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A closed form expression for the torsion constant of thin-walled multicell profiles is derived based on a

simple algorithm to generate the coefficient matrix of the system of linear algebraic equations for the

shear flows. New explicit results are given for the three-cell profiles with either two or three internal

walls, and for the two-cell profiles. They are applied to derive the optimal location of the internal walls

which maximizes the torsion constant of triangular, rectangular, elliptical and deltoidal thin-walled

profiles. The condition is also derived for the inner wall to carry a prescribed portion of the shear flow in

a two-cell profile, with the application to thin-walled trapezoidal and rectangular profiles.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The determination of the shear stresses and the angle of twist
due to unconstrained torsion of a thin-walled prismatic rod with a
multicell profile is a classical problem of structural mechanics
[1–4]. Its solution is based on the well-known Bredt’s formulas

2GyAi ¼

I
Ci

f ðsÞ

dðsÞ
ds ði ¼ 1;2; . . . ;nÞ, (1)

T ¼ 2
Xn

i¼1

f iAi, (2)

in which y is the angle of twist (per unit length) due to applied
torque T, the shear modulus of the material is G, the shear flow
along an external wall of the i-th cell is f i, the area within the
midline Ci of the i-th cell is Ai, and the wall thickness at an
arbitrary position along the arc length s of the cell is dðsÞ. The total
number of cells is n. The counterclockwise torque and twist are
considered to be positive. The shear flow is defined in terms of the
shear stress tðsÞ by f ðsÞ ¼ tðsÞdðsÞ, which is constant in between
any two wall junctions. The sum of all shear flows toward any
junction is equal to zero (by longitudinal equilibrium of the
junction). Eqs. (1) and (2) constitute a set of nþ 1 coupled
equations for n shear flows f i and the angle of twist y, which have

to be solved simultaneously. This is commonly done numerically,
for each considered multicell profile. In doing so, the torsion
constant is never calculated, although its numerical value can be
extracted a posteriori, after the angle of twist is calculated, as
J ¼ T=Gy.

The purpose of this paper is to derive directly an explicit
expression for the torsion constant solely in terms of the
geometrical properties of the multicell profile, which can then
be used to calculate the angle of twist as y ¼ T=GJ. Such procedure
is a common practice in the study of torsion of prismatic bars with
solid, thin-walled open, and single cell closed sections, for which
the table listings of the corresponding expressions for J are
routinely given. It is therefore desirable to do the same for the
multicell sections. Having explicit expressions for the torsion
constant of multicell profiles is important for the study of the
torsion of prismatic bars with combined open-multicell closed
sections (multicells with attached fins), for which the torsion
constant of the entire profile is the sum of the multicell and fins
contributions. Furthermore, having explicit expressions for the
torsion constant enables an analytical study of the optimal
arrangement of internal walls (spars) which maximizes the
torsional stiffness of the structure. This is demonstrated in this
paper by applying the derived expressions for the torsion constant
of the two- and three-cell profiles to triangular, rectangular,
elliptical and deltoidal thin-walled profiles. The conditions are
also established for the inner wall to carry a prescribed portion of
the shear flow, or no shear flow at all, with the application to two-
cell trapezoidal and rectangular profiles.
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2. Torsion constant of a multicell profile

The direct application of Eq. (1), in the form as it stands, while
conceptually simple and straightforward [5–9], becomes awkward
for profiles with many cells, because it requires a tedious
integration of the shear stress tðsÞ ¼ f ðsÞ=dðsÞ along all cells, with
a careful identification of the shear flow and its direction in all
internal walls of the cells. A simple algorithm to generate the
system of equations for the shear flows f i is based on the direct
generation of the system matrix. This is accomplished by
observing that the contour integrals (1) can be expressed asI

Ci

f ðsÞ

dðsÞ
ds ¼ Iiif i þ

X
j2Ni

Iijf j, (3)

where

Iii ¼

I
Ci

ds

dðsÞ
; Iij ¼ �

Z
Ci;j

ds

dðsÞ
(4)

are the nondimensional parameters referred to as the flexibility
coefficients [4]. In (3) and (4), Ci;j denotes the internal wall
segment between the i-th and j-th cell, and Ni is the union of all
neighboring cells sharing the wall with the i-th cell. For example,
for the profile in Fig. 1a, N4 ¼ f1;3;5g, while for the profile in Fig.
1b, N9 ¼ f1;2;4;6;7g.

