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The concept of yield surface and plastic loading/unloading criteria in stress

and strain space are discussed in Section 1. Plasticity postulates of Ilyushin

and Drucker, and their implications on plastic normality rules and convexity

of the yield surface are described in Section 2. General constitutive frame-

work of rate-independent isothermal plasticity at �nite strain is presented in

Section 3. Stress and strain space formulations are given for the smooth yield

surface and for the yield surface with a vertex. Particular constitutive models

for plastic deformation of metals are considered in Section 4. These include

models of isotropic, kinematic, and combined hardening, as well as multi-

surface hardening models. Section 5 deals with pressure-dependent plasticity.

Drucker-Prager yield condition for geomaterials, and Gurson yield condition

for porous metals are introduced, and the corresponding constitutive equations

are derived. Non-associative plasticity, in which plastic strain rate is normal

to the plastic potential surface, distinct from the yield surface, is presented in
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Section 6. A yield vertex model for �ssured rocks is then described. Section 7

contains fundamentals of deformation theory of plasticity and its relationship

to more general ow theory of plasticity. Applicability of deformation theory

for proportional and nearly proportional loading is discussed. Constitutive

equations of non-isothermal plastic deformation are considered in Section 8.

Speci�c results are listed for non-isothermal isotropic and kinematic harden-

ing idealizations. Section 9 deals with essential structure of the rate-dependent

plasticity. Flow potential representations are given for the power-law and for

the Johnson-Cook models of the rate-dependent plasticity, and for viscoplas-

tic model of Malvern and Perzyna. Bibliography contains selected references

cited in the article.

1 Yield Surface

Materials capable of plastic deformation usually have an elastic range of purely

elastic response. This range is a closed domain in either stress or strain space

whose boundary is called the yield surface. The shape of the yield surface

depends on the entire deformation path from the reference state. The yield

surfaces for actual materials are mainly smooth, but may have or develop

pointed pyramidal or conical vertices. Physical theories of plasticity (Hill,

1967) imply the formation of a corner or vertex at the loading point on the

yield surface. Experimental evidence, on the other hand, suggests that, while

relatively high curvature at the loading point is often observed, sharp corners
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are seldom seen (Hecker, 1976). Experiments also indicate that yield surfaces

for metals are convex in Cauchy stress space, if elastic response within the

yield surface is linear and una�ected by plastic ow.

1.1 Yield Surface in Strain Space

The yield surface in strain space is de�ned by g (E;H) = 0, where E is the

strain tensor, and H the pattern of internal rearrangements due to plastic

ow, i.e., the set of appropriate internal variables including the path history by

which they are achieved (Rice, 1971). The shape of the yield surface speci�ed

by function g is di�erent for di�erent choices ofE. If elastic response within the

yield surface is Green-elastic, associated with the strain energy  =  (E;H)

per unit reference volume, the corresponding stress is T = @ =@E. From the

strain state on the current yield surface, an increment of strain dE directed

inside the yield surface constitutes an elastic unloading. The associated incre-

mental elastic response is governed by

_T = � : _E; � =
@2 

@E
 @E
; (1)

where � = � (E;H) is a tensor of elastic moduli of the material at the con-

sidered state of strain and internal structure. An increment of strain directed

outside the current yield surface constitutes plastic loading. The resulting in-

crement of stress consists of elastic and plastic parts, such that

_T = _Te + _Tp = � : _E+ _Tp: (2)
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The elastic part of the stress rate _Te gives a stress decrement deT associated

with elastic removal of the strain increment dE. The plastic part of the stress

rate _Tp gives a residual stress decrement dpT in a considered in�nitesimal

strain cycle. A transition between elastic unloading and plastic loading is a

neutral loading, in which an in�nitesimal strain increment is tangential to the

yield surface and represents pure elastic deformation. Thus,

@g

@E
: _E

8>>>>>>>>>>><
>>>>>>>>>>>:

> 0; for plastic loading;

= 0; for neutral loading;

< 0; for elastic unloading:

(3)

The gradient @g=@E is codirectional with the outward normal to a locally

smooth yield surface g = 0 at the state of strain E. For incrementally linear

response, all in�nitesimal increments dE with equal projections on the normal

@g=@E, produce equal plastic increments of stress dpT, since the components

of dE obtained by projection on the plane tangential to the yield surface

represent elastic deformation only.

1.2 Yield Surface in Stress Space

The yield surface in stress space is de�ned by f (T;H) = 0. The stress T is

a work-conjugate to strain E, in the sense that T : _E represents the rate of

work per unit initial volume (Hill, 1978). The function f is related to g by

f [T (E;H) ;H] = g (E;H) = 0; (4)
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provided that physically identical conditions of yield are imposed in both

spaces. If elastic response within the yield surface is Green-elastic, associated

with the complementary strain energy � = � (T;H) per unit reference volume,

the corresponding strain is E = @�=@T. For material in the hardening range

relative to measures E and T, an increment of stress dT from the stress state

on the yield surface, directed inside the yield surface constitutes an elastic

unloading. The associated incremental elastic response is governed by

_E =M : _T; M =
@2�

@T
 @T
: (5)

The tensor M = M (T;H) is a tensor of elastic compliances of the material

at the considered state of stress and internal structure. An increment of stress

directed outside the current yield surface constitutes plastic loading in the

hardening range of material response. The resulting increment of stain consists

of elastic and plastic parts, such that

_E = _Ee + _Ep =M : _T+ _Ep: (6)

