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Abstract-The paper presents a rate-type constitutive analysis of damage, applicable to brittle materials 
whose elastic properties degrade during a deformation process. Different tensile and compressive material 
responses are modeled incorporating positive and negative projections of the stress or strain tensors. 
Proposed evolution laws for the rate of compliance tensors are consistent with some of the prominent 
features of brittle material response. A new structure of the damage surface is introduced for a more 
accurate account of the effects of the hydrostatic states of stress on the overall response. Derived rate 
constitutive equations provide the explicit representation of the tangent compliance tensor. The proposed 
model is applied to uniaxial tension and compression to illustrate nonlinear relationships between stress 
and longitudinal, lateral, and volumetric strains. The proposed model is compared with some of the 
existing theories. 

1. INTRODUCTION 

DEGRADATION of elastic properties reflecting accumulating damage in brittle materials is primarily 
a consequence of the evolution of internal microcrack structure. Depending on the material 
microstructure and the current state of stress and strain and their rates, instantaneous material 
response and further evolution of damage may involve activation of different microcrack 
mechanisms. The tensile hoop stress generated at the surface of relatively large pores represents 
a preferential crack nucleation mechanism in very porous rocks. In low porosity, compact rocks 
frictional sliding of crack surfaces can destabilize original shear cracks, causing them to kink and 
develop wing cracks. Other mechanisms of microcracking are also possible. Some of these 
mechanisms were implemented in the failure analysis of brittle solids by Ashby and Sammis [I], 

and others. 
Progressive degradation of mechanical properties is an inherent feature of brittle material 

behavior. Several analytical models were developed to estimate the effective elastic properties of 
a solid weakened by a given distribution of microcracks or other defects. A comprehensive review 
of these models can be found in a recent treatise by Nemat-Nasser and Hori [2]. An important issue 
in the formulation of continuum damage models is related to the appropriate choice of the 
mathematical form for the damage variable. This has been recently studied by Lubarda and 
Krajcinovic [3], who considered several frequently encountered two and three dimensional distri- 
butions of microcracks. Their analysis demonstrated the shortcomings of the scalar and second- 
order tensor damage variables, and the accuracy gained by using the fourth-order tensor variable. 

The mode and stability of crack growth and, therefore, behavior of brittle material strongly 
depends on the sign and magnitude of applied stresses. For instance? the response of brittle material 
subjected to a compressive loading is strongly dependent on the magnitude of lateral confinement. 
An unconfined specimen fails by axial splitting, attributed to unstable growth of a single crack, 
at relatively small microcrack density. As the confinement is increased, axial splitting is suppressed 
and at large levels of confinement homogeneous microcracking prevails throughout the sample, 
resulting in a quasi-ductile overall response (Horii and Nemat-Nasser [4]). 

The analysis presented in this paper addresses the important issue of modeling different tensile 
and compressive responses of brittle materials. The concept of positive and negative projections 
of stress and strain tensors is used to account approximately for two basic, tensile and compressive, 
damage evolution modes. This idea was independently introduced by Ladeveze and Lemaitre [5], 
Ortiz [6] and Mazars [7], and was subsequently utilized by Simo and Ju [8], Yazdani and 
Schreyer [9], Ju [IO], Stevens and Liu [l 11, Yazdani [12], and others. The positive parts of the stress 
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and strain tensors are obtained by using the positive stress and strain projection operators P,’ and 
P;‘. When applied to stress c and strain c tensors, these operators remove their negative eigenvalue 
components 

G+=P;:b, L’=P::c. (1) 

In (I), the symbol (:) denotes the trace product of the fourth-order projection operator and 
the second-order tensor. If ny) and ny) (c( = 1,2, 3) are the three orthogonal principal directions 
of the stress and strain tensors, respectively, the corresponding positive projection operators are 
defined by 

In (2) and (3), G(‘) and c@) are the principal stress and strain components, while the angular brackets 
are defined such that 

((1) = -c 1, n>,O 

0, a<0 

for any scalar a. The remaining parts of the stress and strain tensors are their negative parts 

Substituting eq. (1) into eq. (5), it follows 

6 ==P,:c, t- =P<-:t, (6) 

where 

P, =1--p;, P; =1-P’ < . X7) 

In eq. (7), I denotes the fourth-order identity tensor. In general, for elastically anisotropic and, for 
certain states of stress and strain, even elastically isotropic materials, P,* # P: and P; +P, . The 
symmetry properties of the projection operators, in particular the reciprocal symmetry P,, = Pklijt 
hold for positive and negative stress and strain projection operators. A proper de~nition of the 
projection operators is discussed in more detail in the Appendix to this paper. 