1 Therefore, the system of linear algebraic
equations for the n shear flows is

Xj2Ni

j¼i

Iijf j ¼ 2GyAi ði ¼ 1;2; . . . ;nÞ. (5)

The solution of this system is

f i ¼ 2Gy
Di

D
ði ¼ 1;2; . . . ;nÞ, (6)

where D ¼ detðIijÞ is the determinant, and 2GyDi is the i-th
cofactor of the system matrix ðIijÞ, corresponding to f i. When (6) is
substituted into (2), the applied torque becomes

T ¼
4Gy

D

Xn

i¼1

AiDi. (7)

This establishes an expression for the torsion constant, defined
as J ¼ T=Gy, explicitly in terms of the geometrical properties of the
profile,

J ¼
4

D

Xn

i¼1

AiDi. (8)

The shear flows can be expressed, from (6) to (8), as

f i ¼
DiPn
1AiDi

T

2
ði ¼ 1;2; . . . ;nÞ. (9)

Evidently, f i ¼ f j if and only if Di ¼ Dj. Having determined f i, the
shear flows f ij in the inner walls follow from the equations
expressing the longitudinal equilibrium of each junction (Kirchh-
off law for the shear flows at the junction).

2.1. The structure of the system matrix

The structure of the system matrices corresponding to five-
and nine-cell profiles shown in Fig. 1 is

ðIijÞ ¼

I11 I12 I13 0 0

I21 I22 I23 I24 0

I31 I32 I33 0 I35

0 I42 0 I44 I45

0 0 I53 I54 I55

0
BBBBBB@

1
CCCCCCA

(10)

and

ðIijÞ ¼

I11 I12 0 0 0 0 0 I18 I19

I21 I22 I23 I24 0 0 0 0 I29

0 I32 I33 I34 0 0 0 0 0

0 I42 I43 I44 I45 I46 0 0 I49

0 0 0 I54 I55 I56 0 0 0

0 0 0 I64 I65 I66 I67 0 I69

0 0 0 0 0 I76 I77 I78 I79

I81 0 0 0 0 0 I87 I88 0

I91 I92 0 I94 0 I96 I97 0 I99

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

. (11)

If the profile consists of cells arranged one-by-one (next to each
other), the coefficient matrix is trigonal, because each cell
(compartment) is surrounded by two neighboring cells, except
the first and the last cell, which have only one neighboring cell
[2–4].

3. Torsion constant of a three-cell profile

In the case of a three-cell profile (Fig. 2a), the elements of the
system matrix,

ðIijÞ ¼

I11 I12 I13

I21 I22 I23

I31 I32 I33

0
B@

1
CA, (12)

ARTICLE IN PRESS

Fig. 1. (a) A five-cell profile with indicated shear flows in external walls of the cells. (b) A nine-cell profile with indicated shear flows in external walls of the cells. The shear

flow f 9 in the internal cell 9 is selected as shown in the figure.

1 If a cell is entirely an inside cell, with no external walls, such as the cell 9 in

Fig. 1b, the shear flow in any of its walls can be chosen as f 9. If the shear flow in the

wall between the cell p and q is chosen as f p , then Ipq ¼ 0. Thus, I89 ¼ 0 for the

profile with f 9 as chosen in Fig. 1b.
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are the nondimensional parameters

Iii ¼

I
Ci

ds

dðsÞ
ði ¼ 1;2;3Þ,

I12 ¼ �

Z a

0

ds

dðsÞ
; I23 ¼ �

Z b

0

ds

dðsÞ
; I31 ¼ �

Z c

0

ds

dðsÞ
. (13)

The determinant of the matrix is

D ¼ I11I22I33 � I11I2
23 � I22I2

31 � I33I2
12 þ 2I12I23I31. (14)

The cofactor parameters are

Di ¼ AiðIjjIkk � I2
jkÞ þ AjðIkiIkj � IkkIijÞ þ AkðIijIjk � IjjIkiÞ, (15)

where ði; j; kÞ is a set of integers ð1;2;3Þ, or its other two even
permutations, ð2;3;1Þ and ð3;1;2Þ. It readily follows that

X3

i¼1

AiDi ¼ A2
1ðI22I33 � I2

23Þ þ A2
2ðI33I11 � I2

31Þ þ A2
3ðI11I22 � I2

12Þ

þ 2A1A2ðI31I23 � I33I12Þ þ 2A2A3ðI12I31 � I11I23Þ

þ 2A3A1ðI12I23 � I22I31Þ.

If the cells 1 and 3 have no common wall (Fig. 2b), the previous
expressions simplify, because I13 ¼ I31 ¼ 0. For example, the
determinant (14) reduces to D ¼ I11I22I33 � I11I2

23 � I33I2
12. In this

case, if the internal walls are such that I12 ¼ I23 (e.g., same height
and thickness), the torsion constant becomes

J ¼ 4
A2

1I2I3 þ A2
2I3I1 þ A2

3I1I2 � ðA1 � A3Þ
2I2

0 � 2ðA1I3 þ A3I1ÞA2I0

I1I2I3 � ðI1 þ I3ÞI
2
0

.

