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ABSTRACT

This paper presents a rate-type constitutive analysis applicable to brittle elas-
tic materials whose elastic properties degrade in the course of deformation due to
evolution of many microcracks. Thermodynamic analysis is used to identify the
appropriate damage tensors and their conjugate forces (affinities). It is shown
that the introduced damage potentials are dual: for the damage fluxes in the
space of affinities, and for the damage strain and stress rates in the correspond-
ing stress and strain spaces. Rate constitutive equations are derived, providing
explicit representations of the tangent stiffness and compliance tensors. General
results are specialized in the case of some simple, physically appealing choices
of damage functions, analogous to those used in other damage and pressure-
dependent plasticity models.

1. INTRODUCTION

Analysis of brittle deformation of materials such as rocks, concrete, ce-
ramics, etc., have lately attracted a great deal of attention. Degradation
of elastic properties and accumulation of inelastic strains are primarily at-
tributable to the evolution of many internal microcracks and other microde-
fects within the considered microstructure. The mode of crack nucleation
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depends on the microstructure and state of stress. In very porous rocks,
crack nucleation is attributed to the tensile hoop stresses generated at the
surface of relatively large pores. In low porosity, compact rocks frictional
sliding of crack surfaces may destabilize existing shear cracks, causing them
to kink and develop wing cracks. Other causes of microcrack nucleation,
such as elastic mismatch and bending mechanisms, may also take place
in some rocks. Some of these mechanisms were implemented in analytical
modeling of cracking and failure of brittle solids, as discussed, for example,
in [1}.

The mode and stability of crack growth and, therefore, behavior of
brittle material strongly depends on the sign and magnitudes of applied
stresses. For instance, the response of a brittle material subjected to com-
pressive loading is strongly dependent on the magnitude of lateral con-
fincment. An unconfined specimen fails by axial splitting, attributed to
unstable growth of a single crack, at a relatively small microcrack den-
sity. As the confinement is increased, axial splitting is suppressed and at
large confinement levels homogeneous microcracking prevails throughout
the sample, resulting in a quasiductile overall response {2], and ultimately
in localization failure mode.

Progressive degradation of mechanical macroproperties is an important
feature of the brittle material behavior. Several analytical models were
suggested to estimate the effective elastic properties of a solid weakened by
a given distribution of many cracks or other defects. An extensive review
of these models can be found in a recent treatise [3]. An appropriate choice
of the mathematical form for the damage variable which approximates the
microcrack distribution is one of the central issues in the process of the
formulation of a continuum damage model. Contradictory requirements
of facility on one and accuracy on the other hand are to a large extent
responsible for the proliferation of damage models. The issue of the ap-
propriate choice of the damage variable has been recently examined in [4].
Several frequently encountered distributions of microcracks, corresponding
to uniaxial and biaxial tension and compression, were considered. In each
case the microcrack distribution was developed into an infinite series of
spherical functions in form of even order tensors [5, 6]. The infinite series
was then truncated to one (scalar), two (scalar and second-order tensor),
and three (scalar, second- and fourth-order tensor) terms of the series. The
analysis demonstrated the shortcomings of the scalar and second-order ten-
sor damage variables, and the accuracy gained by using the fourth-order
tensor representation.

Both micromechanical and percolation models have supported the se-
lection of the fourth-order effective compliance {or effective stiffness) tensor
as the appropriate damage variable [7-9]. In percolation models the effec-
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tive stiffness is the order parameter which exhibits universal behavior in the
neighborhood of the critical state. Thus, even at failure (or critical state)
effective stiffness represents an appropriate measure of damage. Finally,
the change of effective stiffness can be easily measured, which is one of the
important criteria for the selection of the internal variable.

During a typical deformation process a majority of microcracks nucle-
ate and grow in planes which are roughly orthogonal to the direction of the
maximum principal stress. The macro response becomes both anisotropic
and path-dependent. This type of behavior can be adequately modeled
only by the rate-type theories. With the current elastic compliance se-
lected as an appropriate measure of damage, the constitutive theory in the
spirit of classical rate-type plasticity theory was proposed in [9]. A similar
approach, including the notion of damage surface, loading and unloading
conditions, and other familiar plasticity concepts, was used in other con-
stitutive models, such as [7, 10-12].

