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Abstract

The shape of a uniformly rotating liquid droplet deposited on a solid
substrate is determined by an iterative numerical integration of the
governing nonlinear differential equation. The differential equation
and the boundary conditions are derived by means of the variational
analysis which delivers the expressions for the specific configurational
force per unit area of the liquid/vapor interface, and the configura-
tional force along the liquid/solid/vapor contact circle. An analytical
proof for the orthogonality of the specific configurational force to the
surface of the droplet is constructed. The effect of rotation on the
droplet’s gyrostatic shape is discussed.

Keywords: Configurational force, contact angle, droplet, Laplace
pressure, line tension, rotation, surface energy, Young’s equation.

1 Introduction

The study of a liquid droplet spreading over solid substrates is a fundamental
problem in the mechanics of wetting, which facilitates better understand-
ing how to modify a surface to make it more or less wettable. This is of
great technological importance in the chemical industry (paints, ink, col-
oring ingredients), mechanical engineering (lubrication of machine parts by

∗Department of Mechanical and Aerospace Engineering, University of California, San
Diego; La Jolla, CA 92093-0411, USA, Montenegrin Academy of Sciences and Arts,Rista
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oils), electronics (spreading of lubricant droplets on magnetic hard disks,
molten solder spreading in electronic packaging), glass industry (anti-stain
or anti-frost treatments), soil and rock engineering (extraction of crude oil or
water), agriculture (wettability of pesticides and herbicides), biology (rise of
sap in plants, locomotion of insects on water, wetting of the eye), etc. Rep-
resentative general references covering many of these topics include Zisman
(1964), Rowlinson and Widom (1982), de Gennes (1985), de Gennes et al.
(2004), and Miller and Neogi (2008).

The present paper is an analytical and numerical determination of the
equilibrium shape of a uniformly rotating liquid droplet deposited on a flat
solid substrate. The study is based on the variational approach and me-
chanics of configurational forces. The utilized variational analysis has been
previously used by Johnson (1959), Blokhuis et al. (1995), Bormashenko and
Whyman (2008), Whyman et al. (2008), Blokhius (2005), and Bormashenko
(2009), and has its roots in general Gibbs thermodynamics (Gibbs, 1961).
Particular attention in these papers was given to the variational proof of the
independence of the wetting contact angle on the gravity field. This is ex-
tended in the present paper to include the contact angle independence from
the angular speed of rotation. The numerical determination of the droplet’s
shape is performed by an iterative solution of the governing nonlinear dif-
ferential equation, similar to the iterative procedure used to determine the
shape of a nonrotating liquid droplet (Padday, 1991; Blokhuis, 2005).

The analysis of a droplet’s spreading within the framework of configu-
rational forces was previously employed by Gao et al. (2000), Fan et al.
(2001), and Fan (2006), who studied molten solder spreading in electronic
packaging. Configurational forces were used to circumvent, to some extent,
the complexities associated with a detailed fluid mechanics solution of the
spreading process (Dussan, 1979; Ehrhard and Davis, 1991; Li et al., 2010).
A general study of the configurational forces in mechanics can be found in
review articles by Maugin (1995) and Suo (1997), and in the monograph by
Gurtin (2000). Configurational (material or energetic) forces are important
for the kinetic study of numerous problems of materials science, in which the
relevant velocity is assumed to depend on the corresponding configurational
force. For example, in dislocation theory the velocity of a dislocation seg-
ment is a function of the Peach-Koehler force acting on that segment (Hirth
and Lothe, 1982). In crystalline plasticity the rate of crystallographic slip
is a function of the resolved shear stress of that slip system (Asaro and
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Lubarda, 2005), while in fracture mechanics the velocity of the crack tip is
a function of the free-energy reduction associated with the advancement of
the crack tip (Freund, 1990).

In this paper we derive the expression for the configurational force acting
on a three-phase (liquid/solid/vapor) contact circle in terms of the surface
and line tensions, the volume of the droplet, and the contact angle between
the droplet and substrate. In the gyrostatic configuration, this configura-
tional force vanishes, which yields the Boruvka–Neumann equation (Boruvka
and Neumann, 1977), or the Young’s equation if the line tension effect is
omitted (Young, 1805). The specific configurational force, per unit area of
the liquid/vapor interface, is also derived, which is the difference between
the gravity and rotation dependent Laplace pressure and curvature scaled
surface tension. An analytical proof for the orthogonality of the specific
configurational force to the surface of the droplet is constructed. The effect
of rotation on the droplet’s gyrostatic shape is then discussed.

2 Variational analysis of a droplet spreading

Consider a liquid droplet slowly (quasistatically) spreading toward its equi-
librium configuration on a flat, smooth solid substrate, that is rotating with
a constant angular speed ω. Under constant ambient pressure and temper-
ature, the effective mechanical potential (Lamb, 1932; Lytletton, 1953) of
the system is

L = U −K , (1)

where

U = σlvS + (σsl − σsv)R
2π + 2πRτ +

∫ h

0
(∆γ)z dV (2)

is the free energy, and

K =

∫
V
k(ϱ) dV = 2π

∫ h

0
µ(r) dz , µ(r) =

1

8
ρlω

2r4 (3)

is the kinetic energy of the droplet. The specific weight difference is ∆γ =
γl − γv = (ρl − ρv)g, where ρ denotes density and g denotes gravitational
acceleration. Thus, the last term on the right-hand side of (3) represents
gravitational potential energy. The liquid volume element is dV = r2(z)π dz,
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Figure 1: The virtual displacement imposed in the horizontal (r) direction
takes the surface of the droplet from its solid- to dashed-line configuration.
The corresponding configurational forces are F and fr.

