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Abstract

The stress distribution in a half-plane loaded by uniform
pressure over half of its straight edge is given in elasticity books,
such as Timoshenko and Goodier [1], and is obtained by spe-
cializing the solution of an appropriate wedge problem, or by
integration using the Flamant concentrated force solution. An
alternative stress distribution is derived in this paper and com-
pared with the existing well-known solution.

1 Introduction

Consider a half-plane loaded by a uniformly distributed pressure p over
half of its straight edge, as shown in Fig. 1. By using polar coordinates
(r,0) the stress components can be expressed in terms of Airy stress
function ® = & (r,0) by the well-known formulas
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Since there is no characteristic length in the considered problem, stress
components are proportional to applied pressure p and independent of
the radial coordinate r. This implies from (1) that & is proportional
to pr®, ie. ® = pr2f(f). Substituting prf (0) into the governing
biharmonic equation for @ and solving gives

® = pr? (acos 20 + bsin 20 + cf + d) (2)

where a, b, ¢ and d are integration constants. The stress components
in (1) can be expressed as

0, = —p (2acos 20 + 2bsin 20 — 2c0 — 2d) ,

09 = —p (—2a cos 20 — 2bsin 20 — 2c6 — 2d), (3)
Tro = P (2asin 20 — 2bcos26 — ¢).

The constants a, b, ¢ and d are obtained from the appropriate boundary
conditions.

Fig. 1. - A half-plane loaded by uniform pressure p over half
of its straight edge.

From the conditions along the straight edge (0 = +7/2) it follows
that 2b = ¢ = —1/27, and 2a = 2d 4 1/2,with the constant d remaining
unspecified. Similar situations with an unspecified integration constant
also arise in other elasticity problems, as discussed in [2]. The stress
components in (3) accordingly become
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1 1 1
gk 2 — —sin20+ =0 — 2d|,
o p|(2d+ 2) cos 20 o sin 2 +1r ]

1
Og = —p [— (2d+l) cos?ﬂ-l—isingﬂ—l——ﬂ—?d] :| (4)
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The longitudinal normal stress along the loaded part of the straight
edge o, (0 = 7/2) is 4pd, while along the unloaded part it is (4d + 1) p.
Indeterminacy of the constant d can be discussed by considering an
arbitrary semicircle around the point O as the closing boundary of the
semicircular region. This is indicated by a dashed line in Fig. 1. What-
ever the selected value of the constant d is, expressions (4) represent
the stress distribution in the region provided that the tractions o, and
Tr¢ are applied over the semicircular boundary in accordance with (4)
and the selected value of d. Note that two separate sets of tractions
that correspond to different values of d and act over the semicircular
boundary differ by a self-equilibrating set of tractions.

Letting d = —1/4 gives a solution which coincides with that ob-
tained for an appropriate wedge problem (Timoshenko and Goodier
[1], p.141, Eq. (d)), in which the wedge angle is m. The corresponding
stress distribution is

g BT
o= 2ﬂ( sin 20 + 26 + ),

ﬁg:—% (sin 20 + 20 + 7) , (5)

Trg = % (cos20 +1).

Indeed, by considering an infinite wedge of angle 2a loaded by uniform
pressure p over the face f# = «, the zero shear stress condition over the
faces # = ta (a # m/2) requires that a = 0, hence d = —1/4. However,
if @ = 7/2 the product asin 2« (required to be zero by shear stress on
the wedge faces) is zero even if a # 0, hence the more general expres-
sions (4). Note that the stress distribution in (5) can also be obtained
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by integration using the Flamant concentrated force solution. Accord-
ing to (4), the radial stress (0,) immediately below the unloaded part
(0 = —7/2) of the straight edge is zero, while compression of magnitude
p exists below the loaded part (f = 7/2) of the straight edge.

It is instructive to rewrite the stress distribution in (4) using the
Cartesian stress components, which gives

JI:—%(sin%%—?ﬁ—l—?r],

Uy:—%(—sin29+29—ﬂ)+4pd, (6)

T o 2%_ (cos20 +1).

Hence, two solutions corresponding to two different values of the
constant d differ only by a uniform stress of magnitude o, = 4p (d, — d5) .

