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Void growth by dislocation emission
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Abstract

Laser shock experiments conducted at an energy density of 61 MJ/m2 revealed void initiation and growth at stress application

times of approximately 10 ns. It is shown that void growth cannot be accomplished by vacancy diffusion under these conditions,

even taking into account shock heating. An alternative, dislocation-emission-based mechanism, is proposed for void growth. The

shear stresses are highest at 45� to the void surface and decay with increasing distance from the surface. Two mechanisms accounting

for the generation of geometrically necessary dislocations required for void growth are proposed: prismatic and shear loops. A

criterion for the emission of a dislocation from the surface of a void under remote tension is formulated, analogous to Rice and

Thomson�s criterion for crack blunting by dislocation emission from the crack tip. The critical stress is calculated for the emission of

a single dislocation and a dislocation pair for any size of initial void. It is shown that the critical stress for dislocation emission

decreases with increasing void size. Dislocations with a wider core are more easily emitted than dislocations with a narrow core.

� 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The study of the nucleation and growth of voids in

ductile metals is of significant interest for the under-

standing of failure under overall tensile loading. Such

failure, for example, can occur upon reflection of tensile

waves from a free surface of the shock-compressed

plate. The growth and coalescence of voids in the
vicinity of the back side of the plate can lead to spalling

of the plate, with planar separation of material elements

parallel to the wave front (e.g. [1–3]). Understanding

material failure by void growth under dynamic loading

conditions leading to spalling is an essential aspect of

the design analysis of structures potentially targeted by

explosive or projectile impacts. Extensive analytical and

computational research has been devoted to analyze
ductile void growth and coalescence in various materials

and under various loading conditions. Representative

references include [4–21]. Dynamic expansion of spher-
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ical cavities in elastoplastic metals was studied by

Hopkins [22], Carroll and Holt [23], Johnson [24],

Cort�es [25], Ortiz and Molinari [26], Benson [27], Wang

[28], Wu et al. [29], and others. The void nucleation and

growth in nonlinear hyperelastic materials was analyzed

by Williams and Schapery [30], Ball [31], Stuart [32],

Horgan [33], and Polignone and Horgan [34], among

others. A review by Horgan and Polignone [35] can be
consulted for further references. With the exception of

Cuiti~no and Ortiz [18], these are all continuum treat-

ments and are not explicitly based on specific mass

transport (glide and/or diffusion) mechanisms. There is

one dislocation model for void growth, proposed by

Stevens et al. [36], but with some fundamental incon-

sistencies with it, pointed out by Meyers and Aimone [1].

Recently, there has also been a significant progress in
the study of void nucleation, growth and coalescence by

using the atomistic simulations (e.g. [37,38]).

The contribution in this paper has three goals:

(a) To present the results of laser-induced shock exper-

iments in which the shock wave is allowed to reflect

at a free surface, creating tensile pulses with a dura-

tion on the order of 10 ns.
ll rights reserved.
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(b) To show that a diffusional mechanism of void

growth cannot account for the growth process under

high strain-rate tension loading, produced by the re-

flection of a shock wave at a free surface.

(c) To propose an alternative mechanism of void
growth, by dislocation emission from the surface

of the void. It will be analytically shown, for a

two-dimensional configuration, that the imposed

stresses in the laser shock experiments are sufficient

for emitting dislocations from the void surface.

The critical stress for the dislocation emission is

found to decrease with an increasing void size, so

that less stress is required to emit dislocations from
larger than smaller voids.
Fig. 1. Attenuation of the pressure pulse along the specimen thickness

corresponding to a laser beam energy of 61 MJ/m2.
2. Void formation in laser-driven shock experiments

Cylindrical specimens of monocrystalline copper,

oriented to [0 0 1], were subjected to high tensile stresses

during time intervals of tens of nanoseconds. This was
accomplished by producing an ultra short shock wave

by an incident laser beam with energies of 14, 41, and 61

MJ/m2. The laser experiments conducted produce the

shortest high-amplitude tensile pulses possible. This is

orders of magnitude lower than explosives or plate-

impact experiments. The shock wave was allowed to

reflect as a tensile pulse from the rear free surface of the

specimen. An approximate shape of the compressive
pulse, as it propagates through the specimen and un-

dergoes attenuation, is shown in Fig. 1. The specimen

was about 1 mm thick. The initial peak pressure was of

the order of 60 GPa, which decayed during the propa-

gation through the sample in an approximately expo-

nential manner. The experimental set-up and shock

conditions is described by Meyers et al. [39] and

Kalantar et al. [40].
The single crystal samples were encased in a recovery

capsule. The assembly was recovered after shock and

prepared for optical, scanning, and transmission elec-

tron microscopy. Experiments were conducted at dif-

ferent laser energy levels. The 61 MJ/m2 experiment

yielded spall initiation. Experiments at higher energy

levels provided complete spalling and separation. Fig. 2

shows SEM images of (a) the initial specimen and (b) the
recovered specimen with the bulged top surface. The

laser was applied to the lower surface. The reflected

tensile pulse at about 100 lm from the rear surface can

be calculated from the decay of the shock pulse shown in

Fig. 1. It is equal in magnitude, but opposite in sign, to

the shock pressure. The latter is about 5 GPa in mag-

nitude. The presence of the bulge in Fig. 2(b) demon-

strates that the spall strength was exceeded. The images
shown in Figs. 3(a) and (b) are taken from a longitu-

dinal cut through the central axis of the cylindrical

specimen. They were taken near the spall plane in order
to examine the size and geometry of voids in the dam-

aged region. Two magnifications are shown. The ob-

served voids ranged in size from small voids (25–50 nm)

to large voids (1 lm size).