and the radius R = r(0). The kinetic energy density k is defined by

k(ϱ) =
1

2
ρlϱ

2ω2 , ϱ ∈ [0, r] . (4)

The scaled kinetic energy density µ(r) is introduced for convenience, and
is related to k by µ(r) = r2k(r)/4. The surface S in (2) is the surface
of the axisymmetric liquid/vapor interface whose profile r = r(z) is to be
determined. The solid/vapor and liquid/vapor surface energies are denoted
by σsv and σlv, the solid/liquid interface energy by σsl, and τ is the line
tension along the triple solid/liquid/vapor contact line. The expression for
the surface S is

S =

∫ h

0
2πr(z) ds , ds = [1 + r′ 2(z)]1/2 dz . (5)

In the sequel, it will be assumed there is no evaporation of liquid during
the spreading of the droplet, so that its volume remains constant. The
appropriate functional for the variational study is then

Π = L− λV , V =

∫ h

0
r2(z)π dz , (6)



Configurational forces and shape of a sessile... 31

where λ is the Lagrangian multiplier, with dimension of pressure. In view
of (2)–(5), the potential function Π in (6) can be written as

Π =

∫ h

0
Φ(z, r, r′) dz , (7)

where

Φ = σlv2πr(z)[1 + r′ 2(z)]1/2 − r2(z)π(λ− z∆γ)− 2πµ(r)

+
1

h

[
(σsl − σsv)r

2(z)π + 2πr(z)τ
]
δ̄(z) .

(8)

The Dirac delta function δ̄(z) is here defined such that
∫ h
0 r(z)δ̄(z) dz =

hr(0), because z has a dimension of the length h (height of the droplet).
Following the well-known derivation from Euler-Lagrange’s variational cal-
culus, the variation of the potential functional δΠ, divided by the corre-
sponding infinitesimal variation δr(z) of the shape function r = r(z), at an
arbitrary z = ζ, is

δΠ

δr(ζ)
= h

[
∂Φ

∂r
− d

dz

(
∂Φ

∂r′

)]
z=ζ

+

[
∂Φ

∂r′
δ̄(z − ζ)

]z=h
z=0

. (9)

The first term on the right-hand side has the usual form of Euler-Lagrange’s
differential equation, while the second term accounts for boundary condi-
tions. From (8), it readily follows that

∂Φ

∂r
= 2π

[
σlv(1 + r′ 2)1/2 − r(λ− z∆γ)− ∂µ

∂r

]
+

2π

h
[R(σsl − σsv) + τ ] δ̄(z) ,

(10)

∂Φ

∂r′
= 2πσlv

rr′

(1 + r′ 2)1/2
, (11)

d

dz

(
∂Φ

∂r′

)
= 2πσlv

[
(1 + r′ 2)1/2 − 2rκ

]
. (12)

The mean curvature of the droplet’s profile is κ = (κ1 + κ2)/2, and

κ1 =
1

r(1 + r′ 2)1/2
, κ2 = − r′′

(1 + r′ 2)3/2
(13)
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are its two principal curvatures. Furthermore, in view of (11),[
∂Φ

∂r′
δ̄(z − ζ)

]z=h
z=0

= 2πRσlv cos θ0δ̄(ζ) , (14)

because the slope at the apex of the droplet r′(h) vanishes by symmetry,
and the cosine of angle θ0 between the tangent to the droplet’s profile and
horizontal surface of the substrate is

cos θ0 = − r′(0)

[1 + r′ 2(0)]1/2
. (15)

Consequently, by substituting (10), (12), and (14) into (9), and noting that
rk = ∂µ/∂r, we obtain

δΠ

δr(ζ)
= 2πhr(ζ) [2σlvκ(ζ)− λ+ ζ∆γ − k(r)]

+ 2πR
(
σlv cos θ0 + σsl − σsv +

τ

R

)
δ̄(ζ) ,

(16)

where k(r) is the kinetic energy density at the droplet surface, defined by
(4).

2.1 Configurational forces

The configurational force (F ) per unit length of the three-phase (liquid/
solid/ vapor) contact circle, and the specific configurational force (f) per
unit area of the liquid/vapor interface are defined such that

−δΠ =

∫ h

0
2πr(z)fr(z)δr(z) ds+ 2πRFδR , (17)

where f(z) · δr(z) = fr(z) δr(z), so that fr(z) is the projection of f onto the
horizontal direction of the virtual displacement δr(z) (Fig.1). The direction
of f(z) is unspecified at this stage of analysis, although it will be shown in
section 4 that it is orthogonal to the droplet surface.1 By dividing this with
the shape variation δr(ζ), we find

− δΠ

δr(ζ)
= 2πhr(ζ)(1 + r′ 2)1/2 fr(ζ) + 2πRF δ̄(ζ) . (18)

1Physically, this orthogonality is anticipated from the outset, because the component
of the configurational force tangential to the surface of the droplet does not affect the
shape of the surface, and thus can be taken to be zero.
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Through comparing (16) and (18), we deduce the expressions for the con-
figurational forces

fr(ζ) =
1

[1 + r′ 2(ζ)]1/2
[λ− 2σlvκ(ζ)− ζ∆γ + k(r)] , (19)

and
F = σsv − σsl − σlv cos θ0 −

τ

R
. (20)