During plastic loading of hardening material, the yield surface locally expands,

the stress state remaining on the yield surface. The elastic part of the strain

rate _Ee gives an elastic increment of strain deE which is recovered upon elastic

unloading of the stress increment dT. The plastic part of the strain rate _Ep

gives a residual increment of strain dpE which is left upon removal of the stress

increment dT. A transition between elastic unloading and plastic loading is a

neutral loading, in which an in�nitesimal stress increment is tangential to the
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yield surface and produces only elastic deformation. Thus, in the hardening

range

@f

@T
: _T

8>>>>>>>>>>><
>>>>>>>>>>>:

> 0; for plastic loading;

= 0; for neutral loading;

< 0; for elastic unloading:

(7)

The gradient @f=@T is codirectional with the outward normal to a locally

smooth yield surface f = 0 at the state of stress T. For incrementally linear

response, all in�nitesimal increments dT with equal projections on @f=@T

produce equal plastic increments of deformation dpE, since the components

of dT obtained by projection on the plane tangential to the yield surface give

rise to elastic deformation only.

In a softening range of material response Eq. (6) still holds, although the elastic

and plastic parts of the strain rate have purely formal signi�cance, since in the

softening range it is not physically possible to perform an in�nitesimal cycle

of stress starting from a stress point on the yield surface. The hardening is,

however, a relative term: material that is in the hardening range relative to

one pair of stress and strain measures, may be in the softening range relative

to another pair.

2 Plasticity Postulates, Normality and Convexity of the Yield Surface

Several postulates in the form of constitutive inequalities have been proposed

for certain types of materials undergoing plastic deformation. The two most
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well-known are by Drucker (1960) and Ilyushin (1961).

2.1 Ilyushin's Postulate

According to Ilyushin's postulate the net work in an isothermal cycle of strain

must be positive

I
E
T : dE > 0; (8)

if a cycle at some stage involves plastic deformation. The integral in (8) over

an elastic strain cycle is equal to zero. Since a cycle of strain that includes

plastic deformation in general does not return the material to its state at the

beginning of the cycle, the inequality (8) is not a law of thermodynamics. For

example, it does not apply to materials which dissipate energy by friction.

For materials obeying Ilyushin's postulate it can be shown that (Hill and

Rice, 1973; Havner, 1992)

dpT : dE < 0: (9)

Since during plastic loading the strain increment dE is directed outward from

the yield surface, and since the same dpT is associated with a fan of in�nitely

many dE around the normal @g=@E, all having the same projection on that

normal, the inequality (9) requires that dpT is codirectional with the inward

normal to a locally smooth yield surface in strain space,

dpT = �d @g

@E
: (10)
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The scalar multiplier d > 0 is called a loading index. At a vertex of the yield

surface, dpT must lie within the cone of limiting inward normals.

The inequality (9) and the normality rule (10) hold for all pairs of conjugate

stress and strain measures, irrespective of the nature of elastic changes caused

by plastic deformation, or possible elastic nonlinearities within the yield sur-

face. Also, (10) applies regardless of whether the material is in a hardening or

softening range.

If elastic response within the yield surface is nonlinear, Ilyushin's postulate

does not imply that the yield surface is necessarily convex. For a linearly

elastic response, however, it follows that

�
E
0 � E

�
: dpT > 0; (11)

provided that there is no change of elastic sti�ness caused by plastic defor-

mation (d� = 0), or the change is such that d� is negative semi-de�nite.

The strain E0 is an arbitrary strain state within the yield surface. Since dpT

is codirectional with the inward normal to a locally smooth yield surface in

strain space, (11) implies that the yield surface is convex. The convexity of the

yield surface is not an invariant property, because d� can be negative de�nite

for some measures (E;T), but not for others.

Plastic stress and strain rates are related by _Tp = �� : _Ep, so that, to �rst

order,

dpT = �� : dpE: (12)
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Since for any elastic strain increment ÆE, emanating from a point on the yield

surface in strain space and directed inside of it,

dpT : ÆE > 0; (13)

substitution of (12) into (13) gives

dpE : ÆT < 0: (14)

Here, ÆT = � : ÆE is the stress increment from the point on the yield surface

in stress space, directed inside of it (elastic unloading increment associated

with elastic strain increment ÆE). Inequality (14) holds for any ÆT directed

inside the yield surface. Consequently, dpE must be codirectional with the

outward normal to a locally smooth yield surface in stress T space,

dpE = d
@f

@T
; d > 0: (15)

At a vertex of the yield surface, dpE must lie within the cone of limiting

outward normals. Inequality (14) and the normality rule (15) hold for all

pairs of conjugate stress and strain measures.

If material is in a hardening range relative to E and T, the stress increment

dT producing plastic deformation dpE is directed outside the yield surface,

satisfying

dpE : dT > 0: (16)

If material is in the softening range, the stress increment dT producing plastic

deformation dpE is directed inside the yield surface, satisfying the reversed
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inequality in (16). The normality rule (15) applies to both hardening and

softening. Inequality (16) is not measure invariant, since material may be

in the hardening range relative to one pair of conjugate stress and strain

measures, and in the softening range relative to another pair.

The normals to the yield surfaces in stress and strain space are related by

@g

@E
= � :

@f

@T
: (17)

This follows directly from Eq. (4) by partial di�erentiation.