The TEM image of a single crystal copper shocked to
a 61 MJ/m2 energy level is shown in Fig. 4(a). It reveals

a dislocation cell structure, with a high dislocation

density, of the order of 1015 m�2 [39]. Fig. 4(b) shows

what is believed to be a void near the back surface of the

shocked specimen. Its diameter is approximately 0.5 lm.

It may be argued that electropolishing produced the

void, but a larger number of perforations were found

close to the back surface of the specimen, where void
formation is expected. There is a light rim around the

void, indicating an extremely high dislocation density,

beyond the point where individual dislocations can be

imaged. This void is very similar to one observed earlier

by Christy et al. [41] using high-voltage transmission

electron microscopy. In that experiment the foil was not

perforated and the same intense dislocation density was

observed. Calculations demonstrate that the dislocation
density around a void is extremely high. The diameter of

this work-hardened layer is approximately twice the

void diameter. Thus, a much higher dislocation density

characterizes the region surrounding the void compared

to regions without observable voids.



Fig. 3. SEM micrographs of voids at two length scales: (a) 100 lm and

(b) 10 lm. Dark round areas represent voids.

Fig. 2. Side view of the cylindrical specimen subjected to shock com-

pression and subsequent reflected tension pulse from the laser-induced

shock wave: (a) undeformed specimen and (b) deformed specimen

(laser impulse applied to bottom surface) upon wave reflection with a

spall surface (top).
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3. Void growth by vacancy diffusion

Fracture by void nucleation, growth, and coalescence

in ductile materials occurs at strain rates ranging from

10�5 to 108 s�1, so that different mechanisms of void

growth can operate at different strain rate regimes.

Cuiti~no and Ortiz [18] proposed a vacancy diffusion
mechanism for the nucleation of voids in single crystals,

which is applicable in the range of low to moderate

strain rates. The feasibility of void nucleation and

growth by the vacancy diffusion mechanism is examined

hereby taking into account the temperature rise due to

shock compression. This temperature rise is in the range

of several hundreds of degrees, depending on the peak

shock pressure (Fig. 5(a)). The dominating diffusion
mechanism is the pipe diffusion along the cores of dis-

locations (the lattice diffusion being negligible at these

temperatures). The diffusion coefficient at the absolute

temperature T and for a reference dislocation density q0
is Dðq0Þ ¼ D0 expð�Q=kT Þ, where k is the Boltzmann

constant, Q is the activation energy of the pipe diffusion
mechanism, and the pre-exponential factor D0 is the

experimentally determined or estimated coefficient. The

reference dislocation density q0 is the dislocation density

of an undeformed material, which is typically in the
range of 1010–1012 m�2. For copper, at this dislocation

density, the coefficient D0 is about 10�6 m2/s, while

Q ¼ 1:26 eV [42]. Since the passage of the shock dra-

matically increases the dislocation density, and thus

significantly enhances the pipe diffusion process, the

diffusion coefficient is scaled by the ratio of the dislo-

cation densities q=q0, such that DðqÞ ¼ ðq=q0ÞDðq0Þ.
For a laser energy density of 61 MJ/m2 and shock
pressure of 60 GPa, the residual temperature rise after

the passage of the shock wave is about 600 K, with a

corresponding dislocation density of about 1015 m�2

[39]. Consequently, the effective diffusion coefficient is

DðqÞ ¼ 3:57� 10�12 m2/s.

Following Cuiti~no and Ortiz [18], consider the va-

cancy diffusion process in the stage of steady state. For

void growth to take place, there must be a net flux of
vacancies into the void. By assuming a spherical void

shape, and isotropic diffusion coefficients, the vacancy



Fig. 4. TEM micrographs of laser-shocked monocrystalline copper: (a)

bright field image of a high dislocation density with dislocation cell

structure and (b) dark field image of an isolated void near the rear

surface of the specimen and associated work-hardened layer (white

rim).
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flux into the void causes an increase of the current void

radius R, which is governed by the differential equation

dR
dt

¼ 1

R
Dðc0 � csÞ: ð1Þ

The initial and the equilibrium vacancy concentrations

at the surface of the void are c0 and cs, respectively. In
the limiting case when the initial vacancy concentration

c0 is much larger than the equilibrium concentration at

the surface of the void (cs � c0), Eq. (1) can be inte-

grated explicitly to give

R
R0

¼ 1

�
þ 2Dc0

R2
0

t
�1=2

: ð2Þ

In the calculations, the size of an initial vacancy cluster
(void embryo) is taken to be R0 ¼ 0:6 nm, and the initial

void concentration c0 ¼ 105. The nucleation stage

(R ¼ 0–0.6 nm) is not addressed here. It should be

mentioned that shock compression generates vacancy

concentrations that are three to four times the ones

generated by low-strain rate plastic deformation to the

same strain [43–45]. Thus, vacancy complexes (di, tri,
tetravacancies, etc.) are present and can provide the

initiation sites. Fig. 5(b) shows the calculated void size,

assuming a Cuiti~no–Ortiz diffusion mechanism, as a

function of time. The calculations are conducted for

three temperatures: 400, 600, and 900 K. The pressure in
the back surface of the laser-driven experiments is ap-

proximately 5–10 GPa, providing a shock temperature

rise of 40 K (T ¼ 340 K). The temperature rise at the

impact surface is 600 K (T ¼ 900 K; P ¼ 60 GPa). The

temperature during the release portion is the residual

temperature, much lower than the shock temperature.