To determine an expression for the Lagrangian multiplier λ, we impose
the condition fr(h) = 0, which holds by the symmetry of the droplet around
its vertical axis through the apex of the droplet (z = h). Locally, at the
apex, the surface of the droplet is a sphere, say of radius b, so that κ = κ1 =
κ2 = 1/b at ζ = h, we obtain, from (19),

λ =
2

b
σlv + h∆γ . (21)

The substitution of (21) into (19) thus yields

fr(ζ) =
1

[1 + r′ 2(ζ)]1/2

{
2σlv

[
1

b
− κ(ζ)

]
+ (∆γ)(h− ζ) + k(r)

}
. (22)

2.2 Equilibrium configuration

In the equilibrium configuration of the droplet, its configurational forces
vanish (F = 0 and f = 0), so that (20) gives a modified Young’s equation
(incorporating the line tension τ), also known as the Boruvka–Neumann
equation (Boruvka and Neumann, 1977; Widom, 1995)

cos θ0 =
σsv − σsl
σlv

− τ

R
, (23)

while (22) yields a modified Laplace–Young’s equation (incorporating the
external field µ)

2σlv

(
κ− 1

b

)
= (∆γ)(h− ζ) + k(r) . (24)

In view of the curvature expressions (13), we can rewrite (24) as

1

r(1 + r′ 2)1/2
− r′′

(1 + r′ 2)3/2
=

∆γ

σlv
(h− ζ) +

2

b
+
k(r)

σlv
, (25)
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which reduces to the well-known Laplace’s equation in the absence of rota-
tion.

In the case of a spherical droplet model (i.e., zero gravity and no rota-
tion), Laplace’s equation gives 2(σlv/b) = ∆p. When this is applied locally
to the spherical top portion of the rotating droplet in the gravity field, we
can write 2(σlv/b) = ∆p(h). Consequently, in the equilibrium state of the
droplet, the Lagrangian multiplier λ in equation (21) can be interpreted as
the pressure difference between the liquid and vapor phase at z = 0, i.e.,
λ = ∆p(0) = ∆p(h) + h∆γ.

2.3 Numerical integration

The numerical integration of (25) proceeds in an iterative semi-inverse fash-
ion. In doing so, it is convenient to place the coordinate origin at the top
or apex of the droplet, with the coordinates (z, r) as in Fig.2, so that (25)
becomes

1

r(1 + r′ 2)1/2
− r′′

(1 + r′ 2)3/2
=

2

b
+

∆γ

σlv
z +

1

2

ρlω
2

σlv
r2 . (26)

The ratio σlv/∆γ is the square of the capillary length (e.g., de Gennes et
al., 2004). The integration proceeds by assuming the value of the unknown
radius b, integrating (26) until the slope r′ matches the angle θ0, calculated
from (23), i.e., r′(h) = cot θ0. The boundary conditions at the origin are
r(0) = 0 and infinite slope r′(0). The integration specifies the height h,
corresponding to the assumed value of b, and the matched slope r′(h). The
obtained solution is then the solution of the problem for a droplet which has
volume corresponding to the calculated r = r(z) and h. In the nonrotating
droplet case (µ = 0), the tabulated results are available for different values of
b and V (Bashforth and Adams, 1893; Padday, 1969,1991; Blokhuis, 2005).

The nondimensional version of (26) is

1

r̄(1 + r̄ ′ 2)1/2
− r̄ ′′

(1 + r̄ ′ 2)3/2
= 2 +B0z̄ +

1

2
Bω r̄

2 . (27)

where

B0 =
b2∆γ

σlv
, Bω =

b2ρl(bω
2)

σlv
(28)



Configurational forces and shape of a sessile... 35

O

z

r

h

q

O

g

O

Figure 2: The equilibrium shape of a liquid droplet deposited on a flat
substrate in the gravity field g. The equilibrium contact angle is θ0 and the
height of the droplet is h. The coordinate origin O is at the apex of the
droplet.

are the gravitational and rotational Bond numbers, and r̄ = r/b, z̄ = z/b.
Figure 3 shows a water droplet’s shape in the case when Bω = 0 (non-
rotating droplet), and Bω = 15. The gravitational Bond numbers are B0 =
5 and B0 = 10. These values were numerically adjusted by an iterative
procedure so that the volume of the droplet in both cases is the same V =
46.5 mm3. The solid substrate was selected so that the equilibrium wetting
contact angle is θ0 = 56◦. The capillary length of water (surrounded by air)

is l = 2.73 mm. The radii of curvature at the top of the droplet (b = B
1/2
0 l)

were therefore b = 6.1045 mm and 8.633 mm, respectively. The calculated
droplet’s heights are h = 1.7398 mm and 1.5583 mm, while the radii of the
contact circle with the substrate are R = 3.8718 mm and 4.0191 mm.

Figure 4 shows the water droplet’s shape in the case Bω = 0 and Bω =
18.576. The gravitational Bond numbers are B0 = 10 and B0 = 20. Again,
these values were numerically adjusted by an iterative procedure so that
the volume of the droplet in both cases is the same V = 275 mm3. The
solid substrate was selected so that the equilibrium wetting contact angle

is θ0 = 122◦. The radii of curvature at the top of the droplet (b = B
1/2
0 l)

were therefore b = 8.633 mm and 12.209 mm, respectively. The calculated
droplet’s heights are h = 4.417 mm and 3.933 mm, while the radii of the
contact circle with the substrate are R = 4.993 mm and 5.208 mm. The
maximum lateral spread of the droplet in the two cases are rmax = 5.252
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Figure 3: The equilibrium shape of a water droplet deposited on a flat
substrate in the gravity field. Solid line is for a non-rotating droplet and
the dashed line is for a uniformly rotating droplet, as described in the text.
The contact angle with the substrate is θ0 = 56◦.

mm and 5.444 mm.