(16)

For brevity, we used in this expression the notation I12 ¼ I23 ¼

I0 and Iii ¼ Ii. Furthermore, if the two outside cells are character-
ized by A1 ¼ A3 and I11 ¼ I33, the torsion constant (16) reduces to

J ¼ 4
2A2

1I22 þ A2
2I11 � 4A1A2I12

I11I22 � 2I2
12

. (17)

This expression applies, for example, to a three-cell profile
shown in Fig. 3a. It also applies to a wide range of structurally
important three-cell profiles, such as thin-walled elliptical and
deltoidal profiles. The expression (17), previously not reported in
the literature, greatly facilitates some aspects of the structural
optimization analysis, such as the determination of the location of
the internal spars which maximizes the torsion constant of a
three-cell profiles. This is discussed in Sections 3.2 and 3.3 of this
paper. The shear flows corresponding to (17) are

f 1 ¼
A1I22 � A2I12

2A2
1I22 þ A2

2I11 � 4A1A2I12

T

2
,

f 2 ¼
A2I11 � 2A1I12

2A2
1I22 þ A2

2I11 � 4A1A2I12

T

2
. (18)

If A1 ¼ A2 ¼ A3, but tad, (17) simplifies to

J ¼ 4A2
1

I11 þ 2I22 � 4I12

I11I22 � 2I2
12

. (19)

Finally, for a profile with uniform thickness and equal cells
(t ¼ d, I11 ¼ I22), shown in Fig. 3b, the torsion constant is

J ¼ 4A2
1

3I11 � 4I12

I2
11 � 2I2

12

. (20)

Since A1 ¼ ac, I11 ¼ 2ðaþ cÞ=d, and I12 ¼ �c=d, the above
becomes

J ¼ 4a2c2 ð3aþ 5cÞd
2a2 þ 4ac þ c2

. (21)

3.1. Thin-walled rectangular profile with two spars

For the symmetric three-cell profile shown in Fig. 4a, with the
thickness d of external walls and the thickness t of internal (spar)
walls, we have A1 ¼ ac, A2 ¼ bc, and

I11 ¼
2aþ c

d
þ

c

t
; I22 ¼

2ðh� 2aÞ

d
þ

2c

t
; I12 ¼ �

c

t
.

The substitution into (17) yields the following expression for the
torsion constant:

J ¼ 2h2cd
1þ ð1� 2a=hÞ½1� 2ða=hÞ þ 2aða=hÞ�t=d

1þ aþ að1þ 2aa=hÞð1� 2a=hÞt=d
, (22)

where a ¼ h=c. The plots of J vs. a=h, for several specified
thickness ratios t=d (0:5;1;2), are shown in Fig. 5a. For a given
h, the length a is in the range ðdþ tÞ=2paph� t, so that the ratio
a=h is bounded by

1

2
b 1þ

t

d

� �
p

a

h
p

1

2
1� b

t

d

� �
, (23)

where b ¼ d=h. The plots in Fig. 5a correspond to a ¼ 3 and b ¼ 1
30,

indicating that the torsion constant J is a decreasing function of
the ratio a=h. Thus, placing the spars toward the middle of the
cross section decreases the torsion constant. Physically, this is
because the nearby spars around the middle of the cross section
(Fig. 4b) carry a small portion of the applied torque (due to their
small moment arm length). The decrease of J with the increase of
a=h is more pronounced for the thicker spars.

Fig. 5b shows the variation of J with t=d in the case a ¼ 3 and
b ¼ 1

30, and for the three selected values of the ratio
a=h ¼ 0:2;0:3;0:4. The plots quantify the expected increase of
the torsion constant with the increase of the spar thickness. In the
case a=h ¼ 0:2, doubling the spar thickness from t ¼ d to 2d
increases the torsion constant from J ¼ 0:2613 to 0:2651 (scaled
by 2h2cd). The increase is less pronounced for higher values of the
ratio a=h, and for a=h ¼ 0:4, the increase is from J ¼ 0:2517 to
0:2525� ð2h2cdÞ.

ARTICLE IN PRESS

Fig. 2. (a) A three-cell profile with indicated shear flows along the external walls of

the profile. The internal walls are oa, ob, and oc. (b) A three-cell profile with the

cells arranged next to each other.

Fig. 3. (a) A three-cell rectangular profile with identical outside cells. (b) A three-

cell rectangular profile with identical cells.

