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Abstract. Pileups of screw dislocations against an inclined bimetallic inter-
face are considered. It is assumed that differently oriented pileups are either
under the same remote uniform loading, or under the same resolved shear
stress along the pileup direction for any orientation of the interface. The dis-
tributions of dislocations and the lengths of pileups are substantially different
for differently oriented interfaces, particularly in the case of the same remote
loading. The interface stresses are also strongly depended on the pileup ori-
entation. The maximum stress can be higher for a pileup along an inclined
direction than along the direction orthogonal to the interface. The back stress
behind a pileup is evaluated and discussed.

1. Introduction

The analysis of dislocation pileups is important for the study of the onset
of plastic deformation, rate of plastic hardening, and microcracking at the grain
boundaries, e.g., Eshelby et al. [1], Shilkrot and Srolovitz [2], and Anderson et
al. [3]. Pileups in homeogeneous and inhomogeneous media were both considered,
with and without effects of elastic anisotropy included in the analysis. Chou [4]
studied a screw dislocation pileup against a rigid boundary of a semi-infinite elastic
medium. Barnett [5] derived an exact solution for the distribution of screw dislo-
cations in a pileup near a bimetallic interface by using the model of continuously
distributed dislocations. Kuang and Mura [6] solved analytically the singular in-
tegral equations for the equilibrium positions of both edge and screw dislocations
piled-up against a bimetallic interface. Double ended pileups of dislocations in
stacked slip planes of various orientations were studied by Baskaran et al. [7] and
Mesarovic et al. [8]. Dislocation pileups under non-uniform stress were considered
by Liu et al. [9]. Lubarda [10,11] presented an analysis of discrete screw and edge
dislocation pileups against a circular inhomogeneity and a bimaterial interface, with
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the reference to related earlier work on the topic. An analysis of an inclined screw
dislocation pileup against a welded interface between two different materials has
been presented by Tucker [12] and Smith [13], who used the model of continuous
distribution of infinitesimal dislocations. A pileup of screw dislocations extending
from the crack tip along an inclined direction, associated with dislocation emis-
sion from the crack tip, has been studied by Chang and Mura [14]. They also
used the model of continuously distributed infinitesimal dislocations, solving the
corresponding mathematical problem by the extended Wiener–Hopf method.

In the present paper we consider a pileup of discrete screw dislocations along
the slip direction at an arbitrary angle relative to a flat bimetallic interface. The
nonlinear algebraic equations that specify equilibrium positions of dislocations are
solved numerically, for a specified number of dislocations and a given shear moduli
ratio 𝐺2/𝐺1. Two loading scenarios are considered. The pileups are either under the
same remote uniform loading, or under the same critical resolved shear stress along
the pileup direction. The corresponding results for the dislocation distribution, the
pileup length, and the interface and back stresses are compared and discussed. The
study of edge dislocation pileups against an inclined bimetallic interface is reported
separately [15].

2. Screw dislocation pileup against a bimetallic interface

An infinitely extended bimetallic block, composed of two half spaces (1) and
(2) which are perfectly bonded along the interface 𝑥 = 0 (Fig. 1), is subjected
to uniform antiplane shear strain 𝛾0

𝑦𝑧. The remotely applied shear stress within
the material (1) is then 𝐺1𝛾

0
𝑦𝑧, while within the material (2) it is 𝐺2𝛾

0
𝑦𝑧, where

𝐺1 and 𝐺2 are the respective shear moduli of two materials. The shear stresses
in two materials are then uniform and given by 𝜎

(1)
𝑦𝑧 = 𝐺1𝛾

0
𝑦𝑧 and 𝜎

(2)
𝑦𝑧 = 𝐺2𝛾

0
𝑦𝑧,

albeit discontinuous across the interface 𝑥 = 0. There could also be a remotely
applied shear stress 𝜎0

𝑥𝑧 on the sides of the block 𝑥 = ±∞, which gives rise to shear
strains 𝛾(1)

𝑥𝑧 = 𝜎0
𝑥𝑧/𝐺1, and 𝛾

(2)
𝑥𝑧 = 𝜎0

𝑥𝑧/𝐺2, with the corresponding displacement 𝑢𝑧

continuous across the interface 𝑥 = 0. The resolved shear stress in the 𝑧-direction
over the (𝑢, 𝑧)-plane within the material (1), where 𝑢-direction is inclined at an
angle 𝜙 ∈ [0, 𝜋/2) relative to the 𝑥-axis, is then

(2.1) 𝜏0𝑛𝑧 = 𝜎0
𝑦𝑧 cos𝜙− 𝜎0

𝑥𝑧 sin𝜙.