In both cases shown in Figs.3 and 4, the centrifugal forces cause an
increase of the droplet’s spreading, i.e., an increase of the radius of the
contact circle and a lowering of the height of the droplet, compared to un-
rotating droplet shapes. In the case of a hydrophobic contact (θ0 > 90◦),
shown in Fig. 4, the maximum width of the droplet, which occurs at some
distance above the substrate, also increases by the rotation. The equilib-
rium droplets’ shapes shown in Figs.3 and 4 are close to ellipsoidal (oblate
spheroid) shapes. The range of validity of the ellipsoidal approximation of
a droplet’s shape has been recently examined by Lubarda and Talke (2011).

3 Variational analysis with virtual displacements
in the radial direction

Since z = ρ cosφ and r = ρ sinφ, the height of the droplet is h = ρ(0), while
the radius of the solid/liquid contact circle is R = ρ(π/2). Furthermore,
dz = (ρ′c − ρs) dφ, where, for brevity, the abbreviations s = sinφ and
c = cosφ are introduced. We note that ρ′c − ρs < 0, because, for the
selected orientation of the z-axis, dz < 0 for dφ > 0. The Lagrangian of the
system is

L = σsvS + (σsl − σsv)R
2π + 2πRτ + U −K , R = ρ(π/2) . (29)
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Figure 4: The equilibrium shape of a water droplet deposited on a flat
substrate in the gravity field. Solid line is for a non-rotating droplet and
the dashed line is for a uniformly rotating droplet, as described in the text.
The contact angle with the substrate is θ0 = 122◦.

The surface area of the liquid/vapor interface can be determined from

S =

∫ π/2

0
2πρ(ρ2 + ρ′ 2)1/2s dφ , (30)

while the potential energy due to gravity is

U = π(∆γ)

∫ π/2

0
ρ3(ρs− ρ′c)s2cdφ . (31)

The kinetic energy is

K = 2π

∫ π/2

0
µ̂(ρ, φ)(ρs− ρ′c) dφ , µ̂ =

1

8
ρlω

2ρ4s4 . (32)

If there is no evaporation of the droplet during spreading, so that its
volume remains constant, the appropriate potential for the variational study
is

Π = L− λV , V = π

∫ π/2

0
ρ2s2(ρs− ρ′c) dφ , (33)
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where λ is the Lagrangian multiplier, with dimension of pressure. In view
of (29)–(33), the potential function Π in (33) can be written as

Π =

∫ π/2

0
Φ̂(ρ, ρ′, φ) dφ , (34)

where

Φ̂ = σlv2πsρ[ρ
2 + ρ′ 2]1/2 + πρ2(ρs− ρ′c)s2(ρc∆γ − λ)

− 2π(ρs− ρ′c)µ̂(ρ, φ)

+ πρ [(σsl − σsv)ρ+ 2τ ] δ̄(φ− π/2) .

(35)

The variation of the potential functional δΠ, divided by the corresponding
infinitesimal variation δρ(ψ) of the shape function ρ = ρ(φ), at an arbitrary
angle φ = ψ, is

δΠ

δρ(ψ)
=

[
∂Φ̂

∂ρ
− d

dφ

(
∂Φ̂

∂ρ′

)]
φ=ψ

+

[
∂Φ̂

∂ρ′
δ̄(φ− ψ)

]φ=π/2
φ=0

. (36)

From (35) it readily follows that

∂Φ̂

∂ρ
= 2π

[
σlvs

2ρ2 + ρ′ 2

(ρ2 + ρ′ 2)1/2
− ∂µ̂

∂ρ
(ρs− ρ′c)− µ̂s

]
+ (∆γ)πρ2s2c(4ρs− 3ρ′c)− λπρs2(3ρs− 2ρ′c)

+ 2π [(σsl − σsv)R+ τ ] δ̄(φ− π/2) ,

(37)

∂Φ̂

∂ρ′
= 2π

[
σlvs

ρρ′

(ρ2 + ρ′ 2)1/2
+ µ̂c

]
− πρ2cs2 [(∆γ)ρc− λ] , (38)

d

dφ

(
∂Φ̂

∂ρ′

)
= 2π

{
σlvs

[
2ρ2 + ρ′ 2

(ρ2 + ρ′ 2)1/2
− 2κρ2

]
− µ̂s+

(
∂µ̂

∂ρ
ρ′ +

∂µ̂

∂φ

)
c

}
− (∆γ)πρ2sc[3ρ′sc+ 2ρ(c2 − s2)] + λπρs[2ρ′sc+ ρ(2c2 − s2)] .

(39)

The mean curvature of the droplet’s profile is κ = (κ1 + κ2)/2 , and

κ1(φ) =
1

ρs

ρs− ρ′c

(ρ2 + ρ′ 2)1/2
, κ2(φ) =

ρ2 + 2ρ′ 2 − ρρ′′

(ρ2 + ρ′ 2)3/2
(40)
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are its two principal curvatures. Furthermore, in view of (38),[
∂Φ̂

∂ρ′
δ̄(φ− ψ)

]φ=π/2
φ=0

= 2πRσlv cos θ0δ̄(ψ − π/2) , (41)

because the slope at the apex of the droplet ρ′(0) vanishes by symmetry,
and the cosine of the angle θ between the tangent to the droplet’s profile
and the horizontal surface of the substrate is

cos θ0 =
ρ′(π/2)

[ρ2(π/2) + ρ′ 2(π/2)]1/2
. (42)

Consequently, by substituting (37), (39), and (41) into (36), we obtain

δΠ

δρ(ψ)
= 2πρ2 sinψ[2σlvκ(ψ) + (∆γ)ρ cosψ − λ]

− 2πρ

(
∂µ̂

∂ρ
sinψ +

1

ρ

∂µ̂

∂ψ
cosψ

)
+ 2πR

(
σlv cos θ + σsl − σsv +

τ

R

)
δ̄(ψ − π/2) .