Thus, the shock temperature is a highly conservative

estimate. A plot of the void size vs. time, shown in
Fig. 5(b) and corresponding to Eq. (2), indicates that

voids are unable to nucleate and grow by diffusion in the

times created by lasers. For 900 K, the time required to

grow a void to 30 nm is 10�3 s. At 600 K, it is 10 s. At

400 K they are not able to grow by diffusion at all. The

critical void size beyond which the void is considered to

be sufficiently large to grow by conventional macro-

scopic plasticity was defined to be of the order of an
average dislocation spacing (q�1=2), which is about 30

nm. Since available time in the shock loading of copper

was of the order of tens of nanoseconds, the diffusion

mechanism of void growth cannot take place. It is

concluded that the considered pipe diffusion mechanism

cannot operate at these extreme high strain rates.

This implies that an alternative mechanism of void

growth must operate during the high strain-rate tension
following laser-induced shock loading. This motivated

our analysis presented in subsequent sections, in which a

mechanism of void growth by the emission of disloca-

tions from the surface of the void is proposed.
4. Void formation by dislocation emission

If vacancies cannot account for the growth of

voids, dislocations need to be involved. Void growth is

indeed a non-homogeneous plastic deformation pro-

cess. The plastic strains decrease with increasing dis-

tance from the void center. The far-field strains are

purely elastic, whereas plastic deformation occurs in

the regions adjoining the surface of the void. Ashby

[46] developed a formalism for the treatment of a non-
homogeneous plastic deformation by introducing the

concept of the generation of geometrically necessary

dislocations. Two different mechanisms were envisaged

by Ashby [46], based on prismatic or shear loop

arrays.

The void growth situation is quite different from the

rigid-particle model used by Ashby [46]. Nevertheless, it

is still possible to postulate arrays of line defects to ac-
count for the non-homogeneous plastic deformation. Of

critical importance is the fact that the shear stresses at

45� to the void surface are maximum, since the normal



(a)

(b)

Fig. 5. (a) Temperature rise in copper due to laser-induced shock at different levels of pressure. Dashed curve represents shock temperature; solid

curve is the residual temperature rise after the passage of the shock pulse. (b) Predicted void size as a function of time according to Eq. (2). The two

curves correspond to two indicated temperature levels. The critical void size of about 30 nm is calculated from an average dislocation spacing

corresponding to dislocation density in shock compression (1015 m�2).
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stresses rr are zero at the surface of the void. These

shear stresses decay to zero at large distances due to the

assumption of a far-field hydrostatic stress state. Thus,
the shear stresses are highest at the internal surface,

obviating dislocation nucleation there. The mechanisms

of void growth by the emission of prismatic or shear

loops will be considered here.

The mechanism of plastic deformation by prismatic

loop emission is depicted in Fig. 6(a). A prismatic dis-

location loop of radius R=
ffiffiffi
2

p
is punched out from a

spherical void of radius R. This carries away a spherical
sector causing an increase of the void�s volume by an

amount equal to pR2b=2. The shear loop mechanism

involves the emission of dislocations along the slip

plane, and is shown in Fig. 6(b). As in the case of the

prismatic loops, these loops form preferentially at a
plane intersecting the void along a 45� orientation to the

radius. This ensures a 45� between the slip plane and the

void surface, maximizing the driving force on the dis-
location. The difference between this and the Ashby [46]

loops is that the two opposite loops have dislocations of

the same sign. Fig. 7(a) shows a top view of the calota

(intersection of void with slip planes); four loop families

are shown to illustrate the three-dimensional nature of

the process. The center parts of the loops have edge

character, while the regions close to the void surface

have screw character. Cross-slip is expected to eventu-
ally occur and is schematically illustrated in Fig. 7(b).

The activation of two cross-slip planes is shown.

In the two-dimensional case, four pairs of edge dis-

locations emitted from the surface of a cylindrical void

under remote uniform tension give rise to an increase of
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Fig. 6. (a) A prismatic dislocation loop of radius R=
ffiffiffi
2

p
punched out

from a spherical void of radius R. The loop carries away the spherical

sector (calota) causing an increase of the void�s volume by an amount

equal to pR2b=2. (b) Three-dimensional illustration of the emission of

two pairs of dislocation shear loops from the void surface along the

indicated slip planes.

S
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Fig. 7. Shear loop emission from void surface: (a) Top view of slip

plane showing emission and propagation of several loops along four

perpendicular directions; (b) Cross-slip of screw components of dis-

locations onto planes S2 and S3.

R

90˚

Fig. 8. Two-dimensional representation of four pairs of edge disloca-

tions emitted from the surface of a cylindrical void giving rise to an

increase of the average void radius by an amount approximately equal

to the dislocation Burgers vector.
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the average void size by an amount approximately equal
to the magnitude of the dislocation Burgers vector

(Fig. 8). Other arrangements, involving more that four

pairs of dislocations, can also be envisioned as giving

rise to the expansion of the void [47]. After the void has

grown a finite amount, the network of sequentially

emitted dislocations may appear as depicted in Fig. 9. In

an analytical treatment of the void growth by disloca-

tion emission, we consider the emission of a single dis-
location and a single dislocation pair (prismatic or shear

loop) from the surface of a cylindrical void under far-

field biaxial tension. The critical stress required for the

emission of both prismatic and shear loop is calculated

as a function of the material properties and the initial

size of the void. The analysis is based on the criterion

adopted from a related study of the crack blunting by

dislocation emission [48]. It is shown that the critical
stress for the dislocation emission decreases with an

increasing void size, so that less stress is required to emit

dislocations from larger than smaller voids. At constant

remote stress, this implies an accelerated void growth by

continuing expulsion of prismatic and/or shear disloca-

tion loops.