For example, if the loading is by the shear stress 𝜏0 only, as shown in Fig. 1, then
𝜎0
𝑦𝑧 = −𝜏0 in the material (1), and (2.1) reduces to

(2.2) 𝜏0𝑛𝑧 = −𝜏0 cos𝜙.

Two loading scenarios will be considered. In the first one, 𝜏0 will be kept
constant, so that differently oriented pileups are under different resolved shear
stress 𝜏0𝑛𝑧 = −𝜏0 cos𝜙, in accord with (2.2). In the second loading scenario, the
magnitude of the resolved shear stress will be kept constant (|𝜏0𝑛𝑧| = 𝜏 cr) along
the pileup direction for any orientation 𝜙, so that the remote loading in this case
changes with 𝜙 according to 𝜏0 = 𝜏 cr/ cos𝜙 (𝜙 ̸= 𝜋/2).



SCREW DISLOCATION PILEUPS 157

t

y

O

x

+

+

(2) (1)

x

u

ui

uj

fi

(G  /G )t12

(G  /G )t12

x

j

0

t0

m

n

0

0

Figure 1. An edge dislocation at a distance 𝑢𝑖 from a bimetal-
lic interface along an inclined direction at an angle 𝜙 relative to
𝑥-axis orthogonal to the interface. The dislocation force from the
remotely applied shear stress 𝜏0 and from the dislocation interac-
tion with the interface is 𝑓𝑖. The unit vectors along 𝑢-direction
and orthogonal to it are (m,n).

Suppose that there is a screw dislocation of a Burgers vector 𝑏𝑧 in the material
(1), at a distance 𝑢𝑖 from the interface, along the direction 𝑢. The stress state at
the point (𝑥, 𝑦) within the material (1), produced by this dislocation, is [16,17]

(2.3)
𝜎disl,𝑖
𝑥𝑧 (𝑥, 𝑦) = −𝑘1𝑏𝑧

(︁𝑦 − 𝑢𝑖 sin𝜙

𝑟2𝑖
+ 𝐶

𝑦 − 𝑢𝑖 sin𝜙

𝜌2𝑖

)︁
,

𝜎disl,𝑖
𝑦𝑧 (𝑥, 𝑦) = 𝑘1𝑏𝑧

(︁𝑥− 𝑢𝑖 cos𝜙

𝑟2𝑖
+ 𝐶

𝑥+ 𝑢𝑖 cos𝜙

𝜌2𝑖

)︁
,

where

𝑟2𝑖 = (𝑥− 𝑢𝑖 cos𝜙)
2 + (𝑦 − 𝑢𝑖 sin𝜙)

2, 𝜌2𝑖 = (𝑥+ 𝑢𝑖 cos𝜙)
2 + (𝑦 − 𝑢𝑖 sin𝜙)

2.

The material parameters are used

𝑘1 =
𝐺1

2𝜋
, 𝐶 =

𝐺2 −𝐺1

𝐺2 +𝐺1
,

and we assume that 𝐺1 < 𝐺2 < ∞.
The non-singular stress at the center of the dislocation (𝑥, 𝑦) = (𝑢𝑖 cos𝜙, 𝑢𝑖 sin𝜙),

from the image effects of the dislocation itself, are

𝜎disl,𝑖
𝑥𝑧 (𝑢𝑖) = 0, 𝜎disl,𝑖

𝑦𝑧 (𝑢𝑖) = 𝑘1𝑏𝑧
𝐶

2𝑢𝑖 cos𝜙
, (𝜙 ̸= 𝜋/2).
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The corresponding resolved shear stress 𝜏disl,𝑖
𝑛𝑧 = 𝜎disl,𝑖

𝑦𝑧 cos𝜙− 𝜎disl,𝑖
𝑥𝑧 sin𝜙, where 𝑛

is the direction orthogonal to the slip direction 𝑢 (Fig. 1), is

(2.4) 𝜏disl,𝑖
𝑛𝑧 (𝑢𝑖) = 𝑘1𝑏𝑧

𝐶

2𝑢𝑖
.