(43)

3.1 Configurational forces

The configurational force (F ) per unit length of the three-phase contact
circle, and the specific configurational force (f), per unit area of the liq-
uid/vapor interface, are defined such that

−δΠ =

∫ π/2

0
2πsρ(ρ2 + ρ′ 2)1/2fρ(φ) δρ(φ) dφ+ 2πRFδR , (44)

where f(φ) · δρ(φ) = fρ(φ)δρ(φ), so that fρ(φ) is the projection of f(φ) on
the radial direction of the virtual displacement δρ(φ) (Fig.3). By dividing
(44) by the variation δρ(ψ), there follows

− δΠ

δρ(ψ)
= 2π sinψρ(ρ2 + ρ′ 2)1/2 fρ(ψ) + 2πRF δ̄(ψ − π/2) , (45)

with ρ = ρ(ψ).
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Figure 5: The virtual displacement imposed in the radial (ρ) direction takes
the surface of the droplet from its solid- to dashed-line configuration. The
corresponding configurational forces are F and fρ.

By comparing (43) and (45), we deduce the following expressions for the
configurational forces

fρ =
ρ

(ρ2 + ρ′ 2)1/2

[
λ− 2σlvκ(ψ)− (∆γ)ρ cosψ +

1

ρ

(
∂µ̂

∂ρ
− 1

ρ

∂µ̂

∂ψ
cotψ

)]
,

(46)

F = σsv − σsl − σlv cos θ0 −
τ

R
. (47)

The expression (47) is the same as expression (17) from section 2. Regarding
expression (46), it is first observed that

k =
1

r

∂µ

∂r
=

1

ρ

(
∂µ̂

∂ρ
+

1

ρ

∂µ̂

∂φ
cotφ

)
=

1

2
ρlω

2ρ2 sin2 φ , (48)

which can be verified by inspection from µ(r) = µ̂(ρ, φ), r = ρ sinφ, and
z = ρ cosφ. Next, by symmetry, the droplet’s shape at ψ = 0 is locally a
sphere.2. The configurational force on a spherical expansion of a spherical
droplet (no gravity), is f = ∆p−2σlv/b, where ∆p is the pressure difference

2In the terminology of differential geometry, the apex of the droplet is a navel point of
its bounding surface.
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across the surface of the droplet, and b the radius of the droplet.3 We now
reconcile this expression with the expression for fρ(0), following from (46)
when ψ = 0. Since ρ′(0) = 0, κ1(0) = κ2(0) = 1/b, and ρ(0) = h (the height
of the droplet), we have

λ− 2

b
σlv − h∆γ = ∆p(0)− 2

b
σlv . (49)

Thus, the Lagrangian multiplier λ can be expressed as

λ = ∆p(0) + h∆γ , (50)

i.e., it can be interpreted as the pressure difference between the liquid and
vapor interface at the bottom of the droplet: λ = ∆p(π/2) = ∆p(0)+ h∆γ.
The substitution of (48) and (50) into (46) thus yields

fρ =
ρ

(ρ2 + ρ′ 2)1/2
[−2σlvκ+ (∆γ)(h− ρ cosψ) + ∆p(0) + k] . (51)

In the equilibrium configuration of the droplet, its configurational forces
vanish (F = 0 and fρ = 0), so that (47) gives a modified Young’s equation
(22), while (51) yields a modified Laplace–Young’s equation

2σlv

(
κ− 1

b

)
= (∆γ)(h− ρ cosψ) + k , (52)

because in the equilibrium configuration ∆p(0) = 2σlv/b.

4 Orthogonality of the specific configurational force
to the surface of the droplet

From the results presented in sections 2 and 3, it can now be proven that the
specific configurational force f is orthogonal to the surface of the droplet.
To that goal, it is first observed that(

ρ2 + ρ′ 2

1 + r′ 2

)1/2

= ρ sinφ− ρ′ cosφ , (53)

3Because, in this case the potential energy is Π = σlvS − (∆p)V , where S = 4πb2 and
V = (4π/3)b3, and by defining f such that 4πb2f = −∂Π/∂b, there follows the result.
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Figure 6: The specific configuration force f is orthogonal to the surface
of the droplet. Its components in the r and ρ directions are fr and fρ,
respectively. The tangent line to the surface of the droplet makes the angle
θ with the horizontal direction.

so that, from (22) and (45),

fr
fρ

= sinφ− ρ′

ρ
cosφ . (54)

Denoting by α the angle between f and fr (Fig. 6), fr = f cosα and fρ =
f sin(α+ φ), which can be rewritten as

f cosα = fr , f sinα =
fρ

cosφ
− fr tanφ . (55)

By dividing the last two expressions, and by using (54) to eliminate the
ratio fρ/fr, there follows

tanα =
cosφ+ (ρ′/ρ) sinφ

sinφ− (ρ′/ρ) cosφ
. (56)