(a) (b)

Fig. 9. After the void has grown a finite amount, the network of se-

quentially emitted dislocations may look as depicted in (a) for pris-

matic loops and (b) for shear loops.
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5. Edge dislocation near a cylindrical void

The two-dimensional problem will be solved analyt-

ically. Consider an edge dislocation near a cylindrical

void of radius R in an infinitely extended isotropic elastic

body. The dislocation is at the distance d from the stress

free surface of the void, along the slip plane parallel to

the x-axis, as shown in Fig. 10(a). The stress and de-

formation fields for this problem have been derived by

Dundurs and Mura [49]. The interaction energy between
the dislocation and the void is

Eint ¼ � Gb2

4pð1� mÞ
x2

ðx2 þ y2Þ2

"
þ ln

x2 þ y2

x2 þ y2 � R2

#
;

y ¼ Rffiffiffi
2

p ; ð3Þ

where b is the magnitude of the Burgers vector of the

dislocation, G is the elastic shear modulus, and m is

Poisson�s ratio of the material. The dislocation is at-

tracted by the surface of the void with the force
Fig. 10. (a) The edge dislocation at the distance d from the stress free surfac

parallel x-axis. The radius of the void is R, and a non-dimensional variable n ¼
Fint. (b) The stress state at the point of the dislocation due to remote unifo

denoted by s.
Fint ¼ � oEint

ox

¼ Gb
pð1� mÞ

b
R

nðn4 þ 1=4Þ
ðn2 þ 1=2Þ2ðn4 � 1=4Þ

; n ¼ x
R
: ð4Þ

Suppose that a remote biaxial tension r is applied far

from the void. Assuming the plane strain conditions, the

radial, and circumferential stress components around
the void are (e.g. [50])

rr ¼ r 1

�
� R2

r2

�
; rh ¼ r 1

�
þ R2

r2

�
: ð5Þ

The corresponding shear stress along the considered slip

plane (Fig. 10(b)) is

s ¼
ffiffiffi
2

p
r

n

ðn2 þ 1=2Þ2
: ð6Þ

The total force on the dislocation (in the positive x-di-
rection), due to the applied stress and the interaction

with the void, is

FxðnÞ ¼
ffiffiffi
2

p
rb

n

ðn2 þ 1=2Þ2

� Gb
pð1� mÞ

b
R

nðn4 þ 1=4Þ
ðn2 þ 1=2Þ2ðn4 � 1=4Þ

: ð7Þ

The normalized force FxðnÞ=Gb vs. the normalized dis-

tance d=b plot, where d ¼ x� R=
ffiffiffi
2

p
, is shown in Fig. 11,

in the case when R ¼ 10b, r ¼ 0:07G, and m ¼ 1=3. The
plot reveals an unstable equilibrium position of dislo-

cation at d � 2:11b and the mildly pronounced maxi-

mum force Fmax � 0:012Gb at d � 4:55b. For d smaller

than 2:11b, the dislocation is attracted to the void. In the

limit d=b ! 1 the dislocation force vanishes since

the dislocation is far from the void, which finds itself in

the field of uniform biaxial tension r.
e of the void. The dislocation slip plane is at distance R=
ffiffiffi
2

p
from the

x=R. The dislocation is attracted to the surface of the void by the force

rm tension r. The shear stress along the slip plane toward the void is



Fig. 11. The normalized dislocation force Fx=Gb vs. the normalized

distance from the void d=b, according to Eq. (7), in the case when

R ¼ 10b, r ¼ 0:07G, and m ¼ 1=3. The dislocation is in an unstable

equilibrium position at d � 2:11b.

Fig. 12. The normalized critical stress rcr=G required to emit a dislo-

cation from the surface of the void vs. the normalized radius of the

void R=b, according to Eq. (13) with m ¼ 1=3. The three curves cor-

respond to three different sizes of dislocation width: the upper-most

curve is for q ¼ 1, the lower-most curve is for q ¼ 2, and the middle

curve is for q ¼ 1:5.
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6. An analysis of dislocation emission

In the equilibrium dislocation position, the attraction

from the void is balanced by the applied stress, so that
the force FxðnÞ in Eq. (7) vanishes, i.e.,

ffiffiffi
2

p
r

n

ðn2 þ 1=2Þ2
¼ G

pð1� mÞ
b
R

nðn4 þ 1=4Þ
ðn2 þ 1=2Þ2ðn4 � 1=4Þ

:

ð8Þ
This gives

n4 ¼ 1

4

ffiffiffi
2

p
pð1� mÞðr=GÞðR=bÞ þ 1ffiffiffi

2
p

pð1� mÞðr=GÞðR=bÞ � 1
: ð9Þ

Since

n ¼
ffiffiffi
2

p

2
þ d
R
; ð10Þ

the equilibrium dislocation position is given by

dcr ¼
Rffiffiffi
2

p
ffiffiffi
2

p
pð1� mÞðr=GÞðR=bÞ þ 1ffiffiffi

2
p

pð1� mÞðr=GÞðR=bÞ � 1

" #1=4
8<
: � 1

9=
;:

ð11Þ
Adopting the criterion used by Rice and Thomson [48]

for the spontaneous emission of dislocation from the

crack tip, we propose that the dislocation will likely be

emitted from the surface of the void if the equilibrium
distance dcr is less than the dislocation width (core cut-

off) w ¼ qb. Otherwise, there would be an energy barrier

for a dislocation to overcome in order to arrive at the

distance from the void greater than w. In the case of

crack there is a large stress near the crack tip due to

stress concentration, whereas in the case of the void

under shock loading, the reflected shock pulse is of the

order of G=10 (�5 GPa, Section 2), which may be suf-
ficient to drive the dislocation out of the surface of the
void. Thus, the condition for dislocation emission

dcr 6w gives

Rffiffiffi
2

p
b

ffiffiffi
2

p
pð1� mÞðr=GÞðR=bÞ þ 1ffiffiffi

2
p

pð1� mÞðr=GÞðR=bÞ � 1

" #1=4
8<
: � 1

9=
;6q:

ð12Þ
If the radius of the void is given, this specifies the stress

required to emit the dislocation

rcr

G
P

b=Rffiffiffi
2

p
pð1� mÞ

ð1þ
ffiffiffi
2

p
qb=RÞ4 þ 1

ð1þ
ffiffiffi
2

p
qb=RÞ4 � 1

: ð13Þ

The plot of rcr=G vs. R=b is shown in Fig. 12 for three

selected values of the material parameter q (¼ 1, 1.5,

and 2). The results are meaningful for sufficiently large

sizes of voids, typically R > 3qb (R greater than 3b to

6b). The critical stress required for dislocation emission
decreases with both q and R=b. The smaller the dislo-

cation width, the higher the applied stress must be to

keep the dislocation in equilibrium near the void. It is

noted that the force on the dislocation at a given equi-

librium distance from the void due to a remote stress

increases more rapidly with the ratio R=b than does the

force due to attraction from the void surface. This is

why the critical stress for dislocation emission decreases
with increasing the R=b ratio (i.e., the stress required to

emit dislocation from a larger void is lower than from a

smaller void). The limiting value of rcr for large voids

ðb=R ! 0Þ is

lim
b=R!0

rcr

G
¼ 1

4pð1� mÞ
1

q
: ð14Þ

This also shows that the critical stress decreases with

increasing dislocation width.
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The effect of the ledge left at the surface of the void

behind the dislocation can also be included in the analysis.

When the dislocation is far from the void, the ledge is fully

formedwith awidth equal to themagnitudeof theBurgers

vector b. The corresponding increase of the energy is cb,
where c is the surface energy.When the dislocation is near

the surface of the void, the ledge is only partially formed

due to nearby dislocation core effects. Adopting the

Peierls model of the dislocation, as in [48], when the dis-

location is at the distance d from the surface of the void,

the width of the ledge left behind the dislocation is

2b
p

tan�1 2d
e3=2w

: ð15Þ

The core cut-off of the dislocation is w ¼ qb and e is the
Naperian logarithm base. Thus, the energy increase due

to the creation of the ledge is

Eledge ¼
2cb
p

tan�1 2d
e3=2w

: ð16Þ

The corresponding ledge force is

Fledge ¼ � oEledge

od
¼ � 2c

p
a

a2 þ ðd=bÞ2
; a ¼ 1

2
e3=2q

ð17Þ
The total force on the dislocation is the sum of Eqs. (7)

and (17). Numerical evaluations reveal that including the

ledge force increases the critical stress for void growth.

This increase is expected since the ledge increases the

total energy of the system, creating an energy barrier for

dislocation emission. For example, if R=b ¼ 10 and
q ¼ 2, the ledge force increases the critical stress rcr from

0:073G to 0:104G. The performed calculations are for

copper with G ¼ 40 GPa and a Burgers vector for {1 1 1}

h1 1 0i dislocation of magnitude b ¼ 2:55 �A. The value

c ¼ 1:98 J/m2 for the surface energy of copper at T ¼ 525

�C was used. This value was obtained from the linear

extrapolation cðT Þ ¼ cðT0Þþ gðT � T0Þ and the data re-

ported by Murr [51]: T0 ¼ 925 �C, cðT0Þ ¼ 1:78 J/m2, and
g ¼ �0:0005 J/m2 �C. Numerical evaluations also reveal

that the ledge effect on the critical stress is less pro-

nounced for dislocations with a smaller dislocation

width. For example, if q ¼ 1:5 is used in the above cal-

culations, the ledge force increases the critical stress from

0:092G to 0:129G. The ledge effect is more pronounced

for smaller voids, because they exert weaker image forces

by virtue of their smaller free surfaces.
More involved dislocation models, such as used by

Rice [52] and Rice and Beltz [53] to study the crack

blunting by dislocation emission, or by Xu and Argon

[54] in their study of the homogeneous nucleation of

dislocation loops in perfect crystals, may be needed to

further improve the analysis of the void growth by dis-

location emission. Experimental data in the literature

(e.g. [55]) indicate that the spall strength of high purity
Cu single crystals is about 5 GPa. The spall strength of a

polycrystalline Cu is about half that value, because of

grain boundaries and intercrystalline defects which pro-

mote void growth. Zurek and Meyers [56] and Meyers

[57] discuss the effects of polycrystallinity and grain size
on void growth during spall experiments and reconcile

the contradictory results. The higher spall strength ob-

served for monocrystalline copper is due to different

nucleation sites. In polycrystals, there is segregation of

impurities at the grain boundaries, providing favorable

initiation sites. In monocrystals, these sites are absent

and initiation has to occur from vacancy complexes.
7. Dislocation interaction effects