The rate theory of damage elasticity presented in this paper is based on the assumption that 
no residual strain is left upon unloading to zero stress from any state of deformation. The analysis 
is a generalization of previous work by the same authors (Lubarda and Krajcinovic (131). 
introduced to model different tensile and compressive responses of brittle materials. Basic 
formulation is provided in stress space, with a straightforward extension to strain space. The 
suggested rate (evolution) expressions for the compliance fluxes are in accord with some of the 
essential features of the experimentally observed brittle response. Damage surface is defined and 
the rate-type constitutive equations formulated. Explicit representation of the tangent compliance 
tensor is also given. Several important applications are discussed, and results are compared with 
a related work. 

Incorporation of residual (plastic) strains into the constitutive framework and the finite strain 
aspects of the analysis are left for a forthcoming paper. 

2. PRELIMINARY ANALYSIS 

Consider small defo~ations of brittle material whose elastic properties change during a 
deformation process. Assume that the residual strain vanishes upon unloading initiated from an 
arbitrary state of deformation. Degradation of elastic properties is attributed to the accumulated 
damage, i.e. nucleation and propagation of microcracks during a deformation process. Let 8:. 
denote the surface energy of the microcrack surfaces created in the course of deformation from 
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the initial to the current state. The Helmholtz free energy @ and the Gibbs energy II/ (per unit 

volume) can then be defined as 

@ =$?(@E)+&; (8) 

Y =+%?(a@a)-E;., (9) 

where c and c are the stress and strain tensors, and 2 and &the current elastic stiffness and 
compliance tensors. The symbol (:) stands for the inner, trace product and 0 for the outer tensor 
product. As discussed in the context of the thermodynamic analysis of the quasi-static growth of 
Griffith cracks (Rice [14]), free energy at the current state is equal to the work done in transforming 
the body from its initial to current state along an imagined reversible and isothermal path. This 
path can be recreated by a sequence of two steps. First, new microcrack surfaces are formed 
separating reversibly the adjacent layers of atoms, pulling against their cohesive forces. The work 
needed to overcome cohesive forces is denoted by E:.. Second, the microcracked solid is deformed 
elastically to the current state of deformation c. The required work is ;Z: (c 0 t), where dp denotes 
the current elastic stiffness which accounts for the presence of all existing active cracks. A 
microcrack is considered to be active if it imposes a discontinuity in at least one component of the 
displacement vector across its surface. Lubarda and Krajcinovic [l3] have presented a constitutive 
analysis of damage behavior in brittle elastic solids by using both, elastic stiffness and elastic 
compliance tensors. In this section we rederive some of these results, restricting for brevity the 
attention to formulation based on the Gibbs energy and the elastic compliance tensor. 

Since elastic compliances increase as damage evolves, it is convenient to represent the current 
elastic compliance tensor &‘in an additive form 

dt=~&+M, (10) 

where 4 denotes the initial elastic compliance tensor of the undamaged material. The fourth-order 
tensor &can be considered as being an appropriate measure of the accumulated damage. This 
tensor changes during a deformation process as a consequence of the material degradation, i.e. the 
nucleation of new and the growth of existing microcracks. The rate of the Gibbs energy is obtained 
by differentiating eq. (9) 

@ =~:(aOs)+ni:f(aob)--;. (11) 

The reciprocity symmetries of the tensor &are used in arriving at eq. (11). From the first law of 
thermodynamics, the rate of Gibbs energy in an isothermal deformation process is 

!I+ = t :& + TA, (12) 

where T is the temperature, and n the irreversible entropy production rate. The product TA 
represents the energy dissipation rate associated with the damage evolution. As a consequence of 
the second law of thermodynamics, n 3 0. Comparing eqs (1 I) and (l2), it follows that 

IZ =&%?:a (13) 

TA = n;l:;(c~ @a) - 6,. (14) 

Equation (13) is the elasticity equation relating the current stress and strain tensors through the 
current elastic compliance tensor A= 2-l. Equation (14) gives the energy dissipation rate, written 
in terms of the stress tensor b, and the damage flux Ri. Indeed, introducing 

r =+ @a), (15) 

as the thermodynamic force (affinity) conjugate to damage tensor M, eq. (14) can be written as 

TA = r : k - 6;. (16) 

The affinity f was previously utilized in the literature by Ortiz[6], Simo and Ju [8], Ju [lo], 
Krajcinovic et al. [15], and others. 
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Suppose that there is a scalar function C2 = R(T) such that the damage flux !$I can be 
expressed as 

where p is the rate of some monotonically increasing scalar parameter p, which can be considered 
as being a measure of the cumulative damage at the considered state. Hence, in absence of healing, 
fi > 0. The function R is referred to as a damage potential for the flux &I. Substituting eq. (17) 
into eq. (16), the energy dissipation rate can be expressed as 

If 0 is a homogeneous function of r of degree n, eq. (18) reduces to 

T/l =pnR-C.,. (19) 

Since the energy dissipation rate is non-negative, from eq. (19) it follows 

,&!5 >o, 
dp ’ 

(20) 

The equality sign in eq. (20) applies only if all energy associated with the damage process is 
transformed into the surface energy of the created microcrack faces. 