From Fig. 6, the ratio (ρ′/ρ) = tan(φ− θ), which can be rewritten as

ρ′

ρ
=

tanφ− tan θ

1 + tanφ tan θ
, (57)

where θ is the angle between the tangent to the curve ρ = ρ(φ) and the
horizontal direction, as indicated in Fig.6. Consequently, by substituting
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(57) into (56),

tanα =
1

tan θ
, (58)

meaning that α = π/2 − θ, so that the configurational force f is indeed
orthogonal to the surface of the droplet, at any point on its surface S. The
magnitude of this force follows from (55) as

f =
1

sin θ
fr , (59)

where fr is specified by (22). Thus,

f(z) = 2σlv

[
1

b
− κ(z)

]
+ (∆γ)(h− z) +

1

2
ρlr

2ω2 . (60)

This can be interpreted as

f(z) = ∆p− 2σlvκ(z) , (61)

where the rotation-dependent Laplace’s pressure is

∆p = 2
σlv
b

+ (∆γ)(h− z) +
1

2
ρlr

2ω2 . (62)

Returning to the components of the specific configurational force, it is
also noted that, from (54) and (57), their ratio is

fρ
fr

= sinφ+ cosφ cot θ . (63)

5 Conclusions

The shape of a uniformly rotating liquid droplet in the gravity field was
determined by numerical integration of the governing nonlinear differential
equation. This was accomplished by using an iterative procedure, com-
monly used to determine the shape of a nonrotating droplet. The effect of
rotation on the gyrostatic shape of the droplet was discussed. The govern-
ing differential equation and the accompanying boundary conditions were
derived by means of a variational analysis which delivers the expressions
for configurational forces acting on the surface of the droplet and along the
three-phase contact circle. The specific configurational force per unit area of
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the liquid/vapor interface is the difference between the gravity and rotation
dependent Laplace pressure and the curvature scaled surface tension. The
configurational force along the liquid/solid/vapor contact circle depends on
the involved surface and line tensions, the volume of the droplet, and the
contact angle between the droplet and the solid substrate, but not on the
droplet’s specific weight or the angular speed of rotation. The utilized vari-
ational procedure is based on the infinitesimal variation of a droplet’s shape
imposed in the horizontal direction, parallel to the surface of the substrate.
An alternative derivation was then constructed, based on the displacement
variations along the radii from the center of the solid/liquid interface circle.
By comparing the results from these two derivations, it was proven that the
specific configurational force is orthogonal to the liquid/vapor interface, as
physically expected. The effect of rotation on the droplet’s gyrostatic shape
was discussed.
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Appendix A: Variational analysis with virtual dis-
placements orthogonal to the surface of the droplet

If it is recognized at the outset of the analysis that the specific configura-
tional force is orthogonal to the surface of the droplet, the magnitude of the
configurational force f can de derived directly from the variational analysis
based on the virtual displacement field δu which is orthogonal to the surface
of the droplet, and which satisfies the constraint of constant volume and the
non-separation condition (δu = 0) along the triple-phase contact line (un-
less the contact angle happens to be θ0 = 90◦, in which case δu along the
contact line is tangential to the substrate). The analysis can be conveniently
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Figure 7: The virtual displacement imposed in the direction orthogonal to
the surface of the droplet takes the surface from its solid- to dashed-line
configuration. The corresponding configurational force is f .

performed by adopting the parametric representation of the droplet’s profile
r = r(φ) and z = z(φ), where the angle φ ∈ [0, π/2] is used as a parameter
(Fig. 7). The arc length of the droplet’s profile is then ds = (r′ 2+z′ 2)1/2dφ,
while dz = z′dφ, where the superposed prime now designates the derivative
with respect to φ. The expressions for the relevant quantities appearing in
the potential function expression

Π = σlvS + (σsl − σsv)R
2π + 2πRτ +G−K − λV , R = r(π/2) , (A.1)

are

S =

∫ π/2

0
2πr(r′ 2 + z′ 2)1/2 dφ , V = −

∫ π/2

0
πr2z′ dφ , (A.2)

G = −
∫ π/2

0
(∆γ)πr2zz′ dφ , K = −2π

∫ π/2

0
µ(r)z′ dφ . (A.3)

The minus sign in front of the integrals of the expressions for V , G and K
appears because, as z runs from 0 to h, the angle φ changes from π/2 to 0
(i.e., z′ < 0). In view of (A.1)–(A.3), the potential function Π in (A.1) can
be written as

Π =

∫ π/2

0
Φ̃(r, z, r′, z′) dφ , (A.4)
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where

Φ̃ = 2πσlvr(r
′ 2 + z′ 2)1/2 + πr2z′[λ− (∆γ)z] + 2πµ(r)z′

+
[
(σsl − σsv)πr

2 + 2πrτ
]
δ̄(π/2− θ0)δ̄(π/2− φ) .

(A.5)

The delta function δ̄(π/2 − θ0) multiplies the last term on the right-hand
side of (A.5), because the radius R = r(π/2) of the solid/liquid contact area
is constant under the considered virtual displacement δu (thus the constant
term in (A.5) can be omitted), unless the contact angle θ0 = π/2, in which
case δu at the contact point is at the same time orthogonal to S and in the
direction parallel to the substrate.