V.A. Lubarda / Thin-Walled Structures 47 (2009) 798–806800
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3.2. Thin-walled circular and elliptical profiles with two spars

Fig. 6a shows a thin-walled circular profile of mid-radius a and
the wall thickness d. Two vertical spars of thickness t are
positioned at the distance x from the center, such that
sinj ¼ x=a. It is readily found that

A1 ¼ a2 p
2
�j� sinj cosj

� �
; A2 ¼ 2a2ðjþ sinj cosjÞ,

I11 ¼ 2
a

t
cosjþ p

2
�j

� � t

d

� �
; I22 ¼ 4

a

t
cosjþj t

d

� �
,

I12 ¼ �2
a

t
cosj.

The substitution into (17) yields the following expression for the
torsion constant:

J ¼ 2pa3d

p
2

cosjþ p
2
j�j2 þ sin2 jcos2 j

� �t

d
p
2

cosjþj p
2
�j

� �t

d

. (24)

The corresponding variation of J with x=a is shown in Fig. 7a. For
t=d ¼ 0:5, the cross section has the greatest torsion constant if the
spars are located at x=a ¼ 0:7963, and Jmax ¼ 1:0929� ð2pa3dÞ.
For t=d ¼ 1, the optimal distance is x=a ¼ 0:7781, with the
corresponding Jmax ¼ 1:15� ð2pa3dÞ, while for t=d ¼ 2, the dis-
tance is x=a ¼ 0:7651 and Jmax ¼ 1:2176� ð2pa3dÞ. If the spars are
nearby each other, in the middle of the profile, their net
contribution to the torsion constant is nearly zero, and

J! 2pa3d, which corresponds to a circular tube of radius a and
thickness d.

Similar analysis can be performed for a thin-walled elliptical
profile with the semi-axes a and b and the wall thickness d, which is
stiffened by two spars of thickness t at the distance x from the center
(Fig. 6b). Introducing the angle j ¼ sin�1

ðx=aÞ, there follows:

A1 ¼ ab
p
2
�j� 1

2
sinð2jÞ

� �
; A2 ¼ ab½2jþ sinð2jÞ�,

I11 ¼ 2
a

d
½Eðp=2; eÞ � Eðj; eÞ� þ 2

b

t
cosj

I22 ¼ 4
a

d
Eðj; eÞ þ 4

b

t
cosj

I12 ¼ � 2
b

t
cosj; e ¼ ð1� b2=a2Þ

1=2, (25)

ARTICLE IN PRESS

Fig. 4. (a) A three-cell rectangular profile with identical outside cells. The thickness of external walls is d, and the thickness of internal walls is t. (b) The three-cell

rectangular profiles with remote and nearby internal walls. The torsion constant is smaller in the case of nearby walls.
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0.5 1 1.5 2
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0.26
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Fig. 5. (a) The variation of the torsion constant J with the ratio a=h, for the three-cell profile from Fig. 4a. The solid curve corresponds to the thickness ratio t=d ¼ 1
2, the

dashed curve is for t=d ¼ 1, and the dotted curve is for t=d ¼ 2. (b) The variation of the torsion constant J with the thickness ratio t=d. The solid curve corresponds to

a=h ¼ 0:2 (remote spars), the dashed curve is for a=h ¼ 0:3, and the dotted curve for is a=h ¼ 0:4 (nearby spars).

Fig. 6. (a) A thin-walled circular profile with two spars located at the distance x

from the center. (b) A thin-walled elliptical profile with two spars at the distance x

from the center.
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where e is the eccentricity of the ellipse, and

Eðj; eÞ ¼
Z j

0
ð1� e2sin2 jÞ1=2 dj (26)

is the elliptic integral of the second kind. The substitution of (25)
into (17) yields an involved expression for the torsion constant,
which can be easily evaluated by using the Mathematica or Mathlab
software packages, for any eccentricity of the ellipse and any
thickness ratio t=d. Fig. 7b shows the variation of the torsion
constant with the spar distance x in the case t=d ¼ ð0:5;1;2Þ, the
semi-axes ratio a=b ¼ 3 (e2 ¼ 8

9), and the thickness d ¼ a=15. The
maximum torsion constant in these three cases is Jmax ¼

ð3:0962;3:1642;3:2303Þa2bd, with the corresponding spars located
at x=a ¼ ð0:7737;0:7738;0:7733Þ. The optimal location of spars for
maximum torsion constant depends on the eccentricity of the
ellipse. If e2 ¼ 3

4 (i.e., a=b ¼ 2), one finds, in the same cases of the
thickness ratios t=d and d=a, that x=a ¼ ð0:7916;0:7858;0:7805Þ.
The corresponding torsion constants are Jmax ¼ ð4:3187;4:4499;
4:5881Þa2bd. Similar analysis can be performed in the case of a
semi-elliptical thin-walled profile shown in Fig. 10a, but details are
omitted for brevity.