The calculation of the critical stress for void growth

by dislocation emission is affected by the dislocation

interaction. To elaborate, consider a pair of positive

and negative dislocations shown in Fig. 13. An average

increase of the void volume (per unit length in the
z-direction) is equal to

ffiffiffi
2

p
Rb. The dislocation force (di-

rected toward the void) on the upper (negative) dislo-

cation due to the lower (positive) dislocation is F d ¼ bsd,
where sd is the shear stress at the location of the negative

dislocation exerted by the positive dislocation

(Fig. 14(a)). This is

sd ¼ 1
2
rd
u

�
� rd

v

�
sin 2u� rd

uv cos 2u: ð18Þ
The stress components rd

u , r
d
v , and rd

uv can be determined

from the Airy stress functions listed in Appendix A

by using the following geometric specifications (see
Fig. 14(b)):

r ¼ fR; r1 ¼
ffiffiffi
2

p
R; r2 ¼ f2

�
þ 1

f2
� 2 cos h

�1=2

R;

ð19Þ
and

h ¼ 2u; h1 ¼ uþ p
2
; sin h2 ¼

r1
r2

cosu: ð20Þ

The angle u is defined in terms of the non-dimensional

parameter n ¼ x=R by

cosu ¼ n
f
; f ¼ n2

�
þ 1

2

�1=2

: ð21Þ

The ðu; vÞ coordinates of the point B are

u ¼ r cos h ¼ f2 � 1=2

f2 þ 1=2
R; u1 ¼ u� fR; u2 ¼ u� R

f
;

ð22Þ
and

v ¼ v1 ¼ v2 ¼ r sin h ¼
ffiffiffi
2

p
f2

f2 þ 1=2
R: ð23Þ



Fig. 13. A pair of opposite edge dislocations emitted from the surface

of the void along two parallel slip planes cause the expansion of the

segment of the void surface by the slip b (magnitude of the dislocation

Burgers vector).

Fig. 15. The normalized dislocation force Fx=Gb vs. the normalized

distance from the void d=b with the included dislocation interaction

effects – lower curve, according to Eq. (24); and without dislocation

interaction – upper curve, according to Eq. (7). The calculations are for

R ¼ 10b, r ¼ 0:07G, and m ¼ 1=3. The dislocation is in an unstable

equilibrium position at d � 2:615b. There is also a stable equilibrium

position at d � 12:185b.
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The components of the Burgers vector of the dislocation

at A are bu ¼ b cosu and bv ¼ b sinu. The total force on
the dislocation at B, due to the applied stress r and the
interaction with the surface of the void and the dislo-

cation at A, is obtained by the superposition as

FxðnÞ ¼
ffiffiffi
2

p
rb

n

ðn2 þ 1=2Þ2
� Gb
pð1� mÞ

b
R

� nðn4 þ 1=4Þ
ðn2 þ 1=2Þ2ðn4 � 1=4Þ

þ bsdðnÞ: ð24Þ

The plot of the normalized force Fx=Gb vs. the normalized

distance of the dislocation from the surface of the void
d=b is shown by the lower curve in Fig. 15, for the case

when R ¼ 10b, r ¼ 0:07G and m ¼ 1=3. The plot reveals

an unstable equilibrium position of dislocation at

d � 2:62b, and a mildly pronounced maximum force

Fmax � 0:00838Gb at d � 4:97b. There is also a stable

equilibrium position at d � 12:19b. The upper curve in

Fig. 15 shows the results obtained without incorporation

of the dislocation interaction effects (same as in Fig. 11,
Fig. 14. (a) The shear stress sd along the horizontal slip plane at the point B a

the point A. (b) The geometric quantities appearing in the expressions for the

The lengths OA ¼ OB ¼ r ¼ fR, OC ¼ R=f, AB ¼ r1, and CB ¼ r2. The angle
with the equilibrium dislocation position at d � 2:11b,
and the maximum force Fmax � 0:012Gb at d � 4:55b).
The difference can be explained by observing that the

shear stress sd atB, shown in Fig. 14(a), due to dislocation
at A is negative and directed away from the void. The

corresponding contribution to the force on the (negative)

dislocation at B is then directed toward the void. Con-

sequently, the dislocation pair is in equilibrium at a larger

distance from the surface of the void than is a single

dislocation. Alternatively, this is a consequence of the
fact that the dislocation pair is more strongly attracted to

the surface of the void than a single dislocation.

In the equilibrium position, the dislocation force

vanishes FxðnÞ ¼ 0. With FxðnÞ defined by Eq. (24), and

for given r and R, this represents a highly nonlinear

polynomial equation for n, which can be solved only

numerically. Denoting the so determined value of n by
ssociated with the stress field rdu , r
d
v , and rduv of the edge dislocation at

stress components at the point B due to edge dislocation at the point A.
u ¼ h=2.
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ncr, the corresponding unstable equilibrium dislocation

position is

dcr ¼ ncr

�
� 1ffiffiffi

2
p

�
R: ð25Þ

On the other hand, if we want to find the critical stress

rcr for the emission of the dislocation pair from the

surface of the void (Fig. 13), we require that dcr is equal
(or less) than the dislocation width w ¼ qb, i.e., dcr ¼ qb.
Combining this with Eq. (25) gives

ncr ¼
1ffiffiffi
2

p þ q
b
R
: ð26Þ

The substitution into Eq. (24), in conjunction with

FxðnÞ ¼ 0, delivers the critical stress

rcr ¼
Gffiffiffi

2
p

pð1� mÞ
b
R
n4cr þ 1=4

n4cr � 1=4
� ðn2cr þ 1=2Þ2ffiffiffi

2
p

ncr
sdðncrÞ:

ð27Þ

The plot of rcr=G vs. R=b is shown in Fig. 16 for the case

when the parameter q ¼ 1 (upper curve). The lower

curve shows the previously calculated results from
Fig. 12 for the emission of a single dislocation. Clearly,

regardless of the size of the void, higher stress is needed

to emit a dislocation pair than to emit a single disloca-

tion. For example, for R=b ¼ 10, the ratio rcr=G is equal

to 0.14 in the first case, and to 0.13 in the second case.