At the point along the 𝑢-direction, at a distance 𝑢𝑗 ̸= 𝑢𝑖 from the origin at 𝑂,
the coordinates (𝑥, 𝑦) = (𝑢𝑗 cos𝜙, 𝑢𝑗 sin𝜙) and

𝑟2𝑖 = (𝑢𝑗 − 𝑢𝑖)
2, 𝜌2𝑖 = 𝑢2

𝑖 + 𝑢2
𝑗 + 2𝑢𝑖𝑢𝑗 cos 2𝜙.

The stress state at that point is then, from (2.3),

𝜎disl,𝑖
𝑥𝑧 (𝑢𝑗) = −𝑘1𝑏𝑧 sin𝜙

(︁ 1

𝑢𝑗 − 𝑢𝑖
+ 𝐶

𝑢𝑗 − 𝑢𝑖

𝑢2
𝑖 + 𝑢2

𝑗 + 2𝑢𝑖𝑢𝑗 cos 2𝜙

)︁
,

𝜎disl,𝑖
𝑦𝑧 (𝑢𝑗) = 𝑘1𝑏𝑧 cos𝜙

(︁ 1

𝑢𝑗 − 𝑢𝑖
+ 𝐶

𝑢𝑗 + 𝑢𝑖

𝑢2
𝑖 + 𝑢2

𝑗 + 2𝑢𝑖𝑢𝑗 cos 2𝜙

)︁
.

The corresponding resolved shear stress is

(2.5) 𝜏disl,𝑖
𝑛𝑧 (𝑢𝑗) = 𝑘1𝑏𝑧

(︁ 1

𝑢𝑗 − 𝑢𝑖
+ 𝐶

𝑢𝑗 + 𝑢𝑖 cos 2𝜙

𝑢2
𝑖 + 𝑢2

𝑗 + 2𝑢𝑖𝑢𝑗 cos 2𝜙

)︁
.

3. Dislocation force on a dislocation in a pileup

If there are two dislocations, one at 𝑢𝑖 and the other at 𝑢𝑗 , the dislocation force
on a dislocation at 𝑢𝑖 is

𝑓𝑖 = 𝜏𝑛𝑧(𝑢𝑖)𝑏𝑧, 𝜏𝑛𝑧(𝑢𝑖) = 𝜏0𝑛𝑧 + 𝜏disl,𝑖
𝑛𝑧 (𝑢𝑖) + 𝜏disl,𝑗

𝑛𝑧 (𝑢𝑖).
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Figure 2. A pileup of 𝑁 screw dislocations against a bimetallic
interface between materials (1) and (2), which are under applied
remote uniform shear stress 𝜏0. In the equilibrium configuration
the dislocation force on each dislocation vanishes (𝑓𝑖 = 0), which
specifies their equilibrium positions 𝑢𝑖 (𝑖 = 1, 2, . . . , 𝑁).
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In view of (2.4) and (2.5), there follows

𝑓𝑖 = 𝜏0𝑛𝑧𝑏𝑧 + 𝑘1𝑏
2
𝑧

𝐶

2𝑢𝑖
+ 𝑘1𝑏

2
𝑧

(︁ 1

𝑢𝑖 − 𝑢𝑗
+ 𝐶

𝑢𝑖 + 𝑢𝑗 cos 2𝜙

𝑢2
𝑖 + 𝑢2

𝑗 + 2𝑢𝑖𝑢𝑗 cos 2𝜙

)︁
.

If there are 𝑁 dislocations in a pileup (Fig. 2), the total dislocation force on a
dislocation at 𝑢𝑖 is

𝑓𝑖 = 𝜏0𝑛𝑧𝑏𝑧 + 𝑘1𝑏
2
𝑧

𝐶

2𝑢𝑖
+ 𝑘1𝑏

2
𝑧

𝑁∑︁
𝑗 ̸=𝑖

(︁ 1

𝑢𝑖 − 𝑢𝑗
+ 𝐶

𝑢𝑖 + 𝑢𝑗 cos 2𝜙

𝑢2
𝑖 + 𝑢2

𝑗 + 2𝑢𝑖𝑢𝑗 cos 2𝜙

)︁
.

If one prefers, the pileup configuration in Fig. 2 can be rotated by 𝜙, so that the
slip plane is kept horizontal while the interface is at an angle 𝜙 relative to the
direction orthogonal to the slip plane.

