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Inelastic bouncing of a spherical ball in
the presence of quadratic drag with
application to sports balls

Marko V. Lubarda1 and Vlado A. Lubarda2

Abstract
The bouncing motion of a spherical ball following its repeated inelastic impacts with a horizontal flat surface is analyzed.
The effect of air resistance on the motion of the ball is accounted for by using the quadratic drag model. The effects of
inelastic impacts are accounted for by using the coefficient of restitution, which is assumed to remain constant during
repeated impacts. Also presented is an extension of the analysis allowing for a velocity-dependent coefficient of restitu-
tion. Closed-form expressions are derived for the velocity, position, maximum height, duration, and dissipated energy
during each cycle of motion. The decrease of successive rebound heights in the presence of air resistance is more rapid
for higher values of the launch velocity, because the drag force is stronger and acts longer. Air resistance can significantly
affect the value of the coefficient of restitution determined in a dropping ball test. For a given number of rebounds, the
energy dissipated by inelastic impacts is greater than the energy dissipated by air resistance, if the launch velocity is suffi-
ciently small. The opposite is true for greater values of the launch velocity. The derived formulas are applied to analyze
the bouncing motion of a ping pong ball, tennis ball, handball, and a basketball.
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Introduction

This paper is devoted to the analysis of bouncing
motion of a spherical ball in the presence of air resis-
tance, following its inelastic impacts and rebounds from
a horizontal flat surface. The ball is launched from the
ground in the vertical direction with an initial velocity
v0, or released from a height h0 above the ground. The
air resistance is represented by the drag force Fd whose
magnitude is proportional to the square of the velocity
v of the ball (Fd = cv2). The damping coefficient is
c=(1=2)cdrairA, where cd =0:47 is the experimentally
determined aerodynamic drag coefficient for a spherical
ball, rair is the air density at the given temperature, and
A=pD2=4 is the mid-cross-sectional area of the ball
whose diameter is D. This type of drag, known as quad-
ratic or Newton’s drag, applies in the range of the
Reynolds number 103 \Re= vD=nair \ 33105, where
nair is the kinematic viscosity of air. The impacts of the
ball with a horizontal flat surface are assumed to be
instantaneous, with the coefficient of restitution
k= v+n =v

�
n , where v6

n are the velocities of the ball just

after (+) and just before (�) the nth impact of the ball.
The coefficient 0\ k41 is assumed to remain constant
during repeated impacts, corresponding to given mate-
rial and structural properties of the ball and the
rebound surface, and environmental conditions. An
extension of the analysis to include the velocity-
dependent coefficient of restitution is discussed.
Closed-form expressions are derived for the velocity,
position, maximum height, duration, and dissipated
energy during the bouncing motion of the ball. It is
shown that the determination of the coefficient of resti-
tution (from a dropping ball test) can be significantly
affected by air resistance. Additional dissipation effects
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caused by inelastic impacts and air resistance on the
motion of the ball are also evaluated and discussed.
The results are expressed in terms of the coefficient k,
the parameter k= c=m, having the dimension length�1,
where m is the mass of the ball, and the terminal velo-
city of the ball vT = (g=k)1=2, which represents the velo-
city at which its weight is balanced by the drag force
during the descending motion of the ball (mg= cv2T).
The gravitational acceleration is denoted by g. The
derived formulas are applied to analyze the bouncing
motion of sports balls. The presented analysis is impor-
tant when studying the velocity-dependent coefficient
of restitution and the durability of sports balls, affected
by abrasion and other damage. The latter involves the
analysis of time and temperature dependent stiffness
changes of the material of the wall under repeated
impacts/bounces of the ball.1,2 The analysis is also
important for the study of granular materials, where
inelastic collisions among particles give rise to energy
dissipation which is qualitatively similar to the dissipa-
tion during repeated bouncing of a single ball from the
flat surface,3 with regard to the normal component of
impacts. The study is furthermore useful for the analy-
sis of collisions in mechanical milling processes of pow-
der technology.4,5 In geomechanics, most theoretical
analyses of rockfall collisions incorporate the velocity-
dependent coefficient of normal restitution, determined
from an experimental setup in which marble spheres
are dropped from different heights onto a marble
plate.6 The presented analysis can be extended to ana-
lyze more involved bouncing problems. For example,
the analysis of a mechanical oscillator, which consists
of a spherical ball bouncing on a vibrating table, is
important for the studying of chaotic motion in non-
linear dynamical systems, as well as the performance of
impact dampers used for vibration attenuation.7–9