The present paper deals exclusively with the damage of elastic solids,
assuming that residual strains vanish upon unloading from any state of
deformation. Incorporation of residual (plastic) strains into the constitu-
tive framework is left for the forthcoming study. Basic formulation of the
analysis is provided in both stress and strain space. Thermodynamic anal-
ysis is presented in Section 2, where appropriate damage tensors and their
conjugate thermodynamic forces are identified, and the damage flux po-
tentials introduced. The expressions for the damage stress and strain rates
are derived, and duality of the damage potentials established in Section 3.
Damage surface is defined in Section 4, while the complete rate-type con-
stitutive equations are formulated in Section 5. Explicit representations
of the tangent stiffness and compliance tensors are also given in Section
5. General results are illustrated in Section 6 by considering some simple,
appealing forms of the damage functions, analogous to those used in other
damage and pressure-dependent plasticity studies.

Modifications and extensions of the presented formulation required to
model different tensile and compressive responses of brittle materials are
presented in a separate paper [13].

2. THERMODYNAMIC ANALYSIS

Consider small deformations of brittle material whose elastic properties
change during a deformation process. Assume that the residual strain
vanishes upon unloading initiated from an arbitrary state of deformation.
The corresponding uniaxial stress-strain behavior is of the type sketched in
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Figure 1a. Degradation of elastic properties is assumed to be a consequence
of accumulated damage, i.e., nucleation and propagation of microcracks
during a deformation process. Let e, denote the surface energy of the
microcrack surfaces created in the course of deformation from the initial
to the current state. The Helmholtz free energy ¢ and the Gibbs energy
¥ (per unit volume) can be then defined as

o = %z (e®e)+e, (2.1)
1
¥ = §M H{o®o) — &y, (2.2)

where o and € are the stress and strain tensors, and £ and M the current
elastic stiffness and compliance tensors. The symbol (:) stands for the in-
ner, trace product, and ® for the outer tensor product. As discussed in the
context of the thermodynamic analysis of the quasistatic growth of Griffith
cracks [14], free energy at the current state is equal to the work done in
transforming the body from its initial to current state along an imagined
reversible and isothermal path. This path can be created by a sequence of
two steps. First, new microcrack surfaces are formed separating reversibly
the adjacent layers of atoms, pulling against their cohesive forces. The
work needed for this step is denoted by €,. Second, the microcracked solid
is deformed elastically to the current state of deformation e. The required
work is 3£ : (€ @ €), where £ denotes the current elastic stiffness which
accounts for the presence of all existing active cracks. A microcrack is con-
sidered to be active if it imposes a discontinuity in at least one component
of the displacement vector across its surface.

As the damage evolves the elastic moduli decrease and compliances
increase. Thus, it is convenient to represent the tensors £ and M in
additive form as

L =°L-1L (2.3)
M = MM, (2.4)

where £° and M denote the initial elastic stiffness and compliance ten-
sors of the undamaged material. The fourth-order tensors L and M can be
considered as being the measures of damage. These tensors change during
a deformation process as a consequence of material degradation, i.e., nucle-
ation of new and growth of existing microcracks. The rates of the Helmholtz
and Gibbs energies are obtained by differentiating (2.1) and (2.2):

@zﬁ:(e@é)—ﬁ:%(e@e)—{-év (2.5)
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Fig. 1. (a) Loading and unloading portions of the uniaxial stress-strain curve; (b)
increments of the damage stress and strain, and the energy expended on the correspond-
ing damage progression.

v = M:(a®6)+M:%(a®a)—57. (2.6)

The reciprocity symmetries of the tensors £ and M are used in arriving
at (2.5) and (2.6).

Assuming the deformation processes to be isothermal, from the first law
of thermodynamics it follows that

d =0c:6-TA (2.7)
¥ = e:0+TA, (2.8)

where T is the temperature, and A the irreversible entropy production rate.
The product TA represents the energy dissipation rate associated with the
damage evolution. As a consequence of the second law of thermodynamics,
A>0.