For 𝜙 = 𝜋/2, a pileup is along the interface, made of 𝑁 interface edge dislo-
cations, provided that the leading dislocation in the pileup is locked. In this case,
the force acting on a dislocation at 𝑦𝑖 is

𝑓𝑖 = 𝜏0𝑛𝑧𝑏𝑧 + (1 + 𝐶)𝑘1𝑏
2
𝑧

[︃
1

𝑦𝑖
+

𝑁∑︁
𝑗=2
𝑗 ̸=𝑖

1

𝑦𝑖 − 𝑦𝑗

]︃
, (𝑖 = 2, 3, . . . 𝑁),

where 𝑦 is measured from the position of the locked dislocation (𝑦1 = 0), and
1 + 𝐶 = 2𝐺2/(𝐺1 +𝐺2).

4. Equilibrium positions of dislocations

In the equilibrium pileup configuration, the dislocation force on each dislocation
must vanish (𝑓𝑖 = 0, 𝑖 = 1, 2, . . . , 𝑁). This gives a system of 𝑁 nonlinear algebraic
equations for the equilibrium positions of dislocations

(4.1)
𝐶

2𝑢𝑖
+

𝑁∑︁
𝑗 ̸=𝑖

(︁ 1

𝑢𝑖 − 𝑢𝑗
+ 𝐶

𝑢𝑖 + 𝑢𝑗 cos 2𝜙

𝑢2
𝑖 + 𝑢2

𝑗 + 2𝑢𝑖𝑢𝑗 cos 2𝜙

)︁
= −𝜏0𝑛𝑧

𝑘1𝑏
.

In the first loading scenario it will be assumed that the remote uniform loading
is the same for all angles 𝜙. Thus, if the external loading is 𝜎0

𝑦𝑧 = −𝜏0 and 𝜎0
𝑥𝑧 = 0,

the resolved shear stress is 𝜏0𝑛𝑧 = −𝜏0 cos𝜙 and (4.1) becomes

(4.2)
𝐶

2𝜉𝑖
+

𝑁∑︁
𝑗 ̸=𝑖

(︁ 1

𝜉𝑖 − 𝜉𝑗
+ 𝐶

𝜉𝑖 + 𝜉𝑗 cos 2𝜙

𝜉2𝑖 + 𝜉2𝑗 + 2𝜉𝑖𝜉𝑗 cos 2𝜙

)︁
= cos𝜙, 𝜉 = 𝑢𝑖/�̄�.

The length scale �̄� = 𝑘1𝑏𝑧/𝜏
0 is conveniently used in (4.2) to cast the equilib-

rium conditions in a dimensionless form. In particular, if the applied shear stress
is changed from 𝜏0 to 𝑐𝜏0 (𝑐 > 0), the equilibrium positions of dislocations change
from 𝑢𝑖 to 𝑢𝑖/𝑐.

In the second loading case it will be assumed that the piling-up of dislocations
occurs under the same magnitude of the resolved shear stress |𝜏0𝑛𝑧| = 𝜏 cr for any
orientation of the interface relative to the slip plane. The resolved shear stress is
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Figure 3. The position of the leading dislocation (𝜉1 = 𝑢1/�̄�) vs.
𝜙 in a pileup of 𝑁 = 10 screw dislocations in the case 𝐺2 = 2𝐺1.
Part (a) is for the loading case in which 𝜏0 is kept constant in
the expression for the resolved shear stress 𝜏0𝑛𝑧 = −𝜏0 cos𝜙. The
corresponding length scale is �̄� = 𝑘1𝑏𝑧/𝜏

0. Part (b) is for the
loading case in which |𝜏𝑛𝑧| = 𝜏 cr is kept constant for any 𝜙. The
remote loading in this case is 𝜏0 = 𝜏 cr/ cos𝜙, and the length scale
�̄� = 𝑘1𝑏𝑧/𝜏

cr.
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Figure 4. The normalized length of the dislocation pileup (𝜉𝑁 −
𝜉1) vs. 𝜙 in a pileup of 𝑁 = 10 screw dislocations in the case
𝐺2 = 2𝐺1. Parts (a) and (b) correspond to two loading cases
described in the caption of Fig. 3.