Vertical motion of the ball in the presence
of quadratic drag

There are a large number of publications devoted to
the study of vertical and oblique projectile motions,
with a focus on the effects of ambient drag on the
motion of the ball. The drag force in these works was
commonly assumed to be either quadratic or linear in
velocity.10–16 The quadratic drag model applies to the
motion of sports balls, stones, arrows, cannonballs,
and other mechanically shot projectiles. The linear drag
model is used in the study of sedimentation of pollu-
tants or settlements of very light and small particles,
such as silt in water or mist in the atmosphere. It is also
utilized in the analysis of motion of very small respira-
tory droplets and in the related study of the spread of
disease.17 A brief summary of the classical analysis
of the ascending/descending motion of a spherical ball
of mass m, launched from the ground vertically up with
initial velocity v0 is presented in this section. If the air

resistance is assumed to be quadratic in the velocity
(Fd = cv2), the equation of motion is

dv

dt
=� k v2T + v2

� �
, ð2:1Þ

where t denotes the time. If a spherical ball is a solid
ball, then k= c=m=(3cd=8R)(rair=r); if a ball is a thin
spherical shell with the wall-thickness d� R, then
k=(cd=8d)(rair=r), where r is the mass density of the
material of the ball. Equation (2.1) can be integrated to
obtain the well-known solution

v(t)= vT tan tan�1
v0
vT
� gt

vT

� �
, 04t4tascent : ð2:2Þ

with the initial condition imposed v(t=0)= v0. The
time to reach the maximum height is obtained from the
condition v(t)=0, which gives tascent = (vT=g) tan

�1

(v0=vT).
The position of the ball is determined by integrating

the velocity v(t)=dy=dt, with y(t=0)=0. It follows
that

y(t)=
1

k
ln cos

gt

vT

� �
+

v0
vT

sin
gt

vT

� �� �
, 04t4tascent:

ð2:3Þ

The maximum height of the ball is found from
h0 = y(tascent), which gives

h0=
1

2k
ln 1+

v20
v2T

� �
, v0=vT exp (2kh0)� 1½ �1=2 : ð2:4Þ

Because of its frequent use in the subsequent analysis,
the inverse relationship, expressing v0 in terms of h0, is
also included in (2.4).

After reaching its maximum height h0, the ball falls
back toward the ground. The corresponding equation
of motion is dv=dt= k(v2T � v2), where v=� dy=dt is
now positive downwards. Since the net force acting on
the ball during its fall cannot be upward, one must have
mgø cv2, that is, v4vT. Upon integration, measuring
time t during the fall of the ball from the instant when
the ball is at the position of maximum height, it follows
that

v(t)= vT tanh
gt

vT

� �
, y(t)= h0 �

1

k
ln cosh

gt

vT

� �� �
,

04t4tdescent :

ð2:5Þ

The time to reach the ground (y=0) is

tdescent = (vT=g) cosh
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ v20=v

2
T

q
. The time tdescent is

greater than the time tascent, because the average kinetic
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energy and thus the average velocity during the descent
of the ball is lower than the average velocity during the
ascent of the ball, due to dissipation. The determina-
tion of the average velocities is presented in the
Appendix of this paper. The total duration of the
ascending/descending cycle of motion of the ball is

T0 = tascent + tdescent =
vT
g

tan�1
v0
vT

� �
+ cosh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ v20=v

2
T

q� �
:
ð2:6Þ

For any launch velocity v0, both tascent and tdescent are
smaller than v0=g, thus the duration of the ascending/
descending cycle in the presence of quadratic air resis-
tance is shorter than in vacuum (T0 \ 2v0=g). This was
discussed for other types of drag in10.

By using the identity 2dv=dt=d(v2)=dy, the differ-
ential equations of motion, such as (2.1), can be cast in
the form d(v2)=dy62kv2 =� 2g, where the plus sign
applies to the ascending, and the minus sign to the des-
cending portion of motion. It readily follows that the
velocity depends on the position according to

v(y)=vT
(1+ v20=v

2
T) exp (�2ky)� 1

	 
1=2
, ascent,

1� exp½�2k(h0 � y)�½ �1=2, descent:

(

ð2:7Þ

The plots of v= v(t) and v= v(y) are shown in the case
of the launch velocity v0 = vT in Figure 1.