The expression for the strain rate can be derived differentiating eq. (13) and using eq. (ICI). 

i = .&& +M:a. (31) 

The first term on the right-hand side of (21) is the strain rate that would correspond to stress rate 
t? if the damage flux M would be zero. This part of the strain rate is referred to as the elastic part 
of the strain rate. The remaining part 

id=M:c (22) 

is the strain rate attributable to change in damage, referred to concisely as the damage strain rate. 
Substituting eq. (17) into eq. (22) 

i.e. 

JR 
[“=P,-. 

ca 
(24) 

Therefore, the damage potential R serves as a dual potential: for the damage flux !%‘I in the space 
of affinity r, i.e. eq. (17), and for the damage strain rate L *’ in the space of stress 0, i.e. eq. (24). 

3. UNEQUAL TENSILE AND COMPRESSIVE STRENGTHS 

Since the compliance flux M is primarily a consequence of the stress-induced evolution of 
internal crack structure, and is strongly dependent on the sign of applied normal stresses (tensile 
or compressive), it is assumed that the flux M consists of two parts, such that 

M=M++M. (25) 

The flux M+ contributes to “positive” part of the compliance tensor M+, activated by a positive 
part of the stress tensor a +, while M- contributes to “negative” part of the compliance tensor M , 

activated by a negative part of the stress tensor u _. The total strain is then determined from 

t=,,&:a+M+:a++M~:a (26) 

The representation (26) correctly predicts (to a certain extent) the so-called unilateral damage effect 
(Lemaitre [16], Chaboche [ 171) i.e. a sudden stiffening and recovery of the elastic properties due 
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to the crack closure which occurs during reloading in compression, following a previous tension 
loading. 

Consider the following structure of the damage potential 

n=d:r, d= i f_ auNi@Nj. 
!=I j=l 

(27) 

In (25) a,, are the constants (a,, = ail) and 

Ni= ni@n, (i = 1, 2, 3) (28) 

are the dyadic products of the eigendirections nj of the stress tensor 6. Consequently 

(29) 

and the flux l$l, defined by eq. (17), becomes 

ni=p&L (30) 

To express the flux, eq. (30), in the additive form, eq. (25) the tensor & is written as 

Az=&++L&. (31) 

The positive and negative contributions to & depend on the current state of stress in the following 

manner. Denote the principal stresses by cr, , o2 and o3 (g, 2 g2 2 g3). If all three principal stresses 
are different (a, # cr2 # a,), it is assumed that: 

&+ = c[N, 0 N, + a(N) 0 N3)s] 

d- =N,ON,+b(N,ON,),, (32) 

where the subscript s denotes the symmetric part. Constants a, b and c play the role of material 
parameters, and are specified according to experimental data. The parameter c is related to the ratio 
of material strengths in tension and compression, while a and b are specified according to observed 
lateral strain-longitudinal stress response, as discussed in Section 6. The parameters a and b may 
be appropriate constants or, more generally, functions of the hydrostatic part of stress tensor. The 
structure (32) is constructed in accordance with experimentally observed feature of brittle material 
response, which indicates that cracks dominantly propagate in planes normal to the direction of 
largest principal stress. In the case of equal magnitudes of certain principal stresses, the following 
modifications are suggested. If the principal stresses are such that 0, # crz = cr3, eq. (32) is 
replaced by 

(33) 

d- =N,ON,+~[(N,~N,),+(N,~N,),l. (34) 

Finally, in the case of the spherical state of stress cr, = g2 = c3, the suggested expressions for the 
positive and negative parts of the tensor L& are 

&- =‘I 
3 3 

where I = N, 0 N, + N, 0 N, + N3 0 N, is the fourth-order unit (identity) tensor. 

(35) 
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The advantages of the proposed evolution laws for the compliance fluxes are evident from 
discussions in Section 6, demonstrating the capability of the proposed equations to capture essential 
nonlinear features of uniaxial stress vs longitudinal, lateral, and volumetric strain behavior. 
Naturally, the proposed model is not without flaws. For example, if the previous loading history 
was such that damage consists of cracks created dominantly in the planes parallel to a given 
direction (say, longitudinal direction in the case of uniaxial compression), reloading and subsequent 
loading in triaxial tension would likely cause further crack growth in the same planes. Equation 
(35), however, indicates an isotropic increment of the damage evolution. The same flaw, however, 
is shared by other damage models, such as one proposed by Ortiz 161. 