𝜏0𝑛𝑧 = −𝜏 cr to ensure the piling-up of dislocations against the repulsive forces from
the interface. In this case, the equilibrium conditions (4.1) become

𝐶

2𝜉𝑖
+

𝑁∑︁
𝑗 ̸=𝑖

(︁ 1

𝜉𝑖 − 𝜉𝑗
+ 𝐶

𝜉𝑖 + 𝜉𝑗 cos 2𝜙

𝜉2𝑖 + 𝜉2𝑗 + 2𝜉𝑖𝜉𝑗 cos 2𝜙

)︁
= 1, 𝜉 = 𝑢𝑖/�̄�,
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with the length scale �̄� = 𝑘1𝑏𝑧/𝜏
cr. The corresponding remote loading is different

for different 𝜙, being specified by 𝜏0 = 𝜏 cr/ cos𝜙 (𝜙 ̸= 𝜋/2), in accord with (2.2).
Figure 3 shows the position of the leading dislocation vs. the angle 𝜙 in a

pileup of 𝑁 = 10 dislocations in the case of material disparity 𝐺2 = 2𝐺1. Figure
3a corresponds to the loading case 1 and Fig. 3b to the loading case 2. Figure 4
shows the corresponding pileup length, defined as the distance between the leading
and the trailing dislocation of the pileup. The dependence on 𝜙 is much milder in
the second loading case, in which the resolved shear stress is kept the same for all
pileup orientations. Stiffer interfaces exert stronger repulsion on dislocations, so
that both 𝜉1 and (𝜉𝑁 − 𝜉1) increase with the increase of 𝐺2/𝐺1.

5. Interface stresses

For the analysis of its strength it is of interest to evaluate the shear stresses
along the interface. High interface stresses can cause cracking, interface relax-
ation by nucleation and propagation of interface dislocation, distortion of intrinsic
interface dislocations, absorption of the leading dislocation, and nucleation of dis-
locations on the other side of the interface [18–20]. On the side of the interface
toward the material (1), the shear stress components are

(5.1)

𝜎𝑥𝑧(0
+, 𝑦) = −𝑘1𝑏𝑧(1 + 𝐶)

𝑁∑︁
𝑖=1

𝑦 − 𝑢𝑖 sin𝜙

𝑢2
𝑖 + 𝑦2 − 2𝑦𝑢𝑖 sin𝜙

,

𝜎𝑦𝑧(0
+, 𝑦) = −𝑘1𝑏𝑧(1− 𝐶)

𝑁∑︁
𝑖=1

𝑢𝑖 cos𝜙

𝑢2
𝑖 + 𝑦2 − 2𝑦𝑢𝑖 sin𝜙

− 𝜏0.

The external loading is as shown in Fig. 2, i.e., 𝜎0
𝑦𝑧 = −𝜏0 and 𝜎0

𝑥𝑧 = 0.
If (m,n) are the unit vectors along the slip direction 𝑢 and orthogonal to it

(Fig. 1), the shear stresses with respect to these directions at the point (𝑥, 𝑦) =
(0+, 0) are

(5.2)

𝜎𝑛𝑧(0
+, 0) = −𝑘1𝑏𝑧(1− 𝐶 cos 2𝜙)

𝑁∑︁
𝑖=1

1

𝑢𝑖
− 𝜏0 cos𝜙,

𝜎𝑚𝑧(0
+, 0) = −𝑘1𝑏𝑧 sin 2𝜙

𝑁∑︁
𝑖=1

1

𝑢𝑖
− 𝜏0 sin𝜙.

Case 1. In the first loading case, the dimensionless forms of (5.1) and
(5.2) are

�̂�𝑥𝑧(0
+, 𝜂) = −(1 + 𝐶)

𝑁∑︁
𝑖=1

𝜂 − 𝜉𝑖 sin𝜙

𝜉2𝑖 + 𝜂2 − 2𝜂𝜉𝑖 sin𝜙
,

�̂�𝑦𝑧(0
+, 𝜂) = −(1− 𝐶)

𝑁∑︁
𝑖=1

𝜉𝑖 cos𝜙

𝜉2𝑖 + 𝜂2 − 2𝜉𝑖𝜂 sin𝜙
− 1,
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and

�̂�𝑛𝑧(0
+, 0) = −(1− 𝐶 cos 2𝜙)

𝑁∑︁
𝑖=1

1

𝜉𝑖
− cos𝜙,

�̂�𝑚𝑧(0
+, 0) = − sin 2𝜙

𝑁∑︁
𝑖=1

1

𝜉𝑖
− sin𝜙,

where �̂� = 𝜎/𝜏0 for each stress component, and the lengths are normalized by
�̄� = 𝑘1𝑏/𝜏

0, such that 𝜉𝑖 = 𝑢𝑖/�̄� and 𝜂 = 𝑦/�̄�.

