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A variable core model of a moving crystal dislocation is proposed and used to derive an expression
for the Peierls stress. The dislocation width varies periodically as a dislocation moves through the
lattice, which leads to an expression for the Peierls stress in terms of the difference of the total
energies in the crystal corresponding to stable and unstable equilibrium configurations of the
dislocation, rather than the difference in the misfit energies alone. Results for both edge and mixed
dislocations are given and proposed to be used in conjunction with ab initio calculations. © 2006
American Institute of Physics. �DOI: 10.1063/1.2361277�

In the Peierls model of a crystal dislocation, the atomis-
tic effects and the lattice discreteness are incorporated into
the analysis approximately by considering them to be con-
fined within a layer consisting of two atomic planes around
the glide plane. This model of a crystal dislocation was used
by Peierls1 and Nabarro2 to make the estimates of the mini-
mum external stress required to move a dislocation in a per-
fect lattice, which is called the Peierls stress ��PS�. Its deter-
mination is of significant interest for the physical theories of
plasticity and creep, fracture mechanics, strain relaxation in
thin films, etc.3–5 However, the calculated values for �PS are
an order of magnitude or higher than those experimentally
observed or those calculated by atomistic models,6–9 and
continuing attempts were made to improve the Peierls-
Nabarro model.10–14

In the present letter we derive an expression for the
Peierls stress without using the concept of misfit energy. The
Peierls stress is found to be �b

PS=��E*−Eo� /ab, where
E*−Eo is the difference between the energies of a whole
stressed crystal when a dislocation is in its unstable and
stable equilibrium positions, a is the interatomic distance in
the glide plane normal to the dislocation line, and b is the
magnitude of the Burgers vector.

An edge dislocation of a Volterra type has a singularity
of order 1 /x. To eliminate this singularity, a linear increase
of the Burgers vector over the distance � is assumed, where
� is related to the extent of the dislocation core—severely
deformed region around the center of the dislocation.
�Lothe15 used a linearly spread-out dislocation core for a
screw dislocation to eliminate the divergence in the core en-
ergy, while the stresses remained singular at the core bound-
ary. In this letter we use the wedge dislocation along the
vertical axis, but only to produce a nonsingular shear stress
distribution along the glide plane of an edge dislocation. This
is then used in conjunction with a semi-inverse method to
derive the corresponding displacement discontinuity along
the glide plane.� This can be modeled by a continuous dis-
tribution of infinitesimal dislocations of specific Burgers vec-
tor b /�. The corresponding shear stress along the x axis is

�xy�x,0� =
�b

2��1 − ��
x

�
�

0

� x2 − �2

�x2 + �2�2d�

=
�b

2��1 − ��
x

x2 + �2 , �1�

which has no singularity at x=0 and which coincides with
the Volterra dislocation for x��. If �=h /2�1−��, where h is
the atomic interplanar separation across the glide plane, as in
the Peierls semidiscrete model, then �xy

max=�b /2�h, the the-
oretical shear strength of the crystal. Alternatively, if �us is
Rice’s16 unstable stacking energy, then �xy

max=��us /b, where
�us=�b2 /2�2h for the Frenkel sinusoidal function.

Assuming that the shear stress distribution is given by
Eq. �1�, we seek the continuous distribution of infinitesimal
dislocations of the specific Burgers vector 	�x� along the
glide plane y=0, so that

�xy�x,0� =
�

2��1 − ��
p.v.�

−



 	���
x − �

d� , �2�

where p.v. denotes the Cauchy principal value. The solution
of the above Cauchy singular integral equation is

	�x� =
b

�

�

x2 + �2 , �3�

with the corresponding slip discontinuity

��x� = �
0

x

	���d� =
b

�
tan−1 x

�
. �4�

As in the Peierls model, from Eq. �4� it follows that the
width of the dislocation w=2� defines the region over which
the displacement discontinuity is less than b /4.