4. DAMAGE SURFACE 

To distinguish between the unloading-elastic behavior and loadingdamage behavior, 
introduce a damage function in stress space Z(a+, IS .-), which depends on both positive and 
negative parts of the stress tensor (defined in the Introduction to this paper), such that the locus 
of points 

Z(c+, 0 )-R(p)=% (36) 

encloses the stress region within which the response of material is purely elastic. The surface defined 
by (36) is referred to as a damage surface in stress space. The parameter R, which defines the size 
of the surface, is assumed to depend on the cumulative damage parameter p. The representation 
(36) is the simplest version of the damage criterion. It implies that during damage evolution initial 
damage surface expands isotropically in stress space and that its evolution is fully defined by a 
single scalar. This is often not a satisfactory assumption, particularly for nonproportional loading 
paths. For example, loading in uniaxial compression beyond the initial damage threshold creates 
microcracks that are likely to remain inactive upon unloading and subsequent reverse loading in 
tension. Hence, while the damage threshold stress is increased during compression, it remains 
virtually unchanged for a reverse loading in tension, until the tensile loading creates additional 
damage by itself. Therefore, isotropic evolution of the damage surface cannot be expected to work 
well in non-proportional loading. This is analogous to the isotropic hardening models used in metal 
plasticity. In the present case the situation is further exacerbated by the dependence of the damage 
evolution on the sign of the normal stress. The tendency for localized change in shape of the damage 
surface during certain loading paths has been discussed by Holcomb and Costin [18]. 

If the stress state is on the damage surface, the subsequent stress state will also be on the damage 
surface, provided that the consistency condition is satisfied 

ac ac dR 
~:6++-:6 -- 

au- dp P = 0. 

From eq. (37), the rate of the cumulative damage parameter is 

.iac - 
P=h abf.0 

i 
. .++g:y ) u 1 

(37) 

(38) 

where h = dR/dp. Since progressive damage implies p > 0, from eq. (38) follows that during the 
damage loading 

(39) 

In the hardening regime (h > 0), eq. (39) represents the damage loading condition. However, in 
the softening regime (h < 0), the condition 

(40) 

represents only a necessary but not sufficient condition for the damage loading, since the inequality 
(40) can be satisfied during elastic unloading as well. 
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Note that C(a ‘, 6 -) = C(P+ : CT, P- : G), but ;I # (8 X/&J) : 6, since P+ and P- are not constant 
operators. Consequently, the last expression in (3.64) and expressions (3.66) of the Ortiz [6] paper 
apply ifa+:+ =~~:4+ =O, i.e. if the projection operators P+ and P- are constant operators. 

Consider the damage function of the form analogous to that of Ortiz [6], i.e. 

C =ikb+:a+ +~a~:a-, (41) 

where the material parameter k (the cross-effect coefficient) is specified to reflect unequal strengths 
in tension and compression. The rate of change of the cumulative damage parameter eq. (38) is 
in this case 

p = k (ka +:c?+ +a-:&). (42) 

Yazdani and Schreyer [9] and Yazdani [12] used more involved representations of the damage 
surface to remove some of the perceived deficiences associated with eq. (41). For example, if the 
damage threshold stress in uniaxial compression is ai-, (41) predicts that the damage threshold 
stress under hydrostatic compression is a; /$. However, experimental evidence indicates that 
little or no damage is observed under hydrostatic compression alone. A plausible modification of 
eq. (41) to provide a more accurate estimate of the effect of the hydrostatic pressure is 

C =;k[S+:S+ +a(p+)*]+;[S- :S- +fi(pm)2]. (43) 

where S’ = a* +p’6 are the deviatoric parts of the positive and negative parts of the stress a?, 
+ p - = - fa * : 6 are the corresponding hydrostatic pressures (6 denotes the second-order unit tensor), 

while ~1, p and k are material parameters, specified in accordance with the experimental data. Let 
the damage threshold stress in uniaxial compression be a;, and in uniaxial tension 0:. If the 
damage threshold stress under hydrostatic pressure is p;, and under hydrostatic tension PO+, it can 
be shown that 

’ 
(45) 

where 9 =~;/a; and 9+ =po+/a,+. The rate of change of the cumulative damage parameter, eq. 
(38), corresponding to the damage function, eq. (43), is 

fi =; [k(S+ -$xp+ s):&+ +(S- -fPpma):q. 

If c1 = /3 = 3, eq. (46) reduces to eq. (42). It can be easily shown that in the case of uniaxial 
compression, the damage parameter p is equal to (E-’ - Et’), where E is the current degraded 
elastic (secant) modulus, appearing in the uniaxial compression stress-strain relationship CJ = E(c)c, 

and E,, is the initial elastic modulus. The parameter R is equal to h(6 + p)02. Consequently, the 
relationship R = R(p) can be easily extracted from the given compression stress-strain relationship 
(T = E(E)L. If the tension stress-strain curve is used, the parameter R is equal to (k/18)/6 + c( (02, 

while the damage parameter p is equal to c-‘(Em’ - E;‘), where E is the current degraded elastic 
(secant) modulus in the uniaxial tension test. Other applications are considered in Section 6 of this 
paper. The selection and the significance of the appropriate structure of the damage surface is 
further discussed by Lubarda and Krajcinovic [13]. Important related issues were also studied by 
Holcomb and Costin [ 181, and Ashby and Sammis [I]. 