2.2 Drucker's Postulate

A non-invariant dual to (8) is

I
T
E : dT < 0; (18)

requiring that the net complementary work (relative to measures E and T)

in an isothermal cycle of stress must be negative, if the cycle at some stage

involves plastic deformation. Inequality (18) is non-invariant because the value

of the integral in (18) depends on the selected measures E and T, and the

reference state with respect to which they are de�ned. This is because T is

introduced as a conjugate stress to E such that, for the same geometry change,

T : dE (and not E : dT) is measure invariant. If inequality (18) applies to

conjugate pair (E;T), it follows that in the hardening range (16) holds, and

dpE is codirectional with the outward normal to a locally smooth yield surface
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in stress T space, Eq. (15). At a vertex of the yield surface, dpEmust lie within

the cone of limiting outward normals. In the softening range,

dpE : dT < 0: (19)

Since dT is now directed inside the current yield surface, (19) also requires

that dpE is codirectional with the outward normal to a locally smooth yield

surface in stress T space, with the same generalization at a vertex as in the

case of hardening behavior.

If elastic response is nonlinear, the yield surface in stress space is not nec-

essarily convex. A concavity of the yield surface in the presence of nonlinear

elasticity for a particular material model has been demonstrated by Palmer,

Maier and Drucker (1967). For linear elastic response, however,

�
T�T0

�
: dpE > 0; (20)

provided that there is no change of elastic sti�ness caused by plastic deforma-

tion (dM = 0), or that the change is such that dM is positive semi-de�nite.

The stress state T0 is an arbitrary stress state within the yield surface. Since

dpE is codirectional with the outward normal to a locally smooth yield sur-

face in strain T space, (20) implies that the yield surface in a considered stress

space is convex. Inequality (20) is often referred to as the principle of maxi-

mum plastic work (Hill, 1950; Johnson and Mellor, 1973; Lubliner, 1990). If

inequality is assumed at the outset, it by itself assures both normality and

convexity.
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3 Constitutive Equations of Elastoplasticity

3.1 Strain Space Formulation

The stress rate is a sum of elastic and plastic parts, such that

_T = _Te + _Tp = � : _E� _
@g

@E
: (21)

For incrementally linear and continuous response between loading and unload-

ing, the loading index is

_ =
1

h

 
@g

@E
: _E

!
;

@g

@E
: _E > 0; (22)

where h > 0 is a scalar function of the plastic state on the yield surface in

strain space, determined from the consistency condition _g = 0. Consequently,

the constitutive equation for elastoplastic loading is

_T =

"
�� 1

h

 
@g

@E

 @g

@E

!#
: _E: (23)

The fourth-order tensor within the square brackets is the elastoplastic sti�ness

tensor associated with the considered measure and reference state. Within

the framework based on Green-elasticity and normality rule, the elastoplastic

sti�ness tensor possesses reciprocal or self-adjoint symmetry (with respect to

�rst and second pair of indices), in addition to symmetries in the �rst and last

two indices associated with the symmetry of stress and strain tensors.
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The inverted form of (23) is

_E =

"
M +

1

H

 
M :

@g

@E

!


 
@g

@E
:M

!#
: _T; (24)

where

H = h� @g

@E
:M :

@g

@E
: (25)

3.2 Stress Space Formulation

The strain rate is a sum of elastic and plastic parts, such that

_E = _Ee + _Ep =M : _T+ _
@f

@T
: (26)

The loading index is obtained from the consistency condition _f = 0,

_ =
1

H

 
@f

@T
: _T

!
; (27)

where H is a scalar function of the plastic state on the yield surface in stress

space. Thus,

_E =

"
M +

1

H

 
@f

@T

 @f

@T

!#
: _T: (28)

The fourth-order tensor within the square brackets is the elastoplastic com-

pliance tensor associated with the considered measure and reference state.

The scalar parameter H can be positive, negative or equal to zero. Three

types of response can be identi�ed within this constitutive framework. These
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are (Hill, 1978)

H > 0;
@f

@T
: _T > 0 hardening;

H < 0;
@f

@T
: _T < 0 softening;

H = 0;
@f

@T
: _T = 0 ideally plastic:

(29)

Starting from the current yield surface in stress space, the yield point moves

outward in the case of hardening, inward in the case of softening, and tan-

gentially to the yield surface in the case of ideally plastic response. In the

case of softening, _E is not uniquely determined by prescribed stress rate _T,

since either Eq. (28) applies, or the elastic unloading expression _E =M : _T.

In the case of ideally plastic response, the plastic part of the strain rate is

indeterminate to the extent of an arbitrary positive multiple, since _ in Eq.

(27) is indeterminate.

3.3 Yield Surface with a Vertex

Physical theories of plasticity imply the formation of a corner or vertex at the

loading point on the yield surface. Suppose that the yield surface in stress

space has a pyramidal vertex formed by n intersecting segments f<i> = 0,

then near the vertex

nY
i=1

f<i> (T;H) = 0; n � 2: (30)

It follows that

_E =

2
4M+

nX
i=1

nX
j=1

H�1
<ij>

 
@f<i>
@T


 @f<j>
@T

!3
5 : _T: (31)
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This is an extension of the constitutive structure (28) for the smooth yield

surface to the yield surface with a vertex. Elements of the matrix inverse to

plastic moduli matrix H<ij> are denoted by H�1
<ij>. The papers by Koiter

(1953), Hill (1978), and Asaro (1983) can be consulted for further analysis.

4 Constitutive Models of Plastic Deformation

4.1 Isotropic Hardening

Experimental determination of the yield surface shape is commonly done with

respect to Cauchy stress �. Suppose that this is given by f(�; k) = 0, where f

is an isotropic function of � and k = k(#) is a scalar which de�nes the size of

the yield surface. This depends on the history parameter, such as the e�ective

plastic strain

# =
Z t

0
(2Dp : Dp)1=2 dt: (32)

The hardening model in which the yield surface expands during plastic defor-

mation preserving its shape is known as the isotropic hardening model. Since

f is an isotropic function of stress, the material is assumed to be isotropic.