By incorporating the ledge effect (discussed at length in

Section 6), the critical stress for the emission of dislo-

cations increases. For example, if R=b ¼ 10 and q ¼ 2,
the critical stress is rcr ¼ 0:114G, as compared to 0:083G
without the ledge effect.
Fig. 16. The normalized critical stress rcr=G required to emit the dis-

location from the surface of the void vs. the normalized radius of the

void R=b. The upper curve corresponds to emission of the dislocation

pair, according to Eq. (27); the lower curve is for the single dislocation,

according to Eq. (13). The calculations are for q ¼ 1 and m ¼ 1=3.
8. Conclusions

Experiments providing extreme conditions of high

tensile stress (�5 GPa) and low durations (�10 ns) were

conducted using high-power lasers as the energy deposi-
tion source. These experiments yielded voids with diam-

eters up to 10 lm (a radial expansion velocity of

approximately 103 m/s). It is shown that vacancy diffu-

sion cannot account for growth at these strain rates. A

combined mechanics-materials approach to void growth

under dynamic loading conditions, in which the process

of dislocation emission prevails over the diffusion or

creep mechanism of the void growth, is of great signifi-
cance for better understanding of the dynamic strength of

materials and the formulation of the corresponding fail-

ure criteria. Toward this goal, we developed in this paper

an analysis of the void growth by dislocation emission. A

criterion for the emission of dislocation from the surface

of the void is formulated, which is analogous to Rice and

Thomson�s criterion [48] for crack blunting by disloca-

tion emission from the crack tip. A two-dimensional
model is considered with emission of edge dislocations

from the surface of a cylindrical void. The critical stress

required to emit a single dislocation and a dislocation

pair under remote biaxial tension is calculated. It is

shown that the critical stress for dislocation emission

decreases with an increasing void size, so that less stress is

required to emit dislocations from larger than smaller

voids. At a constant remote stress, this implies an accel-
erated void growth by continuing expulsion of prismatic

or shear dislocation loops. It is also found that disloca-

tions with a wider dislocation core are more easily emit-

ted than dislocations with a narrow dislocation core.
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Appendix A. Stresses due to edge dislocation near a void

The stress components at the point B due to edge

dislocation with the Burgers vector b ¼ fbu; bvg at the

point A near the circular void of radius R (Fig. 14) can

be calculated from the results derived by Dundurs and

Mura [49] and Dundurs [58]. The Airy stress functions

for the two dislocation components are:
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vbu ¼� Gbu
2pð1�mÞ r1 lnr1 sinh1

"
� r2 lnr2 sinh2þ r lnr sinh

þ f2�1

2f3
Rsin2h2�

ðf2�1Þ2

f4
R2

2r2
sinh2þ

R2

2r
sinh

#
;

ðA:1Þ

vbv ¼ Gbv
2pð1� mÞ r1 ln r1 cosh1

"
� r2 ln r2 cos h2 þ r ln r cos h

� f2 � 1

f
R ln rþ f2 � 1

f
R ln r2 �

f2 � 1

2f3
R cos 2h2

þ ðf2 � 1Þ2

f4
R
2r2

cosh2 þ
R2

2r
cos h

#
: ðA:2Þ

The shear modulus and Poisson�s ratio of the material

are G and m, and a non-dimensional parameter

f ¼ OA=R defines the position of dislocation relative to

the void. The stresses are derived from the stress func-

tion v ¼ vbu þ vbv as

ru ¼
o2v
ov2

; rv ¼
o2v
ou2

; ruv ¼ � o2v
ouov

: ðA:3Þ

The resulting expressions are incorporated in the com-

puter program for calculating the critical stress for dis-

location pair emission used in Section 7.
References

[1] Meyers MA, Aimone CT. Progr Mater Sci 1983;28:1.

[2] Meyers MA, Murr LE, editors. Metallurgical effects of shock

waves and high-strain-rate phenomena in metals. New York:

Plenum; 1981.

[3] Worswick MJ, Pick RJ. Mech Mater 1995;19:293.

[4] McClintock FA. J Appl Mech 1968;35:363.

[5] Rice JR, Tracey DM. J Mech Phys Solids 1969;17:201.

[6] Needleman A. J Appl Mech 1972;39:964.

[7] Hellan K. Int J Mech Sci 1975;17:369.

[8] Gurson AL. J Engng Mater Technol 1977;99:2.

[9] Goods SH, Brown LM. Acta Metall 1979;27:1.

[10] Budiansky B, Hutchinson JW, Slutsky S. In: Hopkins HG, Sewell

MJ, editors. Mechanics of solids: the Rodney Hill 60th anniver-

sary volume. Oxford: Pergamon Press; 1982. p. 13–45.

[11] Nemat-Nasser S, Hori M. J Appl Phys 1987;62:2746.

[12] Chung D-T, Horgan CO, Abeyaratne R. Int J Solids Struct

1987;23:983.

[13] Koplik J, Needleman A. Int J Solids Struct 1988;24:835.

[14] Kameda J. Acta Metall 1989;37:2067.

[15] Tvergaard V. Adv Appl Mech 1990;27:83.