3.3. Thin-walled deltoidal profile with two spars

A thin-walled deltoidal profile shown in Fig. 8a has a half-
length a, the inclination angle j, and the thickness of the outer
walls d. The two symmetrically positioned spars at the distance x

from the ends have the thickness t. It readily follows that

A1 ¼ x2 tanj; A2 ¼ 2a2 tanj 1�
x2

a2

� �
; I12 ¼ �2

x

t
tanj,

I11 ¼ 2
x

t

1

cosj sinjþ t

d

� �
; I22 ¼ 4

a

t

1

cosj sinj x

a
þ 1�

x

a

� � t

d

� �
.

The substitution into (17) yields the following expression for the
torsion constant:

J ¼ 4a3d
sin2 j
cosj

sinjþ 1� 2
x2

a2
þ

x3

a3

� �
t

d

sinjþ 1�
x

a

� �t

d

. (27)

The plots shown in Fig. 9a correspond to j ¼ 15� and d ¼ a=15.
For t=d ¼ 0:5, the cross section has the maximum torsion constant
if the spars are located at x=a ¼ 0:4056, and Jmax ¼ 0:3132a3d. For
t=d ¼ 1, the optimal location is x=a ¼ 0:4325, with Jmax ¼

0:324a3d, while for t=d ¼ 2 it is found that x=a ¼ 0:4558, and
Jmax ¼ 0:3328a3d.

Similar analysis can be performed for a truncated deltoidal
profile shown in Fig. 8b, for which

A1 ¼ ð2bþ x tanjÞx; A2 ¼ 2½2bþ ðaþ xÞ tanj�ða� xÞ,

I11 ¼
2x

d cosj
þ

2b

d
þ

2ðbþ x tanjÞ
t

,

I22 ¼
4ða� xÞ

d cosj þ
4ðbþ x tanjÞ

t
,

I12 ¼ �
2ðbþ x tanjÞ

t
. (28)

The corresponding plots of J vs. x=a, calculated from (17) in the
case a=b ¼ 8, are shown in Fig. 9b. For t=d ¼ 0:5, the maximum
torsion constant Jmax ¼ 0:9781a3d is attained for x=a ¼ 0:2889. For
t=d ¼ 1, the optimal location is x=a ¼ 0:2962 with Jmax ¼ 1:001a3d,
while for t=d ¼ 2, x=a ¼ 0:3058 and Jmax ¼ 1:0219a3d. Similar
analysis can be performed in the case of a triangular thin-walled
profile shown in Fig. 10b.

ARTICLE IN PRESS

0 0.2 0.4 0.6 0.8 1
1

1.05

1.1
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1.2

1.25

0 0.2 0.4 0.6 0.8 1
4

4.1
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4.6

Fig. 7. (a) The variation of the torsion constant J with x=a for the circular profile with d ¼ a=15. The solid curve corresponds to the thickness ratio t=d ¼ 1
2, the dashed curve

is for t=d ¼ 1, and the dotted curve is for t=d ¼ 2. (b) The same for the elliptical profile from Fig. 6b, with b ¼ a=3.

Fig. 8. (a) A thin-walled deltoidal profile with two spars at the distance x from the ends. (b) A truncated thin-walled deltoidal profile.
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4. Torsion constant of a two-cell profile

In the case of a two-cell profile (Fig. 11a), the elements of the
system matrix,

ðIijÞ ¼
I11 I12

I21 I22

 !
, (29)

are

I11 ¼

I
C1

ds

dðsÞ
; I22 ¼

I
C2

ds

dðsÞ
; I12 ¼ �

Z b

a

ds

dðsÞ
. (30)

The determinant of the matrix is D ¼ I11I22 � I2
12, and

D1 ¼ A1I22 � A2I12; D2 ¼ A2I11 � A1I21. (31)

The torsion constant is readily found to be

J ¼ 4
A2

1I22 þ A2
2I11 � 2A1A2I12

I11I22 � I2
12

, (32)

explicitly expressed in terms of the geometric properties alone.
Surprisingly, this simple expression for the torsion constant of a

two-cell profile does not appear in the literature on thin-walled
structures. The corresponding shear flows are

f 1 ¼
A1I22 � A2I12

A2
1I22 þ A2

2I11 � 2A1A2I12

T

2
,

f 2 ¼
A2I11 � A1I21

A2
1I22 þ A2

2I11 � 2A1A2I12

T

2
, (33)

in agreement with the expressions (17.51) of Ref. [3]. Observe also
the duality between (32) and (33) and the corresponding
expressions (17) and (18) for the symmetric three-cell profiles.