For non-porous metals the onset of plastic deformation and plastic yielding

is una�ected by moderate superimposed pressure. The yield condition can

consequently be written as an isotropic function of the deviatoric part of the

Cauchy stress, i.e. its second and third invariant, f(J2; J3; k) = 0. The well-

known examples are the Tresca maximum shear stress criterion, or the von
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Mises yield criterion. In the latter case,

f = J2 � k2(#) = 0; J2 =
1

2
�

0 : � 0: (33)

The corresponding plasticity theory is referred to as the J2 ow theory of

plasticity. The yield stress in simple shear is k. If Y is the yield stress in

uniaxial tension, k = Y=
p
3. The consistency condition gives

_ =
1

4k2hpt

�
�

0 :
Æ

�

�
; H = 4k2hpt ; (34)

where the plastic tangent modulus in shear test is hpt = dk=d#. The stress rate

Æ

� =
Æ

�+ � trD;
Æ

� = _��W � �+ � �W (35)

represents the Jaumann rate of the Kirchho� stress � = (detF)�, when the

current state is taken as the reference (detF = 0). The deformation gradient

is F, and the material spin isW. The total rate of deformation is therefore

D =

 
M+

1

2hpt

�
0 
 �

0

�
0 : � 0

!
:
Æ

�: (36)

The elastic compliance tensor for in�nitesimal elasticity is

M =
1

2�

 
I� �

2�+ 3�
Æ 
 Æ

!
: (37)

The Lam�e elastic constants are � and �. The second- and fourth-order unit

tensors are designated by Æ and I. The plastic deformation is in this case

isochoric (trDp = 0), and principal directions of Dp are parallel to those of �
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(Dp � �
0). The inverted form of (36) is

Æ

� =

 
�� 2�

1 + hpt =�

�
0 
 �

0

�
0 : � 0

!
: D; (38)

where

� = � Æ 
 Æ + 2� I (39)

is the elastic sti�ness tensor. Constitutive structures (36) and (38) have been

extensively used in analytical and numerical studies of large plastic deforma-

tion problems (Neale, 1981; Needleman, 1982). In�nitesimal strain formula-

tion, derivation of classical Prandtl-Reuss equations for elastic-ideally plas-

tic, and Levy-Mises equations for rigid-ideally plastic material models can be

found in standard texts or review papers (Hill, 1950; Naghdi, 1960).

4.2 Kinematic Hardening

To account for the Bauschinger e�ect and anisotropy of hardening, a simple

model of kinematic hardening was introduced by Prager (1956). According

to this model, the initial yield surface does not change its size and shape

during plastic deformation, but translates in the stress space according to

some prescribed rule. Thus, f (�� �; k) = 0, where � represents the current

center of the yield surface (back stress), and f is an isotropic function of the

stress di�erence ���. The size of the yield surface is speci�ed by the constant

k. The evolution of the back stress is governed by

Æ

� = c(�)Dp +C(�) (2Dp : Dp)1=2 ; (40)
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where c and C are appropriate scalar and tensor functions of �. This repre-

sentation is in accord with assumed time independence of plastic deformation,

which requires Eq. (40) to be homogeneous relation of degree one.

If C = 0 and c is taken to be constant, the model corresponds to Prager's

linear kinematic hardening. The plastic tangent modulus hpt in shear test is

in this case constant and related to c by c = 2hpt . The resulting constitutive

structure is

D =

"
M +

1

2hpt

(� 0 � �)
 (� 0 � �)

(� 0 � �) : (� 0 ��)

#
:
Æ

�; (41)

with the inverse

Æ

� =

"
�� 2�

1 + hpt =�

(� 0 � �)
 (� 0 � �)

(� 0 � �) : (� 0 ��)

#
: D: (42)

If C in Eq. (40) is taken to be proportional to � (i.e., C = �c0�, c0 = const:),

a nonlinear kinematic hardening model of Armstrong and Frederick (1966) is

obtained. Details can be found in Khan and Huang (1995). Ziegler (1959) used

as an evolution equation for the back stress

Æ

� = _� (� 0 � �): (43)

The proportionality factor _� is determined from the consistency condition in

terms of � and �.
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4.3 Combined Isotropic-Kinematic Hardening

In this hardening model the yield surface expands and translates during plastic

deformation, so that

f (�� �; k) = 0; k = k(#): (44)

The function k(#), with # de�ned by Eq. (32), speci�es expansion of the yield

surface, while evolution equation (40) speci�es its translation.

4.4 Multisurface Models

Motivated by the need to better model nonlinearities in stress-strain loops,

cyclic hardening or softening, cyclic creep and stress relaxation, more involved

hardening models were suggested. Mr�oz (1967) introduced a multi-yield sur-

face model in which there is a �eld of hardening moduli, one for each yield

surface. Initially the yield surfaces are assumed to be concentric. When the

stress point reaches the inner-most yield surface, the plastic deformation de-

velops according to linear hardening model with a prescribed plastic tangent

modulus, until the active yield surface reaches the adjacent yield surface. Sub-

sequent plastic deformation develops according to linear hardening model with

another speci�ed value of the plastic tangent modulus, until the next yield sur-

face is reached, etc.. Dafalias and Popov (1975) and Krieg (1975) suggested a

hardening model which uses the yield (loading) surface and the limit (bound-

ing) surface. A smooth transition from elastic to plastic regions on loading is
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assured by introducing a continuous variation of the plastic tangent modulus

between the two surfaces.