In view of the trigonometric identity

sin
2���x�

b
= sin�2 tan−1 x

�
� �

2�x

�2 + x2 , �5�

we conclude, by comparing Eqs. �1� and �5�, that ��x ,0� and
��x� are related bya�Electronic mail: vlubarda@ucsd.edu
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�xy�x,0� =
�

4��1 − ��
b

�
sin

2���x�
b

. �6�

Thus, unlike the Peierls-Nabarro model, we deduce from the
analysis rather than assume the sinusoidal relationship be-
tween the shear stress and the slip discontinuity along the
slip plane. The core radius � enters Eq. �6� rather than the
atomic interplanar distance h, although � is expected to de-
pend on the glide system and therefore on the glide plane
spacing h. Since we are not separating in our analysis the
two elastic half spaces by the distance h, we do not have a
strain measure  /h in the thin layer around the glide plane.
Therefore, we do not require that �=� /h at large x �as in
the Peierls-Nabarro model�, and our core radius is not nec-
essarily related to h by �=h /2�1−��.

The work of the stress �xy�x ,0� on the slip discontinuity
��x� from the cutoff distance −R to R, is

W =
1

2
�

−R

R

�xy�x,0���x�dx , �7�

which is

W =
�b2

4�2�1 − ��	ln�1 +
R2

�2 �tan−1�R

�
�

− �
0

R/� ln�1 + z2�
1 + z2 dz
 . �8�

In the limit R��, we obtain

W =
�b2

4��1 − ��
ln

R

2�
. �9�

Far from the center of the dislocation, the stresses and dis-
placements are essentially those of the Volterra dislocation,
so that the work of the corresponding traction over the circle
of radius R is �b2 /8��1−��. The total strain energy within a
large radius R around the dislocation is then

E =
�b2

4��1 − ��
ln

e1/2R

2�
. �10�

Under a sufficiently large externally applied remote
shear stress �, the dislocation glides along its glide plane
between consecutive positions of stable and unstable equilib-
rium. We propose as an approximation a simple periodic
variation of the core radius � with glide distance �,

���� =
1

2
��o + �*� +

1

2
��o − �*�cos

2��

b
. �11�

The core radius at the stable configuration �=0 is �o and at
the unstable �=b /2 is �*.

The potential energy of a dislocated crystal, apart from
an independent potential energy due to uniform elastic shear
strain �=� /�, is

���� = E��� − �
0

�

b����d� . �12�

The second term on the right-hand side is the load potential,
calculated as for the Volterra dislocation, since the fields far
away from the core of the dislocation are the same. During
the quasistatic displacement of the dislocation, we have
d� /d�=0 and b����=dE /d�. Thus, considering Eq. �11�,

���� =
1

b

dE

d�

d�

d�
=

�

4�1 − ��
�o − �*

�
sin

2��

b
. �13�

The maximum value of this shear stress, with respect to �, is
the shear stress required to move the dislocation in a perfect
crystalline lattice by amount b and is referred to as the
Peierls stress. Thus, d� /d�=0 implies that

�PS =
�

4�1 − ��
�o − �*

��o�*

. �14�

In view of Eq. �10�, we have

�o

�*
= exp

E* − Eo

D
, D =

�b2

4��1 − ��
, �15�

where E*−Eo is the energy difference between the unstable
and stable equilibrium positions of the dislocation, which is
the key quantity in the subsequent analysis. With a nondi-
mensional parameter �= �E*−Eo� /2D, the Peierls stress �14�
is written as

�PS =
�

4�1 − ��
���o

�*
−��*

�o
� =

�

2�1 − ��
sinh��� . �16�

For small values of �,

�PS = �
E* − Eo

b2 �1 +
�2

6
+ ¯ � = �

E* − Eo

b2

+ higher order terms. �17�

An analogous expression exists in the classical Peierls-
Nabarro formulation, but in terms of the Peierls energy
WP=4D exp�−2n�� /b�, which is the difference between the
misfit energies of the two neighboring equilibrium configu-
rations and which has created the single versus double-
counting controversy. Since the atomic distribution and the
stress and strain fields away from the dislocation core are
essentially equal for both stable and unstable equilibrium
configurations of the dislocation, the energy difference
E*−Eo is due to the difference in the corresponding core
energies, which can be determined by quantum mechanics
calculations based on electron density functional theory, or,
on a less fundamental level, by empirical atomic models
based on either atomic pair potentials or embedded atom
methods. Only relatively small number of atoms in the
neighborhood of the center of the dislocation need to be
considered since the far dislocation field is Volterra. The sen-
sitive core radius does not appear in the final expression for
the Peierls stress and was only used as an intermediate
quantity.