The inner wall carries no shear stress if and only if f 1 ¼ f 2, i.e.,

A1ðI21 þ I22Þ ¼ A2ðI11 þ I12Þ. (34)

If the ratio of the shear flows in external walls is to be equal to k

(f 2 ¼ kf 1), the shear flow in the inner wall being f 12 ¼ ð1� kÞf 1,
the expression (34) generalizes to

A1ðI21 þ kI22Þ ¼ A2ðI11 þ kI12Þ. (35)

This condition can be useful in the design analysis. For example,
it can be achieved by the adjustment of the wall thicknesses of the
cells, as discussed in Section 4.2.
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Fig. 9. (a) The variation of the torsion constant J with x=a for the deltoidal profile with j ¼ 15� and d ¼ a=15. The solid curve corresponds to the thickness ratio t=d ¼ 1
2, the

dashed curve is for t=d ¼ 1, and the dotted curve is for t=d ¼ 2. (b) The same for the truncated deltoidal profile from Fig. 8b, with b ¼ a=8.

Fig. 10. (a) A thin-walled semi-elliptical profile with two symmetrically positioned spars. (b) A thin-walled triangular profile with two symmetrically positioned spars.

Fig. 11. (a) A two-cell profile with indicated shear flows f 1 and f 2 in the external walls of the profile. The internal wall is ab. (b) A two-cell elliptical profile with a spar at the

distance x from the center of the ellipse.
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In the case (34) holds, (32) reduces to a single-cell Bredt’s
formula

J ¼
4A2

I
; I ¼ I11 þ I22 þ 2I12 ¼

Z
C

ds

dðsÞ
, (36)

where A ¼ A1 þ A2 is the area within the external contour C of the
profile (without the internal wall), and I is the corresponding
integral of the reciprocal of the wall thickness.2 In particular, (34)
holds if A1 ¼ A2 and I11 ¼ I22. Two illustrative examples are
discussed in the following subsections.

4.1. Two-cell trapezoidal profile

Fig. 12a shows a two-cell trapezoidal profile of height h,
thickness d, and the steepness specified by the geometric
parameters d and j. The spar of thickness t is located at the
distance x from the left end. From (30) it readily follows that

I11 ¼
2h

t cosj
ð1þ aÞ 1þ

t

d

� �
sinjþ t

d
� sinj

� �
x

h

� �
,

I22 ¼
2h

t cosj
t

d
þ sinj

� �
1�

x

h

� �
þ 1þ

t

d

� �
a sinj

� �
,

I12 ¼ �
2h

t cosj 1þ a� x

h

� �
sinj, (37)

where a ¼ d=hX0. The areas within the two cells are

A1 ¼
x

h
2ð1þ aÞ � x

h

h i
h2 tanj; A2 ¼ 1�

x

h

� �
1þ 2a� x

h

� �
h2 tanj.

(38)

The sufficient conditions for the vanishing of the shear flow in
the internal wall (f 1�2 ¼ 0, i.e., f 1 ¼ f 2) are A1 ¼ A2 and I11 ¼ I22.
They give

x

h
¼ 1þ a� 1

2
þ aþ a2

� �1=2

; sinj ¼ 1� 2
x

h
. (39)

Since sinjp1, the location of the shear-free spar in (39)
satisfies the inequality x=hp 1

2.
We can also determine at what distance x the spar should be

located to maximize the torsion constant of the trapezoidal two-
cell profile. The substitution of (37) and (38) into (32) yields an
expression for the torsion constant, whose variation with x=h is
shown in Fig. 13a in the case of the thickness ratio t=d ¼ ð0:5;1;2Þ,
the angle j ¼ 15�, d=h ¼ 1

15, and a ¼ 1. As seen from this figure,
the torsion constant is the greatest when the spar is located close
to the larger base of the trapezoid. The minimum value of the
torsion constant Jmin � 0:3513� ð2h3dÞ is attained at
x=h � 0:4766, regardless of the thickness ratio t=d, because this

corresponds to the shear-free spar location. The shape of the curve
J ¼ JðxÞ sensitively depends on the steepness of the trapezoid. For
example if a ¼ c=h ¼ 0:25 and j ¼ 15�, the curve J ¼ JðxÞ has both
its minimum and maximum inside of the span h. For example, if
t ¼ d, the minimum torsion constant is Jmin ¼ 0:1124� ð2h3dÞ at
x=h ¼ 0:3171, while the maximum torsion constant is Jmax ¼