In the case when the ball is dropped from a given
height h0 with zero initial velocity, the kinematic and
kinetic quantities of interest are expressed in terms of
h0, rather than v0. This is most conveniently accom-
plished by eliminating (in the previous expressions) v0
in terms of h0 using the second expression in (2.4). If
the density of the ball is comparable with the density of
the surrounding fluid, buoyancy force becomes impor-
tant, and should be incorporated in the analysis by
replacing the gravitational acceleration g with the effec-
tive gravitational acceleration geff = (1� rfluid=rball).

Finally, when the ball is dropped from a height h0
with an initial velocity v#, its velocity v= v(y) at the
height yø 0, and its time-dependence v= v(t), are
defined by

v2(y)= v2T + (v2# � v2T) exp½�2k(h0 � y)� ,
v(t)= vT tanh½(gt=vT)+ tanh�1 (v#=vT)�:

ð2:8Þ

Bouncing of the ball

This section is devoted to the analysis of the bouncing
motion of the ball after its repeated inelastic impacts
with a horizontal flat surface of the ground. It is an
extension of previous studies of bouncing motion
involving inelastic impacts, with and without the effects
of air resistance.3,18 The velocity of the ball just before

its first impact with the ground is obtained from the
second expression in (2.7) when y=0,

v1 = vT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp (�2kh0)

p
[

v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ v20=v

2
T

q : ð3:1Þ

An alternative representation of (3.1), used in13,19, is
v�21 = v�20 + v�2T . The velocity v1 approaches the termi-
nal velocity vT as the launch velocity v0 becomes much
greater than vT.

Upon impact of the ball with the horizontal flat
ground, the ball bounces vertically up, with the initial
rebound velocity kv1, where k is the (kinematic) coeffi-
cient of restitution. The value of k depends on the
material and structural properties of the ball and the
ground, the impact velocity,19–26 the gauge pressure in
the case of pressurized balls,27,28 and environmental
conditions.29–35 For a perfectly elastic impact k=1
(ignoring energy converted to elastic wave propagation
following the impact), for a perfectly plastic impact
k=0 (no rebound), and for an elastoplastic impact
0\ k \ 1. Temperature affects the value of the coeffi-
cient of restitution by its effect on the internal pressure
and the change of elastic stiffness of the material of the
ball. For example, the temperature rise of a squash ball
during the game raises its coefficient of restitution.29,30

Tennis balls also bounce higher on a hot day than on a
cold day. Bouncing of tennis and squash balls depends
on both the wall stiffness and air pressure inside the
ball36; on the other hand, bouncing of ping pong balls
is mostly affected by the wall stiffness.

For a given value of 0\ k41, all results from the
previous section can be used to describe the motion of
the ball during the second ascending/descending cycle
of motion by replacing v0 with kv1. For example, the
velocity of the ball at the end of the second cycle, just
before the second impact with the ground, is

v2 = kv1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ (kv1)

2=v2T

q
.

Subsequent rebound velocities

If it is assumed that the ball keeps bouncing vertically
and that the coefficient of restitution remains the same
for all impacts with the perfectly flat horizontal ground,
the velocity of the ball at the end of the nth cycle of
motion, that is, at the end of the (n� 1)st rebound cycle
just before the nth impact with the ground, is

vn =
kn�1v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+Sn�1v20=v
2
T

q , Sn=
Xn
i=0

k2i=
1� k2(n+1)

1� k2
,

(nø 1) :

ð3:2Þ

The coefficient Sn can be expressed recursively as
Sn =1+ k2Sn�1, with S0 =1. If there would be infi-
nitely many rebounds, S‘ =(1� k2)�1. In the case of
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repeated perfectly elastic impacts, Sn = n+1. The var-
iation of vn=vT versus v0=vT for n=1, 2, 3, 4 is shown
in Figure 2(a) for repeated perfectly elastic impacts, and in
Figure 2(b) for inelastic impacts with k2 =0:75. Because
of dissipation during inelastic impacts, vk \ 1

n \ vk=1
n for

n. 1. The quadratic air resistance is assumed to hold for
all bounces of the ball. When the rebound velocity
decreases so that the Reynolds number falls below the
threshold Re=103 for the quadratic damping model, a
nonquadratic drag force can be used instead.