Case2. In the second loading case, the dimensionless forms of (5.1) and (5.2) are

�̂�𝑥𝑧(0
+, 𝜂) = −(1 + 𝐶)

𝑁∑︁
𝑖=1

𝜂 − 𝜉𝑖 sin𝜙

𝜉2𝑖 + 𝜂2 − 2𝜂𝜉𝑖 sin𝜙
,

�̂�𝑦𝑧(0
+, 𝜂) = −(1− 𝐶)

𝑁∑︁
𝑖=1

𝜉𝑖 cos𝜙

𝜉2𝑖 + 𝜂2 − 2𝜉𝑖𝜂 sin𝜙
− 1

cos𝜙
,

and

�̂�𝑛𝑧(0
+, 0) = −(1− 𝐶 cos 2𝜙)

𝑁∑︁
𝑖=1

1

𝜉𝑖
− 1,

�̂�𝑚𝑧(0
+, 0) = − sin 2𝜙

𝑁∑︁
𝑖=1

1

𝜉𝑖
− tan𝜙,

where �̂� = 𝜎/𝜏 cr and the lengths are normalized by �̄� = 𝑘1𝑏/𝜏
cr.
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Figure 5. The variation of the normalized shear stress �̂�𝑥𝑧 along
the 𝜂 = 𝑦/�̄� axis on the interface side 𝑥 = 0+ in the case of a
pileup with 𝑁 = 10 dislocations and 𝐺2 = 2𝐺1. Parts (a) and (b)
correspond to two loading cases described in the caption of Fig. 3.
In part (a) the stress is normalized by 𝜏0 and in part (b) by 𝜏 cr.



SCREW DISLOCATION PILEUPS 163

−1 −0.5 0 0.5 1
−30

−25

−20

−15

−10

−5

0

η

σ̂
y
z

Case 1

 

 

ϕ = 0
◦

ϕ = 30
◦

ϕ = 60
◦

(a)

−1 −0.5 0 0.5 1
−60

−50

−40

−30

−20

−10

0

η

σ̂
y
z

Case 2

 

 

ϕ = 0
◦

ϕ = 30
◦

ϕ = 60
◦

(b)

Figure 6. The variation of the normalized shear stress �̂�𝑦𝑧 along
the 𝜂 = 𝑦/�̄� axis on the interface side 𝑥 = 0+ in the case of a
pileup with 𝑁 = 10 dislocations and 𝐺2 = 2𝐺1. Parts (a) and (b)
correspond to two loading cases described in the caption of Fig. 3.
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Figure 7. The variation of the magnitude of the total shear stress
(�̂�2

𝑥𝑧 + �̂�2
𝑦𝑧)

1/2 along the 𝜂-axis corresponding to the shear stress
components from Figs. 5 and 6. Parts (a) and (b) correspond to
two loading cases described in the caption of Fig. 3.

The normalized interface stresses are plotted in Figures 5 and 6 for 𝜙 =
(0∘, 30∘, 60∘). Among these values of 𝜙, the maximum shear stress for each compo-
nent occurs when 𝜙 = 60∘. Figure 7 shows the variation of the corresponding total
shear stress, as determined from (𝜎2

𝑥𝑧 + 𝜎2
𝑦𝑧)

1/2, along the 𝑦-axis. The maximum
shear stress is increased in the second loading case.

The variation of the normalized shear stress components �̂�𝑛𝑧 and �̂�𝑚𝑧 at the
point (𝑥, 𝑦) = (0+, 0) vs. 𝜙 is shown in Fig. 8. The pileups consist of 𝑁 = 10
dislocations and the material disparity is 𝐺2 = 2𝐺1.
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Figure 8. The normalized shear stress components �̂�𝑛𝑧 and �̂�𝑚𝑧

at the point (𝑥, 𝑦) = (0+, 0) vs. 𝜙 in the case of a pileup with
𝑁 = 10 dislocations and 𝐺2 = 2𝐺1. Parts (a) and (b) correspond
to two loading cases described in the caption of Fig. 3.