0:1169� ð2h3dÞ at x=h ¼ 0:8094.
Fig. 13b shows the variation of J with x=h, for various thickness

ratios t=d, in the case of a two-cell triangular profile from Fig. 12b,
which is obtained from the general expression for the trapezoidal
profile by setting d ¼ 0 (i.e., a ¼ 0). The explicit expression for J is

J ¼ 2h3d tanj sinj sinjþ ½1� 2Z2 þ ð1þ sinjÞZ3�ðt=dÞ
sinjð1þ sinjÞ þ ð1þ sinj� ZÞðt=dÞ , (40)

where Z ¼ 1� x=h. The parameters used in calculations for the
plots shown in Fig. 13b were j ¼ 15� and d=h ¼ 1

15. The plots
reveal that the considered triangular profile attains the maximum
torsion constant if its spar is located at the distance
x=h ¼ ð0:7052;0:6967;0:6904Þ, corresponding to the thickness
ratio t=d ¼ ð0:5;1;2Þ, demonstrating a mild dependence of the
optimal location x on the spar thickness. The minimum torsion
constant Jmin � 0:0551� ð2h3dÞ corresponds to a shear-free spar,
which is located at x=h � 0:205, regardless of the thickness ratio
t=d.

4.2. Two-cell rectangular profile

In this subsection we first apply the condition (35) to
determine the thickness ratio t=d for the two-cell rectangular
profile shown in Fig. 14a, for which the ratio of the shear flows in
the external walls of the profile is f 2=f 1 ¼ k. The areas within the
cells are A1 ¼ a2 and A2 ¼ ab, while

I11 ¼
4a

d
; I22 ¼

a

d
þ

aþ 2b

t
; I12 ¼ �

a

d
, (41)

so that, from (32), the corresponding torsion constant is

J ¼ 4a3d

1þ 2
b

a
þ 1þ 2

b

a
þ 4

b2

a2

 !
t

d

4 1þ 2
b

a

� �
þ 3

t

d

. (42)

The substitution of (41) into (35) gives

A1ðI21 þ kI22Þ ¼ A2ðI11 þ kI12Þ )
t

d
¼

kðaþ 2bÞ

ð1� kÞaþ ð4� kÞb
. (43)

With this wall thickness ratio, (42) reduces to a remarkably
simple expression

J ¼ 4a2d
aþ kb

4� k
. (44)
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Fig. 12. (a) A two-cell trapezoidal profile of height h, the external wall thickness d, and the spar thickness t. The parameters d and j specify the steepness of the trapezoid.

(b) A triangular two-cell profile deduced from the trapezoidal profile in the limit d! 0.

2 If (34) holds, then A1 ¼ AðI11 þ I12Þ=I, A2 ¼ AðI21 þ I22Þ=I, and the substitution

into (32), after a somewhat lengthy derivation, yields (36).
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If the inner wall is to carry no shear stress at all ðk ¼ 1Þ, the
thickness ratio must be t=d ¼ ðaþ 2bÞ=ð3bÞ, while the torsion
constant becomes J ¼ 4a2dðaþ bÞ=3. In this case, tpd if bXa, and
vice versa. If a ¼ b, then t ¼ d, which is also obvious by the
symmetry consideration, and J ¼ 8a3d=3.

Next, it is of interest to determine the location x of the vertical
spar of thickness t in a rectangular profile of dimensions h� c and
the external wall thickness d (Fig. 14b) for which the correspond-
ing torsion constant attains its maximum value. The areas within
the two cells are A1 ¼ xc and A2 ¼ ðh� xÞc, while

I11 ¼
2x

d
þ

c

d
þ

c

t
; I22 ¼

2ðh� xÞ

d
þ

c

d
þ

c

t
; I12 ¼ �

c

t
. (45)

The substitution into (32) gives

J ¼ 4ch2d
1þ 1� 2ð1� aÞx

h
1�

x

h

� �h it

d

2ð1þ aÞ þ 1þ 2aþ 4a2
x

h
1�

x

h

� �h it

d

, (46)

where a ¼ h=c. The plots in Fig. 15a correspond to a ¼ 3, d=h ¼ 1
30,

and the three selected values of the thickness ratio t=d. The
maximum torsion constant is attained when the spar is close to
either left or right end of the profile. The minimum values Jmin ¼

0:125� ð4ch2dÞ is in the middle of the span h (x=h ¼ 0:5),
regardless of the thickness ratio t=d, because if x ¼ h=2 there is
no shear flow in the spar, and (46) reduces to a single-cell Bredt’s
formula J ¼ 2ch2d=ð1þ aÞ.