Comparing (2.5) and (2.7), it follows that

o =L:e (2.9)
TA = L;%(em)_gm (2.10)

while the comparison of (2.6) and (2.8) gives
e =M:o (2.11)
-1
TA = M: 5(0‘@0’)—6‘7. (2.12)
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Equation (2.9) and its inverse (2.11) are the elasticity equations relating the
current stress and strain tensors through the current elastic stiffness tensor
L and its inverse, the elastic compliance tensor M = £7!. Equations
(2.10) and (2.12) are two alternative expressions for the energy dissipation
rate, written in terms of strain and stress tensors, and damage fluxes L
and M. Indeed, introducing

G= é(e@e) (2.13)

as the thermodynamic force (affinity) conjugate to the damage tensor L,
and

= %(a@a) (2.14)

as the thermodynamic force (affinity) conjugate to damage tensor M, ex-
pressions (2.10) and (2.12) can be written as

TA = G:L-¢, (2.15)
TA = T:M-—&,. (2.16)

The affinities G and/or I' are previously utilized in literature, for example
in [7, 9, 11, 12]. The conjugacy property of G and L, and T’ and M, are
further discussed in Subsection 3.1 of this paper.

2.1. Potential for damage fluzes

Suppose that for the material degradation process there is a scalar func-
tion IT = II{G) such that the damage flux L can be expressed as

L=r_— (2.17)

where 7 is the rate of some monotonically increasing scalar parameter r,
which can be considered as a measure of the cumulative damage at the
considered instant of deformation process. Hence, by definition, # > 0. The
function II is referred to as a damage potential for the flux L. Similarly,
suppose that

o8
_af’
where Q = Q(T') is the damage potential for the flux M, and p > 0 the rate
of the cumulative damage parameter p. The conditions for the existence
of the potential for various types of fluxes introduced to describe inelastic

M= (2.18)
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behavior, and their implications on the constitutive modeling have been
studied in [15].

Substituting (2.17) and (2.18) into (2.15) and (2.16), the energy dissi-
pation rate can be expressed as

. oIl .
TA = T<G . %) -—E.Y (219)
(n 09)

If IT and @ are homogeneous functions of their arguments (of degrees m
and n, respectively), (2.19) and (2.20) reduce to

TA = 7mIl—é&, (2.21)
TA = pnQ —é,. (2.22)

Since the energy dissipation rate is nonnegative, from (2.21) and (2.22)
follow

de
m—-=2 >0 2.23
m dr — ( )
de,
- =T > Q. 2.24
- 2 (2.24)

The equality sign in (2.23) and (2.24) applies only if it is assumed that all
energy associated with the damage process is transformed into the surface
energy of the created microcrack faces.

3. DAMAGE STRESS AND STRAIN RATES

The expression for the stress rate can be derived differentiating (2.9)
and using (2.3), .
oc=L:é-L:e (3.1)

The first term on the right-hand side of (3.1) is the stress rate that would
correspond to strain rate € in absence of the damage flux L. This part of
the stress rate will be referred to as the elastic part of the stress rate. The

remaining part ’
6= -L:e (3.2)

is the part of the stress rate attributable to the change in damage, which
shall be referred to as the damage stress rate (Figure 1b). Substituting
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(2.17) into (3.2) the damage stress rate is

oIl
-d __ )
o8 =—Tem e (3.3)
Since from (2.13)
oIl ol oG oI

de G de  9G © (34)
the expression (3.3) can be rewritten in the form
oIl
. d ,
= —F——. 3.5
& L (3.5)

Therefore, the damage potential IT serves as a dual potential: for the dam-
age flux L in the space of affinity G, i.e., (2.17), and for the damage stress
rate &% in the space of strain e, i.e., (3.5).

The strain rate is determined in a similar fashion. Differentiating (2.11)
it follows

E=M:6+M:0o (3.6)

The first term on the right-hand side of (3.6) is the strain rate that would
correspond to stress rate & if the damage flux M were zero. This part
of the strain rate is referred to as the elastic part of the strain rate. The
remaining part

é=M:o (3.7)

is the strain rate attributable to change in damage, referred to concisely as
the damage strain rate (Figure 1b). Substituting (2.18) into (3.7)

a0

-d . .

€ =pgp 0, (3.8)
ie.,
0
.d .

= pH—. 3.9
R (3.9)

Therefore, the damage potential  also serves as a dual potential: for the
damage flux M in the space of affinity T, i.e., (2.18), and for the damage
strain rate € in the space of stress o, ie., (3.9).