5. COMPLETE RATE-TYPE CONSTITUTIVE EQUATIONS 

The rate of the total strain is derived by differentiating the stress-strain relationship, eq. (26), 

i=(~&+M+):&++(.4&~+M~):&+I\i+:a++I\i-:a-. (47) 



688 V. A. LUBARDA et al. 

In eq. (47), 

i’=(&+M+):ti+ +(&+M-):S-, (48) 

is recognized as the elastic part of the strain rate, while the remaining part 

[d=l\jl+:ut +l\;I- :*- (49) 

is the damage strain rate. The evolution equations for the positive and negative compliance fluxes 
are obtained from eqs (30) and (31) as 

M+ = p&J+, 1\;1- = pa-. (50) 

Using the previously derived expression for the rate of the cumulative damage parameter p, the 
damage strain rate (49) becomes 

id=; [(*@++ +(&+I. (51) 

In eq. (51), the second-order tensor A stands for 

A=d+:a++& :C (52) 

Therefore, the eq. (47) for the total strain rate becomes 

i =&:~++&-:(j~ (53) 

where .Y&+ and & are the “positive” and “negative” tangent compliance tensors, given by 

(54) 

Equation (53) represents the overall rate-type constitutive relation for the damage response of 
brittle elastic solids with unequal tensile and compressive strengths. 

It is pointed out that for the prescribed stress rate d, the positive part of the stress rate 
appearing in the above equations is defined by 

&+=lim 
P:+a,:(6 +d At)--;:a 

At Al-0 
(55) 

The negative part of the stress rate is defined by an analogous expression. 
For the damage function prescribed by (43), the overall rate-type constitutive equation takes 

the form 

i= &+M++;A@(S+ 
[ 

-;ccp+~S) 
1 i 

:d+ + &+M- +; A@(S- -f&-6) 1 :C. (56) 

Equation (56) is the specific representation of the general expression (53), corresponding to the 
selected damage function, eq. (43). 

Other representations of the damage function can be constructed and incorporated into the 
presented constitutive framework, along the lines suggested by Lubarda and Krajcinovic [13]. 
Numerical implementation of the constitutive equations, such as eq. (53) or its special form eq. (56), 
corresponding to a selected representation of the damage function, is analogous to that of the 
familiar rate-type plasticity theory. The same applies to the corresponding constitutive structures of 
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the strain space formulation. Some of the computational aspects of other formulations have 
already been addressed in the damage mechanics literature, for example by Simo and Ju [19] and 
Ju [lo]. 

6. APPLICATIONS 

6.1. Specifications of material parameters 

The material parameters introduced in the above formulated model are specified according to 
experimental data measured for Salem limestone by Green [20]. In the uniaxial compression test 
(without confinement), the first significant departure from linearity of the stress-strain relationship 
is observed at the stress level of about a; = 60 MPa, and the corresponding strain level 

- = 1.6 x 10m3. The initial elastic modulus is, therefore, calculated to be E, = 37.5 GPa. The 
Fiilure occurred at the stress level of about 69 MPa, and the corresponding strain of 2.1 x 10-j. 
The experimental data in uniaxial tension show more pronounced, specimen dependent scatter. The 
failure stress ranges from 5 to 6 MPa, so that the average ratio of the compressive to tensile 
strengths is 69/5.5 z 12.5. The tensile damage threshold stress oz is not easily identified, and in 
calculations performed herein it is assumed that the ratio a;/o,i is also equal to 12.5, so that 
ol = 4.8 MPa. The initial elastic modulus in tension is taken to be the same as in compression, 
i.e. E, = 37.5 GPa. In absence of triaxial tension data, it was further assumed that the hydrostatic 
damage threshold in tension is pi = CT:,/&. Since brittle materials can sustain a much higher 
hydrostatic pressure, it is taken that p; = IOcr;. Consequently, the parameters rr, p and k, defined 
by eqs (44) and (4.5), have the following numerical values 

c1=3, /I+, kzlO4. (57) 

The initial damage criterion, C = R,, with the damage function Z defined by eq. (43): and with 
R,, = (6 + ~)(~~)*/18, is represented for a biaxial state of stress (ci3 = 0) in Fig. 1. 

Fig. 1. Damage criterion for biaxial state of stress corresponding to damage surface eq. (43) and material 
parameters specified by eq. (57). The damage onset stress in uniaxial compression UC is 12.5 times that 

in uniaxial tension CT:. 
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c- [x] 
Fig. 2. Compression stress-strain curve corresponding to Smith and Young’s formula eq. (58) and 
selected material parameters, as described in text. The stress 00 is the initial damage threshold stress, and 
6; is the corresponding strain. The stress a; is the stress at the peak of the stress-strain curve, where 
the strain is cj. The added small squares indicate the experimental data for Salem limestone, obtained 

by Green [20]. 

