent
elastic moduli C(p)
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of a cubic crystal. The terminol-
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moduli appear in the linearized equations of
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symmetry. This is not the case for the apparent
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where i"C
iijj

/9"(c
11
#2c
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)/3 is the bulk

modulus at zero pressure. This equation was ori-
ginally obtained through a thermodynamic analy-
sis by Barsch [3], although its component by
component form was previously derived by Birch
[1]; see also [12].

From Eq. (26), we have
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If a longitudinal wave is propagating along a pure
mode direction n, the corresponding wave speed is
obtained from ov2"C(p)
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Thurston and Brugger [6] derived expressions for
arbitrary crystal symmetry, and for any reference
homogeneous stress state depending on a single
parameter. Implications of the symmetry condi-
tions for the third-order elastic constants in the
non-linear wave theory have been recently dis-
cussed in [13]. There has also been a significant
amount of research devoted to higher-order elastic
constants from the molecular dynamics point of
view, and assumed structure of the potential energy
between two atoms [14].

3.2. Apparent elastic compliances

In a dual approach to that described in the
previous subsection, we introduce the apparent
elastic compliances D(p)
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, so that, relative to hydros-

tatically compressed configuration,
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, we first
have from the relationship between the Piola—Kir-
chhoff and Cauchy stress,
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to within linear terms in e. Comparison of Eqs. (19)
and (32), therefore, yields
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Eq. (33) is a dual equation to Eq. (22). It gives
a pressure/volume relation associated with the sec-
ond-order approximation in the constitutive ex-
pression of Eq. (4). Observe that Eqs. (22) and (33)
are equivalent only to within the second-order
terms in e, because the cubic approximations of the
strain and complementary energies are not exactly
the Legendre transforms of each other.

Inversion of Eq. (34) gives, to the same order of
approximation,
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This can be regrouped into
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Comparison of Eq. (36) and the first part of Eq. (30),
therefore, gives
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This represents the pressure dependent apparent
elastic compliances of cubic crystals, relative to
a hydrostatically compressed reference configura-
tion. These compliances evidently possess the full
symmetry D(p)

klij
"D(p)
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"D(p)

jikl
.

Derivative of Eq. (37) with respect to pressure p,
evaluated at zero pressure, is
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where k"D
iijj

"3(d
11
#2d
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) is the compress-

ibility constant at zero pressure (k"1/i).
Eq. (38) is a dual equation to Eq. (26). To our

knowledge, it has not been previously reported in
the literature. This is presumably because more
interest was placed on the pressure derivatives of
apparent elastic moduli, due to their direct use in
the structure of the wave equation. Equation (38)
is, however, of significance for determination of
the third-order elastic compliances, whenever the
values of pressure dependent apparent elastic com-

pliances are experimentally reported. For example,
from Eq. (38) it follows that
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This is in agreement with Eq. (27), because
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In view of Eqs. (7), (16) and (17) it is readily verified
that Eq. (40) is also in agreement with the corre-
sponding Eq. (28), obtained in the analysis based on
the apparent elastic moduli.

Acknowledgements

Research support provided by the Alcoa Center
and discussions with Dr. Owen Richmond are
kindly acknowledged.

References

[1] F. Birch, Finite elastic strain of cubic crystals, Phys. Rev.
71 (1947) 809.

[2] G. Leibfried, W. Ludwig, Theory of anharmonic effects in
crystals, Solid State Phys. 12 (1961) 275.

[3] G.R. Barsch, Adiabatic, isothermal, and intermediate pres-
sure derivatives of the elastic constants for cubic sym-
metry, Phys. Stat. Sol. 19 (1967) 129.

[4] W.B. Daniels, C.S. Smith, Pressure derivatives of the elas-
tic constants of copper, silver, and gold to 10,000 bars,
Phys. Rev. 111 (1958) 713.

[5] R.A. Toupin, B. Bernstein, Sound waves in deformed per-
fectly elastic materials. Acoustoelastic effect, J. Acoust.
Soc. Amer. 33 (1961) 216.

[6] R. N. Thurston, K. Brugger, Third-order constants and the
velocity of small amplitude elastic waves in homogeneous-
ly stressed media, Phys. Rev. 133 (1964) A1604.

[7] K. Brugger, Pure modes for elastic waves in crystals, J.
Appl. Phys. 36 (1965) 759.

[8] F. Milstein, Crystal elasticity, in: H.G. Hopkins, M.J.
Sewell (Eds.), Mechanics of Solids—The Rodney Hill 60th
Anniversary Volume, Pergamon Press, Oxford, 1982, pp.
417—452.

[9] V.A. Lubarda, New estimates of the third-order elastic
constants for isotropic aggregates of cubic crystals, J.
Mech. Phys. Solids 45 (1997) 471.

10 V.A. Lubarda / International Journal of Non-Linear Mechanics 34 (1999) 5–11



[10] R.A. Toupin, R.S. Rivlin, Dimensional changes in crystals
caused by dislocations, J. Math. Phys. 1 (1960) 8.

[11] F.D. Murnaghan, Finite Deformation of an Elastic Solid,
Wiley, New York, 1951.

[12] D.H. Chung, First pressure-derivatives of polycrystalline
elastic moduli: Their relation to single-crystal acoustic
data and thermodynamic relations, J. Appl. Phys. 38 (1967)
5104.

[13] A.N. Norris, Symmetry conditions for third order elastic
moduli and implications in non-linear wave theory, J.
Elasticity 25 (1991) 247.

[14] T. hag\ in, B.M. Pettitt, Elastic constants of nickel: Vari-
ations with respect to temperature and pressure, Phys.
Rev. B 39 (1989) 12484.

V.A. Lubarda / International Journal of Non-Linear Mechanics 34 (1999) 5–11 11