The above introduced definitions of the elastic and damage parts of the
stress and strain rates are analogous to those introduced in [16], in a related
study of the structure of inelastic constitutive laws.
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8.1. Conjugacy relations

From Figure 1b it can be easily observed that, to within small quantities
of second order, the rate of energy € expended on the evolution of damage is

1 1
€= —-ée:d'd: §a:éd. (3.10)
One part of this rate represents the rate of the surface energy ¢,. The
remaining part is the rate of dissipated energy T'A. Thus, & = £, + TA.
Substituting (3.2) and (3.7) into (3.10), it follows

é:%(e@)e):L: (c®0): M, (3.11)

DOt

i.e.,

¢e=G:L=0I:M. (3.12)
Equation (3.12) establishes the conjugacy between the affinity G = %(e ®€)
and the damage tensor L, and between the affinity ' = %(cr ® o) and the

damage tensor M, which were already utilized in Section 2.

4. DAMAGE SURFACE

To derive the rate-type constitutive equations which describe elastic
response of materials that undergo path-dependent damage evolution, the
constitutive expression for either the damage stress rate or damage strain
rate have to be established. In the first case the damage surface is intro-
duced in the strain space, while in the second case it is introduced in the
stress space. The corresponding formulations in both spaces are presented
in this section.

The range of the validity of damage surfaces used in the formulation of
the analysis is an important issue which must be addressed in conjunction
with plasticity and a probable failure mode (limit surface). Ordered brittle
materials (having small bandwidths of microstructural rapture strengths),
subjected to tension or uniaxial compression (without lateral confinement),
fail as a result of unstable growth of a single microcrack at very small overall
damage density. At the order end of the spectrum, the disordered (dam-
age tolerant) and properly confined solids can support large compression
without failure. Unloading reveals substantial residual strain and relatively
mild change of the effective stiffness. Consequently, the deformation is on
the macroscale similar to that associated with the ductile metals.

Specific choices of damage and limit surfaces were suggested in [L, 17,
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18]. The damage and yield surfaces are often taken in the form suggested
by the so-called capped Mohr—-Coulomb plasticity model. Even though a
more rigorous version of two surfaces, distinguishing between plastic and
damage strain, may, indeed, come in this form, an utmost care must be
paid to set this surface in proper (stress or strain) space and identify the
appropriate thermodynamic fluxes. The plastic strain is reflected in resid-
ual deformation, while strain attributable to elastic damage is related to
the degradation of effective stiffness. It is instructive to view the damage
surface as a locus of points in which the Griffith criterion for one or more
microcrack is satisfied. This is in a definite manner related to the resistance
to damage growth commonly known in fracture mechanics as R-curve. A
revealing study of several possible pairs of the damage driving and resist-
ing forces, in the setting of a simple discrete artifice, is available in [19].
An underlying assumption on which the simple formulas, involving average
(macro) fields, are based is that the mean field representation is justified.
Recent analyses of network (lattice) models [20, 21] indicate that the mean
field approximation, which ignores direct crack to crack interaction, is jus-
tifiable within the hardening regime (including the apex of the stress-strain
curve). Another important task is to formulate the limit surfaces. In brit-
tle deformation the failure can occur when a single microcrack becomes
unstable and splits the specimen into two parts, or when the closely spaced
interacting microcracks form thin, localized bands. Even though some data
on limit surfaces exist [1], a comprehensive discussion of this problem has
yet to appear within the framework of damage mechanics.

In this section a simple form of the damage surface is considered in
accord with assumed absence of the residual (plastic) deformation. The
accommodations needed to represent different tensile and compressive re-
sponses and elaboration on the corresponding structure of the damage sur-
face is presented in a separate paper [13].

4.1.  Strain space

To distinguish between the unloading-elastic behavior and loading-dam-
age behavior, introduce a damage function in strain space Z(e), such that
the locus of points

E(e) - R(r)=0 (4.1)

encloses the stain region within which the response of material is purely
elastic (without further damage evolution). The surface defined by (4.1)
will be referred to as a damage surface in strain space. A simplified repre-
sentation {4.1) is assumed, where the parameter R, which defines the size
of the surface, depends on the cumulative damage measure 7.