The variation of the potential functional δΠ, divided by the correspond-
ing infinitesimal variation δu(ψ) of the shape function, is

δΠ

δu(ψ)
=

{[
∂Φ̃

∂r
− d

dφ

(
∂Φ̃

∂r′

)]
sin θ +

[
∂Φ̃

∂z
− d

dφ

(
∂Φ̃

∂z′

)]
cos θ

}
φ=ψ

+

(
∂Φ̃

∂r′

)
φ=π/2

δ̄(π/2− θ0)δ̄(π/2− ψ) (A.6)

−

(
∂Φ̃

∂r′
sin θ +

∂Φ̃

∂z′
cos θ

)
φ=0

δ̄(ψ) .

Due to the orthogonality of δu to the droplet’s profile, we used δr = δu sin θ
and δz = δu cos θ in the above derivation (Fig. 7). The first two terms on
the right-hand side have the usual form of the Euler-Lagrange’s differential
equation, while the second two terms account for the boundary conditions.

From (A.5) it readily follows that

∂Φ̃

∂r
= 2π

[
σlv(r

′ 2 + z′ 2)1/2 + rz′(λ− z∆γ) +
∂µ

∂r
z′
]

+ 2π [(σsl − σsv)R+ τ ] δ̄(π/2− θ0)δ̄(π/2− φ) ,

(A.7)

∂Φ̃

∂r′
= 2πσlv

rr′

(r′ 2 + z′ 2)1/2
= 2πrσlv cos θ , (A.8)

d

dφ

(
∂Φ̃

∂r′

)
= 2πσlv

[
(r′ 2 + z′ 2)1/2 − 2rz′κ

]
, (A.9)
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and
∂Φ̃

∂z
= −(∆γ)πr2z′ , (A.10)

∂Φ̃

∂z′
= 2πσlv

rz′

(r′ 2 + z′ 2)1/2
+ πr2(λ− z∆γ) + 2πµ ,

z′

(r′ 2 + z′ 2)1/2
= − sin θ ,

(A.11)

d

dφ

(
∂Φ̃

∂z′

)
= 2πrr′(−2σlvκ+ λ)− (∆γ)πr(rz′ + 2zr′) + 2π

∂µ

∂r
r′ . (A.12)

The mean curvature of the droplet’s surface is κ = (κ1 + κ2)/2, where

κ1 = − z′

r(r′ 2 + z′ 2)1/2
, κ2 =

z′r′′ − r′z′′

(r′ 2 + z′ 2)3/2
(A.13)

are its two principal curvatures. Furthermore, in view of (A.8) and (A.11),(
∂Φ̃

∂r′

)
φ=π/2

= 2πRσlv cos θ0 ,

(
∂Φ̃

∂r′
sin θ +

∂Φ̃

∂z′
cos θ

)
φ=0

= 2πµ(0) = 0 .

(A.14)

Consequently, by substituting (A.7)–(A.14) into (A.6), and noting that r′ =
−z′ cot θ and (z′ sin θ − r′ cos θ) = z′/ sin θ, we obtain

δΠ

δu(ψ)
= 2πr(ψ) [−2σlvκ(ψ) + λ− z(ψ)∆γ + k(r)]

z′(ψ)

sin θ

+ 2πR
(
σlv cos θ0 + σsl − σsv +

τ

R

)
δ̄(π/2− θ0)δ̄(π/2− ψ) .

(A.15)

The relation k = r−1∂µ/∂r was also used.
If the spreading proceeds to the equilibrium droplet configuration with

θ0 = π/2 at an arbitrary stage of spreading, (A.15) reduces to

δΠ

δu(ψ)
= 2πr(ψ) [−2σlvκ(ψ) + λ− z(ψ)∆γ + k(r)]

z′(ψ)

sin θ

+ 2πR
(
σsl − σsv +

τ

R

)
δ̄(π/2− ψ) , θ0 = π/2 .

(A.16)
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Otherwise, (A.15) gives

δΠ

δu(ψ)
= 2πr(ψ) [−2σlvκ(ψ) + λ− z(ψ)∆γ + k(r)]

z′(ψ)

sin θ
. (A.17)

A.1 Configurational forces

Consider first the case θ0 ̸= π/2, so that (A.17) applies, and introduce the
specific configurational force (f), per unit area of the liquid/vapor interface,
such that

−δΠ =

∫ π/2

0
2πr(φ)f(φ)δu(φ) ds , ds = (r′ 2 + z′ 2)1/2dφ . (A.18)

By dividing this with the shape variation δu(ψ), and recalling that r′ =
−z′ cot θ, we find

δΠ

δu(ψ)
= 2πr(ψ)f(ψ)

z′(ψ)

sin θ
. (A.19)

The comparison of (A.17) and (A.19) yields the expression for the configu-
rational force

f(ψ) = −2σlvκ(ψ) + λ− z(ψ)∆γ + k(r) . (A.20)

To determine an expression for the Lagrangian multiplier λ, we note that
from the local spherical geometry of the droplet near its apex φ = 0, the
configurational force there must be f(0) = ∆p(0) − 2σlv/b, where ∆p(0) is
the pressure difference across the surface of the droplet at φ = 0, and b is
the local radius of the curvature. Thus,

λ = ∆p(0) + h∆γ , (A.21)

where h is the height of the droplet. The substitution of (A.21) into (A.20)
therefore gives

f(ψ) = −2σlvκ(ψ) + (∆γ)[h− z(ψ)] + ∆p(0) + k(r) . (A.22)

If θ0 = π/2, so that (A.16) applies at a particular droplet’s configuration,
(A.18) is replaced with

−δΠ =

∫ π/2

0
2πr(φ)f(φ)δu(φ) ds+ 2πRFδu(π/2) , (A.23)
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so that
δΠ

δu(ψ)
= 2πr(ψ)f(ψ)

z′(ψ)

sin θ
− 2πRF δ̄(π/2− ψ) . (A.24)

The comparison of (A.24) and (A.16) yields (A.22) for the configurational
force f , and

F = σsv − σsl −
τ

R
(A.25)

for the configurational force per unit length of a three-phase contact line, in
agreement with (17) and (47) when θ0 = π/2.