6.2. Uniaxial stress-strain response 

6.2.1. Uniaxial compression. An appealing expression for the stress-strain response of brittle 
materials in uniaxial compression, proposed by Smith and Young [21], and later utilized by 
Ortiz [6,22], is given by 

u- =Ezc- exp (58) 

In eq. (58), L is the magnitude of the longitudinal compressive strain, rr is the magnitude of the 
corresponding compressive stress, cz is the strain at the peak of the stress-strain curve, and ES 

is the corresponding elastic (secant) modulus. The peak stress level is cr ; = E; L & Equation (58) 
is assumed to be applicable for the strain levels higher or equal to the damage threshold strain c0 . 
Below this strain level the linear relationship ~7 - = E,t ~- holds, where E,, represents the initial elastic 
modulus. The plot of the compression stress-strain relationship corresponding to numerical values 

60 = 1.6 x 10m3, c; = 3.2 x 10e3, and EO = 37.2 GPa is displayed in Fig. 2. Note that the 
elastic modulus at the peak of the curve is E; = E,exp(c;/c; - I), which is for the selected 
numerical values approximately equal to 22.7 GPa. The corresponding peak value of the stress is 
B* = 72.8 MPa. The change of elastic (secant) modulus E- as a function of the compressive 
strain c-, 

is plotted in Fig. 3. It should be pointed out that in actual strain-controlled experiment it can be 
difficult to reproduce the features of the descending portion of the stress-strain curve, due to 
uncontrollable crack growth and sudden failure. In particular, for a very brittle material the 
post-peak portion of the stress-strain curve has a more pronounced and steep descent. The 
descending portion of the stress-strain curve is usually referred to as a strain softening. This is, 
however, an apparent rather than a true softening property, which is inferred from the force- 
displacement relationship assuming homogeneous stress and strain fields within a material sample, 
without any slabbing and decomposition of the specimen. These assumptions are, however, often 
not met in actual experiments. Furthermore, the descending portion of the inferred stress-strain 
curve is also dependent on the size and shape of the specimen (Hegemier and Read [23]). If so, the 
softening may not be an intrinsic property of material and should be interpreted as a stability 
problem. Further discussion of this issue is considered to be beyond the scope of the present 
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paper. Some of the representative references to strain softening, its relation to localization, length 
scale and size effect, and other pertinent issues, are Baiant [24], Baiant et al. [25], Read and 
Hegemier [26], Schreyer and Chen [27], Needleman [28], and Karihaloo et al. [29]. Integrating (.50), 
and in view of (26) and (34)2, one has 

1 
c- = ( > E;,+p c-. 

Hence, since cr --/c ~ = E- is the current value of the longitudinal elastic modulus, the expression 
for the cumulative damage parameter can be derived from (60) as 

In particular, the value of p at the peak of the stress-strain curve is obtained from 
I&p* = E,/E; - 1, which gives p* = 0.649B;‘. It is easy now to rewrite eq. (58) in the parametric 
form as 

t- =c* l+ln-i*) 
( 0 * 

(r -. 
1 +Eop* 

=O* 1+&J&I 
I+ln I+“’ ~- 

1 +a!+* 
I. (62) 

The parameter R, which defines the size of the damage surface eq. (36), can be expressed by using 
eq. (43) as 

R =$(~-+-P)(G-)~. (63) 

The relationship R = R(p) is obtained substituting (62& into (63) and is plotted in Fig. 4. 
6.2.2. Uniaxiaf tension. By an analogous procedure, in the case of uniaxial tension it follows 

that 

R =+(6+z)(cr+)’ (64) 

E- [CPa] 
40- 

:% 

30 - 

zo- 

lo- 

o (,,I,,/,,,),,,,,,,I,,,,,,,,rl,l,,,I,,, 

0 0.2 0.4 0.6 TB WI 

Fig. 3. The change of elastic (secant) modulus E in uniaxial compression as a function of strain 6 -, 
according to eq. (59). E0 is the initial elastic modulus of undamaged material. 
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R (Io'(Ypa)*) 

0.0 ~,,,.,,.,,,,,,,.,,..,,,,,,,,,,,,,,.,,..,,,,,.,,,.. 
0 2 3 1 4 A&P 

Fig. 4. The change of parameter R, which defines the size of damage surface, as a function of 
non-dimensional cumulative damage parameter E,p. R, is the initial damage threshold value of R. at 

p =o. 