5 Pressure-Dependent Plasticity

For porous metals, concrete and geomaterials like soils and rocks, plastic de-

formation has its origin in pressure dependent microscopic processes and the

yield condition for these materials, in addition to deviatoric components, de-

pends on hydrostatic component of stress, i.e. its �rst invariant I1 = tr�.

5.1 Drucker-Prager Yield Condition for Geomaterials

Drucker and Pruger (1952) suggested that yielding of soil occurs when the

shear stress on octahedral planes overcomes cohesive and frictional resistance

to sliding on those planes. The yield condition is consequently

f = J
1=2
2 +

1

3
� I1 � k = 0; (45)

where � is a frictional parameter. This geometrically represents a cone in the

principal stress space with its axis parallel to hydrostatic axis. The radius of

the circle in the deviatoric plane is
p
2 k, where k is the yield stress in simple

shear. The angle of the cone is tan�1(
p
2�=3). The yield stresses in uniaxial

tension and compression are according to Eq. (45),

Y + =

p
3 k

1 + �=
p
3
; Y � =

p
3 k

1� �=
p
3
: (46)
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For the yield condition to be physically meaningful, the restriction holds � <

p
3. If the compressive states of stress are considered positive (as commonly

done in geomechanics), the minus sign appears in front of the second term in

Eq. (45).

When Drucker-Prager cone is applied to porous rocks, it overestimates the

yield stress at higher pressures and inadequately predicts inelastic volume

changes. To circumvent this, DiMaggio and Sandler (1971) introduced an el-

lipsoidal cap to close the cone at certain level of pressure. Other shapes of the

cap were also used. Details can be found in Chen and Han (1988).

5.2 Gurson Yield Condition for Porous Metals

Based on a rigid-perfectly plastic analysis of spherically symmetric deforma-

tion around a spherical cavity, Gurson (1977) suggested a yield condition for

porous metals in the form

f = J2 +
2

3
�Y 2

0 cosh
�
I1
2Y0

�
� (1 + �2)

Y 2
0

3
= 0; (47)

where � is the porosity (void/volume fraction), and Y0 = const: is the tensile

yield stress of the matrix material. Generalizations to include hardening matrix

material were also made. The change in porosity during plastic deformation

is given by the evolution equation

_� = (1� �) trDp: (48)
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Other evolution equations, which take into account nucleation and growth of

voids, have been considered. To improve its predictions and agreement with

experimental data, Tvergaard (1982) introduced two additional material pa-

rameters in the structure of the Gurson yield criterion. Mear and Hutchinson

(1985) incorporated the e�ects of anisotropic (kinematic) hardening by replac-

ing J2 of �
0 in Eq. (47) with J2 of �

0 � �, where � is the back stress.

5.3 Constitutive Equations of Pressure-Dependent Plasticity

The two considered pressure-dependent yield conditions are of the type

f(J2; I1;H) = 0: (49)

For materials obeying Ilyushin's postulate, the plastic part of the rate of de-

formation tensor is normal to the yield surface, so that

D
p = _

@f

@�
;

@f

@�
=

@f

@J2
�

0 +
@f

@I1
Æ: (50)

The loading index is

_ =
1

H

 
@f

@J2
�

0 +
@f

@I1
Æ

!
:
Æ

�; (51)

where H is an appropriate hardening modulus. Therefore,

D
p =

1

H

" 
@f

@J2
�

0 +
@f

@I1
Æ

!


 
@f

@J2
�

0 +
@f

@I1
Æ

!#
:
Æ

�: (52)

The volumetric part of the plastic rate of deformation is

trDp =
3

H

@f

@I1

 
@f

@J2
�

0 +
@f

@I1
Æ

!
:
Æ

�: (53)
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For the Drucker-Prager yield condition,

@f

@J2
=

1

2
J

�1=2
2 ;

@f

@I1
=

1

3
�; (54)

and

H =
dk

d#
; # =

Z t

0
(2Dp0 : Dp0)

1=2
dt: (55)

For the Gurson yield condition,

@f

@J2
= 1;

@f

@I1
=

1

3
� Y0 sinh

�
I1
2Y0

�
; (56)

and

H =
2

3
�(1� �)Y 3

0 sinh
�
I1
2Y0

� �
� � cosh

�
I1
2Y0

��
: (57)

6 Non-Associative Plasticity

Constitutive equations in which plastic part of the rate of strain is normal to

locally smooth yield surface f = 0 in stress space,

_Ep = _
@f

@T
; (58)

are often referred to as associative ow rules. A suÆcient condition for this

constitutive structure to hold is that material obeys the Ilyushin's postulate.

However, many pressure-dependent dilatant materials with internal frictional

e�ects are not well described by associative ow rules. For example, associative

ow rules largely overestimate inelastic volume changes in geomaterials like

rocks and soils (Rudnicki and Rice, 1975), and in certain high-strength steels

exhibiting the strength-di�erential e�ect by which the yield strength is higher
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in compression than in tension (Spitzig, Sober and Richmond, 1975). For such

materials, plastic part of the rate of strain is taken to be normal to plastic

potential surface � = 0, which is distinct from the yield surface. The resulting

constitutive structure,

_Ep = _
@�

@T
; (59)

is known as non-associative ow rule (Nemat-Nasser, 1983). The consistency

condition _f = 0 gives

_ =
1

H

@f

@T
: _T; (60)

so that

_Ep =
1

H

 
@�

@T

 @f

@T

!
: _T: (61)

Since � 6= f , the plastic compliance tensor in Eq. (61) does not possess a

reciprocal symmetry.