If the strain state is on the damage surface, the subsequent strain state
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will remain on the damage surface if the consistency condition is satisfied

J= . dR,
BE.E—E;T‘—O. (42)

From (4.2) the rate of cumulative damage measure is

. 1[02 |
r = h(&'f), (43)

where h = dR/dr. Since 7 = 0 implies no damage evolution, from (4.3)
follows that the strain rate such that 82/9¢ : € = 0, represents the neutral
(elastic) loading. Progressive damage implies 7+ > 0. Hence, the damage
loading condition is

sign(h)<%§ ; e) > 0. (4.4)

The reversed direction of the inequality (4.4) corresponds to elastic unload-
ing from the current state of strain on the damage surface (4.1).
The damage stress rate is derived substituting (4.3) into (3.5)

jo . _1(0= ol
7 T Th\%e ¢) e (45)

Hence, if the damage rule is associated (II = E), it follows that

1702 \°

. .d =,

: =—|=": 4.6
E:o ; ( e e) , (4.6)
which has the sign opposite to that of & (it is negative for positive h).

4.2. Stress space

Introduce a damage function in stress space (o), such that the locus
of points
S(o) - R(p) = 0 (47)

encloses the stress region within which the response of material is purely
elastic. The surface defined by (4.7) will be referred to as a damage surface
in stress space. A simplified representation of the damage surface is again
assumed. The parameter R, which defines the size of the surface, is as-
sumed to be a function of the cumulative damage measure p. Alternatively,
R can be assumed to depend on the equivalent damage strain or damage
work, in analogy to the familiar plasticity formulations [22]. If the stress
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state is on the damage surface, the subsequent stress state will remain on
the damage surface if the consistency condition is satisfied

ox dR
— 10— —p=0. 4.
80 7 dpp (4.8)

The rate of damage measure is from (4.8)

- 2(Z0) ”

where H = dR/dp. Since p = 0 implies no damage evolution, from (4.9)
follows that the stress rate such that 03 /9e : & = 0, constitutes the neutral
(elastic) loading. Progressive damage implies p > 0, hence the condition

sign(H)(% : c'r) >0 (4.10)

must hold during the damage loading. The stress rate such that d%/do :
& > 0 represents the damage loading in the hardening regime H > 0 of the
material response. In the softening regime H < 0, and

()
— 10 <0 4.11
oo o= (411)

must hold during the damage loading. However, the condition (4.11) is
only necessary but not sufficient for the damage accumulation since (4.11)
can also be satisfied during elastic unloading.

The damage strain rate is derived substituting (4.9) into (3.9)

1 /0% o0
.d .
== =" ot 4.12
¢ H (80’ U) oo (412)
Hence, if the damage rule is associated (Q = ), it follows that
1708 \°
. .d i
€= — | 4.13
Grel=t ( o a) , (1.13)

which can be either positive or negative depending on the sign of H, i.e.,
it is positive in the hardening, and negative in the softening range of the
material response.
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5. COMPLETE RATE-TYPE CONSTITUTIVE EQUATIONS

5.1, Strain space

As shown in Section 3, the stress rate allows decomposition into elastic
and damage parts

o=L:é+d% (5.1)
Substituting (3.5) into (5.1), with 7 defined by (4.3), it follows that
. . 1702 ol
a'—[,.e—ﬁ<-(%.e)ae, (5.2)
ie., R
oc=L:¢E (5.3)

where L is the tangent stiffness at the current state of deformation defined
as

L=L£--Z0=—. (5.4)

Unless I1 = = (associated damage rule), £ does not possess the self-adjoint
symmetry (Z»ijkl % [Ik“j). Hence, no rate potential 7 exists for the stress
rate (i.e., & # On/0€) in the case of nonassociated damage rule.

To invert the expression (5.2) and define € in terms of ¢, form a trace
product of both sides of (5.2) with the elastic compliance tensor M = £,

.. 170 | oIl
M.a_e—ﬁ<a—e.e)<M.—8:). (5.5)

Taking the trace product of (5.5) with 9=/0¢, it follows that

o= h (0=
— €= = —": 1 0 .6
5 | € = ( e M a) , (5.6)
where - o1
=M=, 7
h="h e M e (5.7)

Substituting (5.6) back into (5.5) and solving for the strain rate, the inverse
relation is obtained, i.e.,

—

E=M:o, (5.8)

where M is the current tangent compliance

M = M—i—AM (8H®‘ZE> M. (5.9)
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The tangent compliance becomes singular at the state of strain for which
h = 0. According to (5.7) this occurs when

oE ol

a0 Mg =h (5.10)

5.2. Stress space

A completely analogous derivation ensues starting from the expression
for the strain rate (3.6), in form of a sum of elastic and damage parts

E=M:6+é& (5.11)

Substituting of (3.9) into (5.11), where p is defined by (4.9), gives

% N
eE=M: 0+H(8 >6o- (5.12)
Therefore,
E=M:o, (5.13)

where M is the tangent compliance at the current instant of deformation,

defined as L 80 E)Z
M=M+_-_"r= 5.14
+ H do ® ( )
The tangent compliance becomes singular when H = (. Beyond this point
the material response enters into the softening regime.