If the dislocation is in a purely screw orientation, the slip
discontinuity and the corresponding shear stress, in analogy
with Eqs. �4� and �6�, are

�s�x� =
bs

�
tan−1 x

�s
,

�18�

�s�x� =
�

4�

bs

�s
sin

2��s�x�
bs

=
�bs

2�

x

�s
2 + x2 ,

where the index s designates the screw character. The strain
energy within a large radius R around the dislocation center
is E= ��bs

2 /4��ln�R /2�s�. The analysis previously presented
for dislocations of a pure edge type can be extended to dis-
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locations of a mixed �screw-edge� type as follows. Since
there is no coupling of the energy due to edge and screw
components �be and bs� in an isotropic crystal �the in-plane
shear stresses from an edge component do no work on the
out-of-plane displacements due to screw component�, the to-
tal strain energy is

E =
�be

2

4��1 − ��
ln

e1/2R

2�e
+

�bs
2

4�
ln

R

2�s
. �19�

Writing �s=c�e, where c is assumed to be a constant during
the motion of the dislocation, Eq. �19� becomes

E =
�b̄2

4��1 − ��
ln

R

2�e
+

�be
2

8��1 − ��
−

�bs
2

4�
ln c ,

�20�
b̄2 = be

2 + �1 − ��bs
2.

The value of the constant c does not appear in the final
expression for the Peierls stress derived below, which
involves only the difference between the relevant energy
levels.

A simple periodic variation of the core radius �e=����
with the distance � in the glide plane and orthogonal to the
dislocation line will be assumed, so that

���� =
1

2
��o + �*� +

1

2
��o − �*�cos

2��

a
, �21�

where a is the interatomic distance in the glide plane in the
direction of the dislocation motion.

The potential energy of a dislocated crystal under the
remote shear stress � parallel to the dislocation glide plane is

���� = E��� − �
0

�

b�b���d� ,

�22�
b = �be

2 + bs
2�1/2,

where �b is the resolved shear stress within the glide plane in
the direction of the Burgers vector and b is the magnitude of
the Burgers vector. For example, if � is the angle that �
makes with the positive direction of the dislocation line and
� is the angle between the Burgers vector and the dislocation
line, then �b=� cos��−��. From the equilibrium condition
d� /d�=0, it follows that b�b���=dE /d�, which yields

�b��� =
�

4�1 − ��
b̄2

ab

�o − �*

����
sin

2��

a
. �23�

The maximum value of this shear stress,

�b
PS =

�

4�1 − ��
b̄2

ab

�o − �*

��o�*

, �24�

defines the shear stress required to move the dislocation in its
glide plane by an interatomic distance a, normal to the dis-
location line �again referred to as the Peierls stress�. Since,
from Eq. �19�,

E* − Eo = D̄ ln
�o

�*
, D̄ =

�b̄2

4��1 − ��
, �25�

Eq. �24� can be recast in the form

�b
PS =

�

2�1 − ��
b̄2

ab
sinh��̄� ,

�26�

�̄ =
E* − Eo

2D̄
.

To the leading order term, therefore,

�b
PS = �

E* − Eo

ab
+ higher order terms, �27�

where E*−Eo is the energy difference between unstable and
stable configurations of the dislocation, a is the interatomic
distance in the glide plane normal to the dislocation line, and
b is the magnitude of the Burgers vector. This generalizes the
result �17� for an edge dislocation to a mixed one of arbitrary
screw-edge type. If bs=0 and a=be, Eq. �27� reduces to Eq.
�17�.

The considerations in this letter are restricted to a single
straight dislocation in a perfect crystal. The curvature of the
dislocation line, kinking of the dislocation, dissociation of
the dislocation into partial dislocations, the stacking fault
energy, and the nonplanar dislocation configurations also
have obvious effects on the dislocation core structure and the
resulting Peierls stress.17 Such analysis is of interest for the
study of nanocrystalline materials, in which some crystals
are so small that dislocations in them may not be fully
formed and where the dislocation core interactions, among
themselves and with the nearby grain boundaries, represent
an essential aspect of the deformation process.18,19
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