Consider inelastic behavior of geomaterials whose yield is governed by the

Drucker-Prager yield condition of Eq. (45). A non-associative ow rule can be

used with the plastic potential

� = J
1=2
2 +

1

3
� I1 � k = 0: (62)

The material parameter � is in general di�erent from the frictional parameter

� of Eq. (45). The rate of plastic deformation is

D
p = _

@�

@�
= _

�
1

2
J

�1=2
2 �

0 +
1

3
� Æ

�
: (63)
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The consistency condition _f = 0 gives the loading index

_ =
1

H

�
1

2
J

�1=2
2 �

0 +
1

3
� Æ

�
:
Æ

�; H =
dk

d#
: (64)

Consequently,

D
p =

1

H

��
1

2
J

�1=2
2 �

0 +
1

3
� Æ

�


�
1

2
J

�1=2
2 �

0 +
1

3
� Æ

��
:
Æ

�: (65)

The deviatoric and spherical parts are

D
p0 =

1

2H

�
0

J
1=2
2

 
�

0 :
Æ

�

2 J
1=2
2

+
1

3
� tr

Æ

�

!
; (66)

trDp =
�

H

 
�

0 :
Æ

�

2 J
1=2
2

+
1

3
� tr

Æ

�

!
: (67)

The parameter � can be expressed as

� =
trDp

(2Dp0 : Dp0)1=2
; (68)

which shows that � is the ratio of the volumetric and shear part of the plas-

tic strain rate, often called the dilatancy factor (Rudnicki and Rice, 1975).

Frictional parameter and inelastic dilatancy of material actually change with

progression of inelastic deformation. An analysis which accounts for their vari-

ation is presented by Nemat-Nasser and Shokooh (1980). Constitutive formu-

lation of elastoplastic theory with evolving elastic properties is considered by

Lubarda and Krajcinovic (1995).
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6.1 Yield Vertex Model for Fissured Rocks

In a brittle rock, modeled to contain a collection of randomly oriented �ssures,

inelastic deformation results from frictional sliding on the �ssure surfaces.

Inelastic dilatancy under overall compressive loads is a consequence of opening

the �ssures at asperities and local tensile fractures at some angle at the edges

of �ssures. Individual yield surface may be associated with each �ssure. The

macroscopic yield surface is the envelope of individual yield surfaces for �ssures

of all orientations, similarly to slip models of metal plasticity (Rudnicki and

Rice, 1975; Rice, 1976). Continued stressing in the same direction will cause

continuing sliding on (already activated) favorably oriented �ssures, and will

initiate sliding for a progressively greater number of orientations. After certain

amount of inelastic deformation, the macroscopic yield envelope develops a

vertex at the loading point. The stress increment normal to the original stress

direction will initiate or continue sliding of �ssure surfaces for some �ssure

orientations. In isotropic hardening idealization with smooth yield surface,

however, a stress increment tangential to the yield surface will cause only

elastic deformation, overestimating the sti�ness of response. In order to take

into account the e�ect of the yield vertex in an approximate way, a second

plastic modulus H1 is introduced, which governs the response to part of the

stress increment directed tangentially to what is taken to be the smooth yield

surface through the same stress point. Since no vertex formation is associated

with hydrostatic stress increments, tangential stress increments are taken to
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be deviatoric, and Eq. (66) is replaced with

D
p0 =

1

2H

�
0

J
1=2
2

 
�
0 :

Æ

�

2 J
1=2
2

+
1

3
� tr

Æ

�

!
+

1

2H1

 
Æ

�
0 � �

0 :
Æ

�

2 J2
�
0

!
: (69)

The dilation induced by the small tangential stress increment is assumed to

be negligible, so that Eq. (67) applies for trDp. The constitutive structure of

Eq. (69) is intended to model the response at a yield surface vertex for small

deviations from proportional (straight ahead) loading
Æ

� � �
0. For the full range

of directions of stress increment, the relationship between the rates of stress

and plastic deformation is not expected to be necessarily linear, although it is

homogeneous in these rates in the absence of time-dependent creep e�ects.

7 Deformation Theory of Plasticity

Simple plasticity theory has been suggested for proportional loading and small

deformation by Hencky (1924) and Ilyushin (1963). A large deformation ver-

sion of the theory can be formulated by using the logarithmic strain and its

conjugate stress. Since stress proportionally increase, elastoplastic response

is described macroscopically by constitutive structure of nonlinear elasticity,

where strain is a function of stress. The strain tensor is decomposed into elas-

tic and plastic part, E = Ee + Ep, elastic part is expressed in terms of stress

by generalized Hooke's law, and plastic part is assumed to be

E
p = 'T0; (70)
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where ' is an appropriate scalar function. Suppose that a nonlinear relation-

ship � = � (p) is available from the elastoplastic shear test. De�ne the plastic

secant and tangent moduli by hps = �=p, hpt = d�=dp, and let

� =
�
1

2
T

0 : T0

�1=2
; p = (2Ep : Ep)1=2 : (71)

The scalar function ' is then ' = 1=2hps . Although deformation theory of

plasticity is total strain theory, it is useful to cast it in the rate-type form,

particularly when the considered boundary value problem needs to be solved

in an incremental manner. The resulting expression for the plastic part of the

total rate of deformation is

D
p =

1

2hps

Æ

�
0 +

 
1

2hpt
� 1

2hps

!
(� 0 
 �

0) :
Æ

�

�
0 : � 0

; (72)

where
Æ

� is the Jaumann derivative of the Kirchho� stress.