Inverting expression (5.13), it follows that
6=°L:¢ (5.15)

In (5.15) the tangent stiffness tensor is given by

~ 1 o0 0%
=L =L |—x—|: L 5.16
E-c-~c (aa ® aa) , (5.16)

where a5 50
H=H+=.£:.2", (5.17)

do do

6. SOME SPECIFIC FORMS OF DAMAGE FUNCTIONS

In this section, attention is focused on the results obtained for some
appealing choices of the damage functions in strain and stress spaces. The
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corresponding constitutive expressions can be easily incorporated into spe-
cific applications and numerical evaluations. For the discussion of certain
physical and computational issues related to the strain vs. stress based
formulation of the rate-type damage analysis, refer to [11, 12, 23].

6.1. Strain space

Assume the following simple form of the damage potential II, introduced
in (2.17),

1
II= 5(—:' 1€ +gle). (6.1)

Here €/ = € — %66 is the deviatoric strain, e = 6 : € the volumetric strain,
and 8 the second order identity tensor. The scalar function g, which de-
pends on the volumetric strain, should be appropriately specified as sug-
gested by experimental evidence. Other forms of the function IT can be
considered as well. For example, the energy norm (e : Lo : €)'/? of the
strain tensor has been utilized in [12], although such selection is compatible
only with an isotropic damage evolution. From (6.1)

Ol oIl Oe ~ Oe (dg le> Oe (62)

9G ~ 9 0G  “9G " \de 3°)3G

To express the gradient I1/0G in the strain space, consider the identity

cram(led) o)

Differentiating (6.3) with respect to G, it follows that

G- Ge : e) (e : 5‘9—&), (6.4)

Jde  €®e€
P = . 6.5
C9G T e:e (6:5)
Likewise, introducing the fourth-order tensor Go = 3(8 ® §), the following
relationship holds

i.e.

1 > 1
M = — . = — 2. 6.6
G: Gy [2(6 e)] " (6.6)
Differentiating (6.6) with respect to G gives

1 e

Go =3¢

(6.7)
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ie.,
Oe 6®6
Freiia (6.8)
Substitution of (6.5) and (6.8) into (6.2) leads to
Ol e®e 1dg 1
G~ e (;d—‘g)m" (6:9)

The expression for the damage stress rate can be derived by substituting
(6.9) into (3.3)

. . dg 1 . dg
d _ _ = _ ’
ot =—r [e + <_de 36) 6] = r(e + Zo 6). (6.10)

For example, if g = €2/6, (6.10) reduces to
o = —re. (6.11)

Introduce next the damage function Z(¢€), appearing in (4.1), in the form
= = 1 T
=€ e + f(e). (6.12)

The rate of the cumulative damage measure, defined by (4.3), becomes

;= %(e’ + %6) D E. (6.13)

In the case of the associated damage rule (f = g) and for the choice of
function f = e2/6, (6.13) reduces to

P =

(€: &) (6.14)

| =

With this, the damage flux L, defined by (2.17), becomes

€€
?(e ® €). (6.15)

L:

> =
m

The current tangent stiffness (5.4) is

o~

Ezﬁ—%(e@e), (6.16)
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while the current tangent compliance (5.9) becomes
— 1
M:M—i—;—ﬂM:(e@e):M, (6.17)

whereh=h—€: M : e

It is interesting to note that the model of isotropic damage accumulation
can be recovered from the previous analysis, provided that an initially
isotropic material is continuously subjected to hydrostatic states of stress
and strain. Indeed, in this case £ = xo(1 — d)6 ® 6, where kg is the initial
bulk modulus, and d a scalar damage variable. Hence, L = drod ®$6. From
(6.14) and (6.15), L = 376 ® 8, since € is a spherical tensor, and therefore

d = (1/3ko)7, L.e., d = (1/3kK0)r.