4.3. Two-cell elliptical profile

A two-cell thin-walled elliptical profile with the semi-axes a

and b and the wall thickness d is stiffened by a vertical spar of
thickness t at the distance x from the center (Fig. 11b). Introducing
the angle j ¼ sin�1

ðx=aÞ, there follows

A1 ¼ ab
p
2
�j� 1

2
sinð2jÞ

� �
; A2 ¼ ab

p
2
þjþ 1

2
sinð2jÞ

� �
,

I11 ¼ 2
a

d
½Eðp=2; eÞ � Eðj; eÞ� þ 2

b

t
cosj,

I22 ¼ 2
a

d
½Eðp=2; eÞ þ Eðj; eÞ� þ 2

b

t
cosj,

I12 ¼ � 2
b

t
cosj; e ¼ ð1� b2=a2Þ

1=2. (47)

The substitution of (47) into (32) yields an expression for the
torsion constant, which can be evaluated numerically for any
eccentricity of the ellipse and any thickness ratio t=d. Fig. 15b
shows the variation of the torsion constant with the spar distance
x in the case t=d ¼ ð0:5;1;2Þ, the semi-axes ratio a=b ¼ 3, and the
thickness d ¼ a=15. The maximum torsion constant in these three
cases is Jmax ¼ ð3:0204;3:0494;3:0762Þa2bd, with the correspond-
ing spars located at x=a ¼ ð0:7933;0:8021;0:8107Þ. When com-
pared with the optimal location of the symmetrically positioned
spars in a three-cell elliptical profile considered in Section 3.2, it is
noted that the two spars there were closer to the center of the
profile than is the single spar in the corresponding two-cell
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Fig. 14. (a) A two-cell rectangular profile with the cell sides a� a and b� a, and the indicated thicknesses d and t. (b) A two-cell rectangular profile of dimensions h� c and

uniform external-wall thickness d, stiffened by a spar of thickness t at the distance x from the left end.
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Fig. 13. (a) The variation of the torsion constant J with x=h for the trapezoidal profile from Fig. 12a, with c ¼ h, j ¼ 15� , and d ¼ h=15. The solid curve corresponds to the

thickness ratio t=d ¼ 1
2, the dashed curve is for t=d ¼ 1, and the dotted curve is for t=d ¼ 2. (b) The same for the triangular profile ðd ¼ 0Þ from Fig. 12b.
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elliptical profile. Similar analysis can be done for triangular and
semi-elliptical profiles of the type shown in Fig. 10, which are
stiffened by one spar only. Details are omitted for brevity.

5. Conclusion

We have derived in this paper a closed-form expression for the
torsion constant of thin-walled multicell profiles solely in terms of
the geometrical properties of the profiles. Particularly appealing
expressions are obtained in the case of structurally important
two- and three-cell profiles. These expressions, previously not
reported in the literature, greatly facilitate the determination of
the optimal arrangement of internal spars which maximizes the
corresponding torsion constant. Detailed analysis is performed for
triangular, rectangular, elliptical and deltoidal thin-walled pro-
files. It is shown that the optimal location of spars for maximum
torsion constant depends on the eccentricity of the ellipse, and the
ratio of the internal and external wall thicknesses. For example,
for a symmetric three-cell elliptical profile with the semi-axes
ratio a=b ¼ 2, and the uniform wall thickness d ¼ t ¼ a=15, the
maximum torsion constant (Jmax ¼ 4:45a2bd) is attained when the
two spars are located at the distance 0:786a from the center of the
ellipse. If the elliptical profile is stiffened by only one spar, the
maximum torsion constant (Jmax ¼ 4:245a2bd) is attained when
the spar is located at the distance 0:812a from the center of the
ellipse (in the case a=b ¼ 2 and d ¼ t ¼ a=15). Similar conclusions
apply to deltoidal and truncated deltoidal three-cell profiles. The
conditions are also established for the inner wall to carry a
prescribed portion of the shear flow, or no shear flow at all, with
the application to two-cell trapezoidal and rectangular thin-
walled profiles. For the trapezoidal profile with the steepness
defined by a ¼ 1 and j ¼ 15�, the torsion constant is the greatest
when the spar is located close to the larger base of the trapezoid.
The minimum value of the torsion constant is attained at
x � 0:477h, regardless of the thickness ratio t=d, which corre-
sponds to the shear-free spar location. For the triangular profile

with j ¼ 15� and d=h ¼ 1
15, the maximum torsion constant is

attained when the spar is located at the distance x � 0:7h (mildly
dependent on the thickness ratio t=d). The minimum torsion
constant corresponds to a shear-free spar, which is located at
x � 0:205h, regardless of the thickness ratio t=d. The obtained
results are of importance on their own, and may also be useful for
other studies of uniform and composite thin-walled beams and
adaptive structures [10–12].
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