7.1 Application of Deformation Theory Beyond Proportional Loading

Deformation theory agrees with ow theory of plasticity only under propor-

tional loading, since then speci�cation of the �nal state of stress also speci�es

the stress history. For general (non-proportional) loading, more accurate and

physically appropriate is the ow theory of plasticity, particularly with an

accurate modelling of the yield surface and hardening behavior. Budiansky

(1959), however, indicated that deformation theory can be successfully used

for certain nearly proportional loading paths, as well. The stress rate
Æ

�
0 in Eq.

(72) does not then have to be codirectional with �
0, and the plastic part of the
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rate of deformation depends on both components of the stress rate
Æ

�
0, one in

the direction of � 0 and the other normal to it. In contrast, according to ow

theory with the von Mises smooth yield surface, the component of the stress

rate
Æ

�
0 normal to �

0 (thus tangential to the yield surface) does not a�ect the

plastic part of the rate of deformation. Since the structure of the deformation

theory of plasticity under proportional loading does not use any notion of the

yield surface, Eq. (72) can be used to approximately describe the response

when the yield surface develops a vertex. Rewriting Eq. (72) in the form

D
p =

1

2hps

"
Æ

�
0 � (� 0 
 �

0) :
Æ

�

�
0 : � 0

#
+

1

2hpt

(� 0 
 �
0) :

Æ

�

�
0 : � 0

; (73)

the �rst term on the right-hand side gives the response to component of the

stress increment normal to �
0. The associated plastic modulus is hps . The plas-

tic modulus associated with the component of the stress increment in the

direction of � 0 is hpt . A corner theory that predicts continuous variation of

the sti�ness and allows increasingly non-proportional increments of stress was

formulated by Christo�ersen and Hutchinson (1979). When applied to the

analysis of necking in thin sheets under biaxial stretching, the results were

in better agreement with experiments than those obtained from the theory

with smooth yield characterization. Similar observations were long known in

the �eld of elastoplastic buckling. Deformation theory predicts buckling loads

better than ow theory with a smooth yield surface (Hutchinson, 1974).
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8 Thermoplasticity

Non-isothermal plasticity is here considered assuming that temperature is not

too high, so that creep deformation can be neglected. The analysis may also

be adequate for certain applications under high stresses of short duration,

where temperature increase is more pronounced but viscous (creep) strains

have no time to develop (Prager, 1958; Kachanov, 1971). Thus, in�nitesimal

changes of stress and temperature applied to the material at a given state

produce a unique in�nitesimal change of strain that is independent of the

speed with which these changes are made. Rate-dependent plasticity models

will be presented in Section 9.

The formulation of thermoplastic analysis under described conditions can pro-

ceed by introducing a non-isothermal yield condition in either stress or strain

space. For example, the yield condition is stress space is f (T; �;H) = 0. The

response within the yield surface is thermoelastic. If the Gibbs energy relative

to selected stress and strain measures is � = � (T; �;H) per unit reference

volume, the strain is E = @�=@T.

Let the stress state T be on the current yield surface. The rates of stress

and temperature associated with thermoplastic loading satisfy the consistency

condition _f = 0, which gives

@f

@T
: _T+

@f

@�
: _� � _H = 0: (74)
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The hardening parameter is H = H (T; �;H), and the loading index is _ > 0.

Three types of response are possible,

H > 0;
@f

@T
: _T+

@f

@�
: _� > 0 thermoplastic hardening;

H < 0;
@f

@T
: _T+

@f

@�
: _� < 0 thermoplastic softening;

H = 0;
@f

@T
: _T+

@f

@�
: _� = 0 ideally thermoplastic:

(75)

This parallels the isothermal classi�cation of Eq. (29).

Since rate-independence is assumed, the constitutive relationship has to be

homogeneous of degree one in rates of stress, strain and temperature. For

thermoplastic part of the rate of strain this is satis�ed by the normality struc-

ture

_Ep = _
@f

@T
; (76)

which, in view of Eq. (74), becomes

_Ep =
1

H

 
@f

@T
: _T+

@f

@�
: _�

!
@f

@T
: (77)

The strain rate is a sum of thermoelastic and thermoplastic parts. The ther-

moelastic part is

_Ee =
@2�

@T
 @T
: _T+

@2�

@T@�
_�: (78)

For example, if

� =
1

4�

 
trT2 � �

3�+ 2�
tr2T

!
+ �(�) trT+ �(�;H); (79)
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there follows

_Ee =
1

2�

 
I� �

2�+ 3�
Æ 
 Æ

!
: _T+ �0(�) _� Æ; (80)

where � and � are the Lam�e type elastic constants corresponding to selected

measures, � and � are appropriate functions of indicated arguments, and

�0 = d�=d�.

Suppose that non-isothermal yield condition in the Cauchy stress space is

temperature dependent von Mises condition

f =
1

2
�

0 : � 0 � ['(�) k(#)]2 = 0: (81)

The thermoplastic part of the deformation rate is then

D
p =

1

2'hpt

 
�

0 
 �
0

�
0 : � 0

:
Æ

�� �
0
'0

'
_�

!
; (82)

where hpt = dk=d#, and '0 = d'=d�. Combining with Eq. (80), the total rate

of deformation is

D =

"
1

2�

 
I� �

2�+ 3�
Æ 
 Æ

!
+

1

2'hpt

�
0 
 �

0

�
0 : � 0

#
:
Æ

�

+

"
�0(�) Æ � '0

2'2hpt
�

0

#
_�:

(83)

The inverse equation is

Æ

� =

 
� Æ 
 Æ + 2� I� 2�

1 + 'hpt =�

�
0 
 �

0

�
0 : � 0

!
: D

�
"
(3�+ 2�)�0

Æ � 1

1 + 'hpt =�

'0

'
�

0

#
_�:

(84)
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In�nitesimal strain formulation for rigid-thermoplastic material was given by

Prager (1958). See also Lee (1969), and Naghdi (1990). Experimental investi-

gation of non-isothermal yield surfaces was reported by Phillips (1982).