6.2. Stress space

Similar analysis can be performed in the stress space, in which the
damage potential Q and the damage function ¥ are assumed to be:

1
Q = 50' co' +a(p) (6.18)
1
Y = 50’ : o0’ + b(p), (6.19)
where 0/ = o + pd is the deviatoric stress, p = *%(6 : o) the hydrostatic

pressure, and a and b the scalar functions to be appropriately specified.
For example, if the damage rule is associated (a = b), and the function a
is taken to be a = 3p?/2, it follows that

1

Q:Z‘—‘QUZO' (6.20)
The damage flux M is in this case
. lo:o
_— . .2
M Ho‘:a'(a®a) (6:21)

The damage function of the type {6.20) has been used in [9] to describe the
inelastic behavior to concrete. It can be easily shown that in the case of
uniaxial stress, the damage parameter p is equal to E~! — Ej ! where E is
the current degraded elastic (secant) modulus, appearing in the expression
o = E(e)e, and Ej is the initial elastic modulus. The parameter R is equal
to 202, Consequently, the relationship R = R(p) can be easily extracted

from the given uniaxial stress-strain relationship ¢ = o(€).
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The corresponding tangent compliance becomes

J/\jtzM+f1]—(a®cr), (6.22)

while the tangent stiffness is
- 1
E:L——I—?—E:(a@m’):ﬁ, (6.23)

where H=H+o:L: 0.

In the softening regime the material response is determined by prescrib-
ing the strain rate and calculating the corresponding stress rate. Hence,
substituting & = £ : &, with £ given by (6.23), into the rate of cumulative
damage expression

1
p= E(a 1 6), (6.24)
it follows
1
)= = (o : L :€). 6.25
p H( ) (6.25)

Since during a damage evolution process p > 0, the damage loading condi-
tion in strain space becomes

sign(H)(o : £ : &) > 0. (6.26)
6.2.1. An alternative choice.  Instead of (6.18) and (6.19), in certain

cases it may be advantageous to select a different damage potential and
damage function by assuming

Q- (%a‘ a'>1/2+a(p) (6.27)
N = (%a':a'>1/2+b(p) (6.28)

The functions (6.27) and (6.28) are of the type used in the studies of in-
elastic deformation of pressure-sensitive dilatant materials [24, 25]. From
(6.27) it follows that

o0 1 |lo®oe 1(2Jda
Flo L|2®e  (2lde 5 6.29
or 2J[0':0'+3(3pdp 1>6® ]’ (6:29)
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where J = (1o’ : 0')!/2. Substitution of (6.29) into (2.18) provides the
evolution equation for the damage flux M. Using the notation

o 1db
gp = _2—(] — g'd—pts, (630)

the rate of cumulative damage is from (4.9)

p= —Il?(crb L&), (6.31)

The tangent compliance (5.9) takes the form

— 1
M:M+E(0’a®ab)7 (6'32)
where -
o a
O’a—-z—.]—g'(% . (633)

The tangent stiffness (5.16) becomes

-~ 1
L=L- EE: (o ®o0p): L, (6.34)

using the parameter H=H-+0,: L : o, Finally, the rate of the
cumulative damage parameter, expressed in terms of the strain rate, is
given by
1
p==(op: L:E). (6.35)
H

7. CONCLUSION

Some of the basic features of the rate-type analysis of damage processes
in brittle elastic solids and presented in this paper, assuming infinitesimal
and path-dependant deformation response. Stress and strain based formu-
lations are both given. Appropriate structures of the evolution equations
for damage fluxes are established, and constitutive expressions for the dam-
age stress and strain rates derived. Explicit representations of the tangent
stiffness and compliance tensors are derived for arbitrary forms of the dam-
age potentials and damage functions. By virtue of its incremental nature,
the presented formulation is capable of accommodating path-dependant
degradation of elastic properties, and induced elastic anisotropy. Simple
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and computationally attractive results are obtained for some physically ap-
pealing choices of the damage functions, analogous to those used in other
damage and pressure-dependent plasticity models. In summary, this pa-
per presents a basic formulation and discusses some essential features of
the rate-type damage elasticity. Modifications needed to model different
tensile and compressive responses of brittle materials are presented in a
separate paper [13]. Further research is also directed toward incorporation
of the residual (plastic) component of deformation and finite strain and
rotation effects, [26].
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