[16] Huang Y, Hutchinson JW, Tvergaard V. J Mech Phys Solids

1991;39:223.

[17] Needleman A, Tvergaard V, Hutchinson JW. In: Argon AS,

editor. Fracture and fatigue. New York: Springer-Verlag; 1992. p.

145–78.

[18] Cuiti~no AM, Ortiz M. Acta Mater 1996;44:427.

[19] Plekhanov PS, G€osele UM, Tan TY. J Appl Phys 1998;84:718.

[20] Pardoen T, Hutchinson JW. J Mech Phys Solids 2000;48:2467.

[21] Kassner ME, Hayes TA. Int J Plasticity 2003;19:1715.
[22] Hopkins HG. In: Sneddon IN, Hill R, editors. Progress in

solid mechanics, vol. 1. Groningen: North-Holland; 1960.

p. 81–164.

[23] Carroll MM, Holt AC. J Appl Phys 1972;43:1626.

[24] Johnson JN. J Appl Phys 1981;52:2812.

[25] Cort�es R. Int J Solids Struct 1992;29:1637.

[26] Ortiz M, Molinari A. J Appl Mech 1992;59:48.

[27] Benson DJ. J Mech Phys Solids 1993;41:1285.

[28] Wang ZP. Int J Solids Struct 1994;31:2139.

[29] Wu XY, Ramesh KT, Wright TW. J Mech Phys Solids 2003;

51:1.

[30] Williams ML, Schapery RA. Int J Fract Mech 1965;1:64.

[31] Ball JM. Philos Trans R Soc Lond 1982;A306:557.

[32] Stuart CA. Ann Inst Henri Poincar�e-Analyse non lin�eaire 1985;2:
33.

[33] Horgan CO. Int J Solids Struct 1992;29:279.

[34] Polignone DA, Horgan CO. Int J Solids Struct 1993;30:3381.

[35] Horgan CO. Polignone DA. Appl Mech Rev 1996;48:471.

[36] Stevens L, Davison L, Warren WE. J Appl Phys 1972;42:

4922.

[37] Belak J. In: Schmidt SC, Dandekar DP, Forbes JW, editors.

Shock Compression of Condensed Matter – 1997, AIP Conference

Proceedings, vol. 429. Woodbury: American Institute of Physics

Press; 1998. p. 211.

[38] Rudd RE, Belak JF. Comp Mater Sci 2002;24:148.

[39] Meyers MA, Gregori F, Kad BK, Schneider MS, Kalantar DH,

Remington BA, Ravichandran R, Boehly T, Wark JS. Acta Mater

2003;51:1211.

[40] Kalantar DH, Belak J, Bringa E, Budil K, Caturla M, Colvin J,

et al. J Plasma Phys 2003;10:1569.

[41] Christy S, Pak HR, Meyers MA. In: Meyers MA, Murr LE,

Staudhammer KP, editors. Shock-wave and high-strain-rate

phenomena in materials. New York; 1986 p. 835–63.

[42] Balluffi RW, Granato AV. In: Nabarro FRN, editor. Disloca-

tions in solids, vol. 4. New York: North-Holland; 1979.

p. 26–7.

[43] Kressel H, Brown N. J Appl Phys 1967;38:138.

[44] Meyers MA. In: Dynamic behavior of materials. New York:

Wiley; 1994. p. 415–20.

[45] Takamura J-I. In: Cahn RW, editor. Physical metallurgy.

Amsterdam: North-Holland; 1970. p. 857–920.

[46] Ashby MF. Philos Mag 1970;21:399.

[47] Hahn GT, FlanaganWF. In: Ashby MF, Bullough R, Hartley CS,

Hirth JP, editors. Dislocation modelling of physical systems.

Oxford: Pergamon Press; 1980. p. 1–17.

[48] Rice JR, Thomson R. Philos Mag A 1974;29:73.

[49] Dundurs J, Mura T. J Mech Phys Solids 1964;12:177.

[50] Timoshenko S, Goodier JN. Theory of elasticity. New York:

McGraw-Hill; 1970. p. 70.

[51] Murr LE. In: Interfacial phenomena in metals and alloys.

Reading, MA: Addison-Wesley; 1975. p. 124.

[52] Rice JR. J Mech Phys Solids 1992;40:239.

[53] Rice JR, Beltz GE. J Mech Phys Solids 1994;42:333.

[54] Xu G, Argon AS. Philos Mag Lett 2000;80:605.

[55] Minich RW, Kumar M, Cazamia J, Schwartz AJ. Dynamic

Deformation: Constitutive Modeling, Grain Size, and Other

Effects. 2003 TMS Annual Meeting, San Diego; 2003.

[56] Meyers MA, Zurek AK. In: Davison L, Grady DE, Shahinpoor

M, editors. High pressure shock compression of solids II. New

York: Springer; 1996. p. 25–70.

[57] Meyers MA. In: Meyers MA, Armstrong RW, Kirchner HOK,

editors. Mechanics and materials: fundamentals and linkages.

Amsterdam: Elsevier; 1999. p. 489–594.

[58] Dundurs J. In: Mura T, editor. Mathematical theory of disloca-

tions. New York: ASME; 1969. p. 70–115.


	Void growth by dislocation emission
	Introduction
	Void formation in laser-driven shock experiments
	Void growth by vacancy diffusion
	Void formation by dislocation emission
	Edge dislocation near a cylindrical void
	An analysis of dislocation emission
	Dislocation interaction effects
	Conclusions
	Acknowledgements
	Stresses due to edge dislocation near a void
	References