In the case of thermoplasticity with linear kinematic hardening (c = 2hpt ), and

the temperature-dependent yield surface

f =
1

2
(� 0 � �) : (� 0 � �)� ['(�)k]2 = 0; k = const:; (85)

there follows

D
p =

1

2hpt

"
(� 0 � �)
 (� 0 � �)

(� 0 ��) : (� 0 � �)
:
Æ

�� '0

'
(� 0 � �) _�

#
: (86)

9 Rate-Dependent Plasticity

This section is devoted to inelastic constitutive equations for metals in the

strain rate sensitive range of material response, where time e�ects play an

important role. There is an indication from the dislocation dynamics point of

view (Johnston and Gilman, 1959) that plasticity caused by crystallographic

slip in metals is inherently time-dependent. Once it is assumed that the rate

of shearing on a given slip system depends on local stresses only through the

resolved shear stress in slip direction, the plastic part of the rate of strain is

derivable from a scalar ow potential (Rice, 1971) as

_Ep =
@
 (T; �;H)

@T
: (87)
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The history of deformation is represented by the pattern of internal rearrange-

ments H, and the absolute temperature is �. Geometrically, the plastic part of

the strain rate is normal to surfaces of constant ow potential in stress space.

There is no yield surface in the model and plastic deformation commences

from the onset of loading. Time-independent behavior can be recovered, un-

der certain idealizations { neglecting creep and rate e�ects, as an appropriate

limit (Rice, 1970).

9.1 Power-Law and Johnson-Cook Models

The power-law representation of the ow potential in the Cauchy stress space

is


 =
2 _0

m+ 1

0
@J1=22

k

1
A
m

J1=22 ; J2 =
1

2
�

0 : � 0; (88)

where k = k(�;H) is the reference shear stress, _0 is the reference shear

strain rate to be selected for each material, and m is the material parameter

(of the order of 100 for metals at room temperature and strain rates below

104 s�1; Nemat-Nasser (1992)). The corresponding plastic part of the rate of

deformation is

D
p = _0

0
@J1=22

k

1
A
m

�
0

J
1=2
2

: (89)

The equivalent plastic strain is usually used as the only history parameter H,

and the reference shear stress depends on # and � according to

k = k0
 
1 +

#

# 0

!�
exp

 
�� � � �0

�m � �0

!
: (90)
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Here, k0 and #0 are the normalizing stress and strain, �0 and �m are the

room and melting temperatures, and � and � are the material parameters.

From the onset of loading the deformation rate consists of elastic and plastic

constituents, although for large m the plastic contribution may be small if J2

is less than k.

Another representation of the ow potential, constructed according to Johnson

and Cook (1983) model, is


 =
2 _0

a
k exp

2
4a
0
@J1=22

k
� 1

1
A
3
5 : (91)

The reference shear stress is

k = k0
"
1 + b

 
#

# 0

!c# 241�
 
� � �0
�m � �0

!d35 ; (92)

where a; b; c; d are the material parameters. The corresponding plastic part of

the rate of deformation is in this case

D
p = _0 exp

2
4a
0
@J1=22

k
� 1

1
A
3
5 �

0

J
1=2
2

: (93)

9.2 Viscoplasticity Models

For high strain rate applications in dynamic plasticity (Cristescu, 1967; Clifton,

1983), the ow potential can be taken as


 =
1

�

h
J
1=2
2 � ks(#)

i2
; (94)
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where � is the viscosity coeÆcient, and ks(#) represents the shear stress {

plastic strain relationship from the (quasi) static shear test. The positive dif-

ference J
1=2
2 � ks(#) between the measure of the current dynamic stress state

and corresponding static stress state (at the given level of equivalent plastic

strain #) is known as the overstress measure (Malvern, 1951). The plastic part

of the rate of deformation is

D
p =

1

�

h
J
1=2
2 � ks(#)

i
�

0

J
1=2
2

: (95)

The inverted form of Eq. (95) is

�
0 = �Dp + 2ks(#)

D
p

(2Dp : Dp)1=2
; (96)

which shows that the rate-dependence in the model comes from the �rst term

on the right-hand side. In quasi-static tests, viscosity � is taken to be equal to

zero, and Eq. (96) reduces to time-independent von-Mises isotropic hardening

plasticity. In this case, ow potential 
 is constant within the elastic range

bounded by the yield surface J
1=2
2 = ks(#).

More general representation for 
 is possible by using the Perzyna (1966)

viscoplastic model. For example, one can take


 =
C

m + 1
[f(�)� ks(#)]

m+1 ; (97)

which yields

D
p = C [f(�)� ks(#)]

m @f

@�
: (98)
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If f = J
1=2
2 , C = 2=�, and ks(#) = k0 = const:, Eq. (98) gives

D
p =

1

�

�
J
1=2
2 � k0

�m �
0

J
1=2
2

; (99)

which is a nonlinear Bingham model. If ks(#) = 0, f = J
1=2
2 , and C = 2 _0=km,

Eq. (98) reproduces the power-law J2 creep given by Eq. (89).
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