The tensile stress CY+ can be expressed as a function of the damage parameter p by equating eqs 
(63) and (64). This gives 

CT+=lS*+ 
1 + E,p* 1 +EOP 
1 +EOP 

1 +ln 
> 1+&p* ’ 

where 

(66) 

is the stress at the peak of the tensile stress-strain curve. For assumed values of the parameters 
CI, p and k, given by eq. (57) the coefficient K is equal to the reciprocal of 12.5, which is also equal 
to the previously assumed value of the stress ratio ~$/a;. Since L+ = cr+/E+, it follows that 

t+ =.C*+ 
l+cEop 1 +Eop* 

1 + cEop* I+ Eop 

where 

C$ =K 
1 $-c&p* _ 

1 + Eop* ‘* 

(68) 

is the strain at the peak of the tensile stress-strain curve. 
The parameter c, appearing in eqs (65)-(69), is specified by requiring that the strain at the peak 

of the tensile stress-strain curve is l/l0 of the strain at the peak of the compressive stress-strain 
curve. This is in agreement with the experimental data on Salem limestone (Green [20]). From (69) 
therefore, 

1 
c =- 

EOP* 
K-‘(1 +E,p+ 1 (70) 

For the considered numerical values, from eq. (70) c = 1.635. Experimental data on concrete 
indicate higher values of the ratio L 5 /c ; , and l/5 would be a reasonable estimate. The plot of the 
tensile stress-strain curve d + = CJ +(c +), corresponding to eqs (66) and (68), is shown in Fig. 5. 
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6.3. Lateral strain behavior 
6.3.1. Uniaxial compression. The lateral strain in the direction normal to the longitudinal 

compressive direction is obtained from eqs (26) (34), and (50), 

(71) 

where ~1” is Poisson’s coefficient of the undamaged material. The initial value of Poisson’s ratio for 
the Salem limestone is v0 z _ 0.22. The volumetric strain is then 

c,,= -[!z$+(l +g+ (72) 

The material parameter b is specified by requiring that the magnitude of the longitudinal strain 

clone is cp times greater than that of the lateral strain ~,,t at the peak of the stress-strain curve. 
From this condition 

(73) 

For example, for cp = 2, and for the selected numerical values, eq. (73) gives b z - 3.72. Diagrams 
of the compressive stress (a-) vs longitudinal (t,& = --t -), lateral (tla,), and volumetric (t”;,) 
strains are displayed in Fig. 6. Note that for cp = 2, the volumetric strain vanishes at the peak 
of the stress-strain curve. Observe the dilatant volume increase which occurs as a consequence of 
the microcrack growth and opening under compressive load, so that the volumetric strain changes 
from compressive to tensile. The increase of apparent Poisson’s ratio 

6 I,1 vm = --= v. - 0.25bEop 

6 long l+E,p ’ 
(74) 

as a function of E,,p is given in Fig. 7. The limiting value of v -, as E decreases to zero or p tends 
to infinity. is equal to -b/4. 

6.3.2. Uniaxial tension. The lateral strain in the case of uniaxial tension is 

U+[ MPa] 

6- _-_---- 
- c 

I 

0 
I 
I 

-0; , I 

I 
4- 

2 II,, 
8.00 

I % It: 
0.02 0.04 0.00 0.08 0.10 0.12 

(75) 

&+[%I 

Fig. 5. Tension stress-strain curve whose parametric representation is given by eqs (66) and (68). The 
stress 0,’ is the initial damage threshold stress, and c$ IS the corresponding strain. The stress ut is the 
stress at the peak of the stress-strain curve, where the strain is t $. The added small squares indicate the 

experimental data for Salem limestone, obtained by Green [20]. 
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(T-[MPa] 

COMPRESSIVE 
STRAIN [X] 

Fig. 6. Diagrams of compressive stress (u ) vs longitudinal (c&), lateral (TV,), and volumetric (C ,,) 
strains in a uniaxial compression test. 

while the volumetric strain is 

CL, = [?+(I +$++. (76) 

If the longitudinal strain c,& is cp + times greater than the magnitude of lateral strain c,:, at the 
peak of the tensile stress-strain curve (p = p*), the parameter a is found to be 

For the considered numerical values, and the ratio cp + = 6, eq. (77) gives a z -0.464. Diagrams 
of the tensile stress (G+) vs longitudinal (c& = t +), lateral (t&), and volumetric (c,‘,,) strains are 

v- 
1.0 

0.93 
t--------------------- 

0.6 ; 

0.6 : 

0.4 - 

0.2 1 vo 

Fig. 7. The increase of apparent Poisson’s ratio B - = --t ,;,/r lone during damage in uniaxial compression. 
v0 = 0.22 is the initial value of Poisson’s ratio for Salem limestone, while the value of 0.93 is theoretical 

limiting value of v- when the damage parameter p increases to infinity. 
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a+[ MPa] 
-6 

TENSILE 
STRAIN [X] 

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 

Fig. 8. Diagrams of tensile stress (u ‘) vs longitudinal (t ,&), lateral (6 I:,) and volumetric (6 $,) strains in 
a uniaxial tension test. 

shown in Fig. 8. The dilatation effects under tension load are far less pronounced than in 
compression, and the volumetric strain is always tensile. The decrease of apparent Poisson’s ratio 

v+ - 
c t vO - 0.25acE,p 

- --= 
6 Iing 1 + cEop 

as a function of E,p is given in Fig. 9. The limiting value of v+, as p goes to infinity, is equal to 
-a/4. 