2 An alternative stress distribution

An alternative specification of the constant d in the stress distribution
of (4) appears to be physically appealing. To obtain this value of d, we
consider the problem in Fig. 1 as the superposition of two problems.
That of the symmetric loading by uniform pressure of magnitude p/2
all along the straight edge, and of the antisymmetric pressure-tension
loading of magnitude p/2. The stress distribution corresponding to the
first problem is given by

1
O = =gy [(Qd + 5) cos 20 — 2d] :

dyraaii [- (2d i %) SR 24 | (7)

i (Ed + %) sin 20.
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This is the symmetric part of the stress distribution in (4), and has
the simple Cartesian representation o, = —p/2, o, = (84 + 1) p/2, and
7.y = 0. The antisymmetric stress distribution corresponding to the
second problem is given by

.
Or = —p (—-1— sin 20 + m—ﬂ) :

2T T
1 1
g = —pP (2_?T sin 20 + ;9) : (8)

Trg = ¥ i (cos20 + 1),
2m ‘

which is the antisymmetric part of the stress distribution in (4). The

antisymmetric stress distribution in (8) is completely specified. How-

ever, the symmetric stress distribution in (7) is specified only to within

a constant d. In order to determine the constant d, we calculate the

radial strain corresponding to (7). Along the straight edge this strain

is given by e
T p v

= A — (0]

€r (9 :1:2) o ( 5 +-‘-ld), (9)

where v* is equal to Poisson’s ratio v in the case of plane stress, and to
v/ (1 —v) in the case of plane strain; £* is equal to Young’s modulus
E in the case of plane stress, and to /(1 — /?) in the case of plane
strain. The right-hand side of (9) also represents the horizontal (e,)
strain everywhere in the half-plane. Assuming that the points of the
half plane only move vertically, the strain in the horizontal direction is
zero, and from (9) we obtain

1+
d= —
. (10)
Substituting (10) into (7) gives the stress distribution

1 - o
g, = —p( 4V cos 260 + l-l;v ),

 Ed g 55
gﬂ:—p(— 1 cos 20 + 1 ), (11}

l o *
Trg =P Y sin 20,
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which has the simple Cartesian representation 0, = —p/2, 0, = —v*p/2
and 7, = 0. This result is also given (for plane strain) by Eringen [3], p.
211, Eq. (6.7.4).. It is interesting to note that integrating the Flamant
concentrated force solution gives the stress distribution 0, = g, = —p/2
and 7,, = 0. The difference between these two stress distributions is
a consequence of the zero horizontal displacement imposed in the first
solution.

Superimposing (8) and (11) gives the stress distribution in the half-
plane corresponding to the problem in Fig. 1 as

1—v* 1y
U‘r=—£—(?r 2u cos 20 —sin20 + 20 4+ —;U):

| e /o 1 .
r}‘ﬁ.=—£-(—?r 2U cos 20 + sin 260 + 20 + 7 -;u), (12)

1 et *
T,-g=£(7r 8 sin29+c032€+1).
2 2

The radial stresses immediately below the straight edge are o, (8 = 7/2) =
—(14+v*)p/2 and 0, (0 = —7/2) = (1 — v*) p/2. As an example, if the
Poisson ratio is v = 1/3, this gives —2p/3 and p/3 in the case of plane
stress, and —3p/4 and p/4 in the case of plane strain. These values
parallel the previously obtained (v independent) values of —p and 0,as-
sociated with the wedge type solution given in (5).

3 Discussion

The two stress distributions defined by (5) and (12) differ by a uniform
stress 0, = (1 — v*) p/2. Indeed, the Airy stress function given by (2)
can be expressed as

1
® = prid (cos20 + 1) + p’rg-i; (7 cos 260 — sin 20 — 26) . (13)
Only the first part of (12), i.e. ® = pr?d(cos20 + 1) = 2pdx?®, depends

on the constant d, and represents a stress function associated with
the uniform stress 0, = 9°®/0z> = 4pd. It is observed in (4) that
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for d = 0 the radial stress immediately below the loaded section of
the straight edge for the problem in Fig. 1 vanishes, while a tensile
radial stress of magnitude p exists below the unloaded section of the
straight edge. Superimposing on the stress distribution corresponding
to d = 0 the uniform stress o, = —p, gives the wedge-type solution (5),
while superimposing the uniform stress 0, = — (1 + v*) p/2 leads to the
alternative solution given by (12). It is noted that in the case of plane
strain the two solutions coincide for an incompressible material (i.e. v =
1/2). It should also be pointed out that the radial strains immediately
below the unloaded and loaded sections of the straight edge are (4d + 1)
and (4d + v*) , respectively, multiplied by (1 +v)p/E(1+v*). If d =
—1/4 the radial strain below the unloaded part of the straight edge is
equal to zero. However, if d is given by (10) the radial strain below the
loaded part of straight edge is equal in magnitude but opposite to the
radial strain below the loaded part of straight edge. Thus, in this case
the average radial strain for any line segment along the straight edge
symmetric about the origin is equal to zero.
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O jednom baznom resenju teorije elastiénosti za poluravan

Raspored napona na poluravni optereéenoj ravnomernim pritiskom
duz polovine njene ravne ivice je dat u udzbenicima teorije elastiénosti,
kao na primer u Timosenko i Gudijer 1], a dobijan je specificiranjem
resenja pogodnog ugaonog problema, ili integracijom pomoéu Flaman-
tovog resenja za slucaj koncentrisane sile. U ovom radu izveden je
alternativni raspored napona, koji je uporedjen sa postojeéim dobro
poznatim resenjima.