6. Back stress

Piled-up dislocations exert a back stress behind a trailing dislocation of a pileup,
which opposes the resolved shear stress from the applied loading and may be suf-
ficiently large to prevent further emission of dislocations from a dislocation source
within the slip plane. The back stress at any point 𝑢 > 𝑢𝑁 along the slip direction,
behind a trailing dislocation of the pileup (𝑢𝑁 ), can be determined by summing up
the contributions from all dislocations in the pileup. This is

𝜏bs =

𝑁∑︁
𝑖=1

𝜏disl,𝑖
𝑛𝑧 (𝑢), 𝜏disl,𝑖

𝑛𝑧 (𝑢) = 𝑘1𝑏𝑧

(︁ 1

𝑢− 𝑢𝑖
+ 𝐶

𝑢+ 𝑢𝑖 cos 2𝜙

𝑢2 + 𝑢2
𝑖 + 2𝑢𝑢𝑖 cos 2𝜙

)︁
.

Figure 9 shows the variation of the normalized back stress behind a trailing
dislocation in the case of a pileup with 𝑁 = 10 and 𝐺2 = 2𝐺1, and for three
selected orientation angles (𝜙 = 0∘, 30∘, and 60∘). Far behind a trailing dislocation
(𝑢 ≫ 𝑢𝑁 ), the back stress approaches the stress levels from the super-dislocation
of a Burgers vector 𝑁𝑏𝑧 located at the interface, which is

𝜏 sd = 𝑘1(1 + 𝐶)
𝑁𝑏𝑧
𝑢

.

In the case of a pileup in a homogeneous medium [1,3], with the leading dislocation
locked, the back stress far behind a trailing dislocation is 𝜏bs = 𝑁𝐺𝑏𝑧/(2𝜋𝑢), where
𝑢 is the distance from the locked dislocation at 𝑢 = 0.

7. Conclusions

We have presented in this paper an analysis of a pileup of screw dislocations
against a bimetallic interface arbitrarily oriented relative to the slip plane of a
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Figure 9. (a) The variation of the normalized back stress behind
a trailing dislocation 𝜉𝑁 in the case of a pileup with 𝑁 = 10 and
Γ = 𝐺2/𝐺1 = 2. Parts (a) and (b) correspond to two loading cases
described in the caption of Fig. 3.

pileup. Two loading scenarios are considered by assuming that differently ori-
ented pileups are either under the same remote uniform loading, or under the same
resolved shear stress along the pileup direction. The equilibrium positions of dis-
locations are determined by solving numerically the nonlinear algebraic equations
representing the conditions for the vanishing dislocation force on each dislocation
from a pileup. The distributions of dislocations and the lengths of pileups are sub-
stantially different for differently oriented pileups, particularly in the case of the
same remote loading. The interface stresses were found to be strongly depended
on the pileup orientation. The maximum stress can be higher for a pileup along an
inclined direction than along the direction orthogonal to the interface. The back
stress behind a pileup is also evaluated and discussed. The obtained results may be
of importance for the dislocation-based analysis of plastic deformation, including
the prediction of the yield strength and the rate of plastic hardening, and the onset
of microcracking at the grain boundaries of polycrystalline aggregates.
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НАГОМИЛАВАЊЕ ЗАВОJНИХ ДИСЛОКАЦИJА
НА НАГНУТУ МЕЂУГРАНИЧНУ ПОВРШ БИМЕТАЛА

Резиме. У раду jе анализирано нагомилавање завоjних дислокациjа на
нагнуту међуграничну површ биметала. Претпостављено jе да jе удаљено оп-
терећење исто за све орjентациjе равни клизања у односу на међуповрш биме-
тала, или да jе смичући напон у равни клизања исти за све њене орjентациjе.
Распоред дислокациjа и њихов распон су зависни од орjентациjе равни кли-
зања, нарочито у случаjу константног удаљеног оптерећења. Концентрациjа
напона може да буде знатно већа у случаjу нагомилавања дислокациjа у правцу
коjи ниjе ортогоналан на међуповрш биметала. Позадински смичући напон у
равни клизања иза нагомиланих дислокациjа jе срачунат и дискутован.
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