7. CONCLUSION 

The analysis presented in this paper provides the rate-type constitutive equations for elastic 
behavior of brittle material, whose elastic properties degrade during a path-dependent deformation 
process involving damage evolution. A marked difference in brittle material response dependent 
on the sign of applied normal stresses (tensile or compressive) is modeled by introducing positive 
and negative stress and strain operators. The basic formulation is presented in stress space, with 

0.0 ,111,11’,1,‘.1111111,,,,,~,,,~,,,,,,,,,,,,,,,,,,~~ c&J 
0 1 2 3 4 5 

Fig. 9. The decrease of apparent Poisson’s ratio Y + = --C&/C + long during damage in uniaxial tension. 
rg = 0.22 is the initial value of Poisson’s ratio for Salem limestone, while the value of 0. I 16 is the theoretical 

limiting value of v+ when the damage parameter p increases to infinity. 
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a straightforward extension to strain space. Proposed representation of the evolution equations 
for the compliance fluxes is in accord with some of the basic features of the experimentally observed 
brittle material response. The rate-type constitutive equations are derived by using a new, physically 
appealing structure of the introduced damage surface. By virtue of its incremental nature, the 
presented phenomenological analysis is capable of modeling the path-dependent degradation of 
elastic properties and induced elastic anisotropy. Applications to uniaxial tension and compression 
lead to experimentally observed relationships between the stresses and the longitudinal, lateral and 
volumetric strains. 

The applicability of the results presented in this paper will be significantly extended when the 
residual or plastic strains are adequately incorporated in the proposed constitutive framework. 
Residual strains inevitably arise during deformation, because upon unloading the cracks are 
prevented to return to their original configurations due to misfits, interlocks, and other geometric 
and kinetic effects of the interacting crack population. Furthermore, since brittle materials can 
exhibit significant apparent ductility under high confinement, large strains can accumulate. The 
constitutive analysis, therefore, has to be recast in a finite deformation form, which is the subject 
of a forthcoming publication. 
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APPENDIX 

In several publications (Simo and Ju [8], Ju [lo], Chaboche [17]) the matrices used to define the projection operators 
are not properly defined. Although some modifications are used by Stevens and Liu [l I], and Hansen and Schreyer [3OJ, 
the issue is still not completely settled. To address this in the light of the Simo and Ju [8] approach. consider the spectral 
decomposition of the strain tensor 

where 6, (i = 1,2,3) are the principal strains, and n, are the corresponding principal directions (with components expressed 
relatively to a selected coordinate system). The positive (tensile) part of the strain tensor is obtained by removing the negative 
eigenvalues from (Al), i.e. 

where Hf.) is the Heaviside step function. To elaborate on the transition between (A 1) and (A2), consider the ortho~~~nai 
matrix Q whose columns are the components of the three orthonormai eigenvectors II,. This matrix can be written as 

Q = i n,Oe,, cm 
I 3. I 

where the unit vectors e, have the components {A,, , S,,, S,,} (i = I, 2,3), and 5 denotes the Kronecker delta. By a similarity 
transformation the diagonal matrix E, whose diagonal elements are the eigenvalues 6, of the strain tensor <. is 

E = Q’tQ = 2 tie,Qe,. 
,=l 

tA4) 

The positive part of the strain tensor can now be extracted by the transformation 

6 + = Q+E(Q+)r, 

where 

(A5) 

Q’ = i H(c,)n,@e, 
IF, 

(Ah) 

Substituting (A4) and (A6) into (AS), the relationship (A2) is easily verified. Therefore, the application of the operator 
Q’ in (A.5) removes the negative eigenvalues from the strain tensor t, expressing the positive (tensile) part 6 + in the original 
coordinate system by (A2). Furthermore, from (A4) and (AS) it follows that 

c c = s+cs+, (A7) 

where the symmetric matrix 

S’ = Q+Q’= Q(Q+)” = c H(c,)n,~ n; 
<=, 

(A8) 

is the positive second-order spectral projection tensor. introducing the fourth-order positive projection operator PI, (A7) 
can be rewritten as 

L+ =p+:c. 

The components of the projection operator P+, written in a symmetricized form, are 

PS., = $S;; s; + Sf s,;,. 

In Simo and Ju [8], Ju [lo], and Chaboche [17] the formulas (A3) and (A6) are mistakenly written as 

(A9) 

(A IO) 

Q = C n,Bn, (All) 
I= I 

Q’ = c H(q)n,Qn,. tA12) 
/i, 

In fact, if (At 1) would apply, the tensor Q would be identically equal to the second-order unit tensor. Presumably, the 
mentioned authors meant Q to be a diagonalization matrix, whose columns are the three eigenvectors n,, but this is given 
by the representation (A3), and not by (Al 1). Similarly, it is (A6) that properly defines the matrix Q+. and not (Al?). 
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