Appendix B: General variational analysis

A more general derivation of the expressions for the specific configurational
forces f and F , not committed to a particular coordinate system, is as
follows. The potential function for a droplet deposited on a flat surface of
the substrate is

Π = σlvS + (σsl − σsv)A+ τ l+G−K − λV , (B.1)

where A is the contact area between the droplet and the substrate, and l
is the length of the circumference of A, i.e., the length of the three-phase
contact line C. If a surface element dS at an arbitrary point of S, which is
not a point of the three-phase contact line, is given a virtual displacement
δu = δum, in the direction of the unit vector m, then4

δ(dS) = 2κδun dS . (B.2)

The component of δu in the direction n orthogonal to dS is δun = δunn =
δu (m · n)n. As in the analysis by Suo (1997) and Fan (2005), the surface
element at the point of the three-phase contact line needs to be additionally
stretched in the direction tangential to the surface by the amount (δut ×

4Indeed, if dS is expressed in terms of its principal radii of curvature as dS =
R1R2 dϑ1dϑ2, then dS + δ(dS) = (R1 + δu)(R2 + δun) dϑ1dϑ2, so that δ(dS) =
(κ1 + κ2)δundS = 2κδundS, where κ1 = 1/R1 and κ2 = 1/R2 are the principal cur-
vatures, and δun = δu · n is the projection of δu onto n. The tangential component of
virtual displacement δut = P · δu = δu − δunn, where P = I − n ⊗ n is the projection
operator, does not alter dS. The two-dimensional identity tensor over the surface S is
denoted by I = t1 ⊗ t1 + t2 ⊗ t2, where t1 and t2 are its tangent vectors, and ⊗ denotes
the dyadic product.
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Figure 8: The equilibrium droplet’s configuration with the wetting contact
angle θ0. The unit normal orthogonal to the surface of the droplet along
the three-phase contact circle is n. The unit vector m is in the plane of
the substrate, orthogonal to the contact circle, while ez is the unit vector
orthogonal to the substrate.

dl) · n, to preserve the droplet’s contact with the substrate (after dS has
expanded by the normal component δun of the total (horizontal) virtual
displacement δu at the contact point (Fig.8). The infinitesimal arc length
along the contact line in the positive (counterclockwise) direction is dl. Since
δut = δum− δunn, we have (δut × dl) · n = δu(m× dl) · n = δu(ez · n)dl.
Consequently, the total area change of the surface element along the contact
line can be expressed as

δ(dS) = 2κδun dS + cos θ0 δu dl . (B.3)

In view of this, and the Reynolds transport theorem

δ

∫
V
η dV =

∫
V
δη dV +

∫
S
ηδun dS , (B.4)

where η is a scalar field defined within the volume V , we can write

δS =

∫
S
2κδun dS +

∮
C
cos θ0 δu dl , δV =

∫
S
δun dS ,

δA =

∮
C
δu dl , δl =

∮
C

δu

R
dl ,

δG =

∫
S
(∆γ)zδun dS , δK =

∫
S
kδun dS .

(B.5)

The radius of curvature of the contact circle C is denoted by R. Conse-
quently, the variation of the potential function (B.1), associated with an
infinitesimal displacement field δu over S, such that δu is horizontal along
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the triple-phase contact line (preserving the droplet’s contact with the sub-
strate), is

δΠ =

∫
S
(2σlvκ+z∆γ−k−λ)δun dS+

∮
C

(
σlv cos θ0 + σsl − σsv +

τ

R

)
δu dl .

(B.6)
The specific configurational force f = fn, per unit area of S, and the

configurational force F = Fm, per unit length of the three-phase contact
line C, are defined such that

−δΠ =

∫
S
f · δu dS +

∮
C
F · δudl . (B.7)

Since f · δu = fδun and F · δu = Fδu, equation (B.7) becomes

−δΠ =

∫
S
fδun dS +

∮
C
Fδu dl . (B.8)

The comparison of (B.6) and (B.8) therefore yields

f = −2σlvκ− z∆γ + k + λ , (B.9)

in agreement with (A.20), and

F = σsv − σsl − σlv cos θ0 −
τ

R
, (B.10)

in agreement with (47). The condition of constant volume is additionally
imposed in the numerical evaluation of the droplet’s shape at each stage
of its spreading, which specifies the Lagrangian multiplier λ appearing in
(B.9).
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Konfiguracione sile i ravnotežni oblik rotirajuće kapljice na
čvrstoj ravnoj podlozi

Ravnotežni oblik rotirajuće kapljice na ravnoj podlozi u polju gravitacije
je odredjen numeričkim rešenjem nelinearne diferencijalne jednačine, uz
korǐsćenje odgovarajuće iterativne procedure. Nelinearna diferencijalna jedna-
čina i njeni granični uslovi su izvedeni varijacionom analizom, koja daje
analitičke izraze za konfiguracione sile na površini kapljice i uzduž linije
kontakta izmedju kapljice, čvrste podloge i gasnog okruženja. Dokazano
je da je specifična konfiguraciona sila u pravcu normale na površ kapljice.
Kvalitativni i kvantitativni uticaj ugaone brzine na ravnotežni oblik kapljice
je diskutovan.
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