Variable coefficient of restitution. The dependence of k on
the impact velocity (severity of impact) can be readily
included in the rebound analysis, provided that such
dependence is known for the material and structural

properties involved, from either experimental or theore-
tical considerations of the impact process. In general,
the higher the impact velocity the greater the extent of
possible inelastic deformation, thus the greater the dis-
sipation and smaller the coefficient of restitution.37 If
the coefficient of restitution of the ith impact is denoted
by ki (i=1, 2, 3, . . .), the velocity of the ball just before
the nth impact with the ground can be expressed as

vn =

Qn�1
i=1

ki

� �
v0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ 1+
Pn�1
j=1

Qj
i=1

k2
i

 !
v2
0

v2
T

vuut
, (nø 2) : ð3:3Þ

(a) (b)

Figure 1. The variation of the normalized velocity v=vT with (a) normalized time t=t (t = vT=g) and (b) normalized distance y=h0

during the ascending and descending portions of motion. The launch velocity is v0 = vT. Shown also are the average velocities. For a
given y, the velocity is smaller on the way down than on the way up.

(a) (b)

Figure 2. The variation of the non-dimensional velocities vn=vT at the end of the nth ascending/descending cycle of motion
(n = 1, 2, 3, 4) with the normalized launch velocity v0=vT in the case (a) k2 = 1 and (b) k2 = 0:75. For n . 1, the inequality holds
vk \ 1
n \ vk = 1

n .
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For instance, for n=4, the expression under the
square-root of the denominator on the right-hand side
of (3.3) is ½1+ (1+ k2

1 + k2
1k

2
2 + k2

1k2
2k2

3)v
2
0=v

2
T�. The

analysis in the sequel is restricted to the case of constant
coefficient of restitution, whose value may be considered
to be an average value of k for the considered number
of rebounds and the expected range of impact velocities,
provided the range of k values is sufficiently narrow.
This assumption will be further discussed in the section
Bouncing with a Variable Coefficient of Restitution.
The experimental determination of the velocity-
dependent coefficient of restitution in differently manu-
factured tennis balls and from different rebound sur-
faces has been reported, inter alia, in25. An investigation
of the k values for a ping pong ball dropped on a hard
surface from different heights has been reported in38.

Maximum rebound heights

The maximum height of the ball during the nth rebound
cycle is obtained from expression (2.4) for h0 by replacing v0
with kvn. After using expression (3.2) for vn, it follows that

hn =
1

2k
ln

1+Snv
2
0=v

2
T

1+Sn�1v20=v
2
T

, (nø 1) : ð3:4Þ

If air resistance is absent or ignored the maximum
heights are hn =k2nv20=(2g), for nø 0. In this case,

Xn
i=0

hi =
v20
2g

Sn ) Sn =
1

h0

Xn
i=0

hi =1+
h1
h0

+
h2
h0

+ . . . +
hn
h0

,

ð3:5Þ

which provides a simple physical interpretation of Sn in
terms of the sum of the normalized rebound heights.
For very large values of n, rebound heights become
very small. This means that the ball is effectively on the
ground, vibrating with a decreasing infinitesimal ampli-
tude, which is much smaller than the radius of the ball
and which may be comparable to the depths of indenta-
tion of the ground or the deformation of the ball caused
by repeated impacts in an actual test.

In determining the coefficient of restitution from a
dropping ball test, a ball is dropped from a given height
h0 with zero initial velocity. The maximum rebound
heights are then calculated from

hn =
1

2k
ln

1+Sn½exp (2kh0)� 1�
1+Sn�1½exp (2kh0)� 1� , (nø 1),

ð3:6Þ

which is obtained from (3.4) by using (2.4) to eliminate
v0 in terms of h0. If air resistance is ignored, (3.6)
reduces to hn = k2nh0, (nø 1). For example, Figure 3(a)
shows the maximum rebound heights during repeated
impacts of a ping pong ball (R=2cm, m=2:7 g)
released from the height h0 =1m. In the presence of air
resistance (k=0:1312 m�1) and with the coefficient of
restitution k=0:92 (as determined in the section On
the Determination of k from a Dropping Ball Test), it
takes 9 rebounds for the maximum rebound height to
decrease below 10% of the initial height (h9 =9:99 cm).
If air resistance were ignored, it would take 14 rebounds
for the maximum rebound height to decrease below
10 cm (h14 =9:68 cm). Finally, if air resistance is
included but rebounds are assumed to be perfectly elas-
tic (k=1), it would take 35 rebounds for the maximum

(a) (b)

Figure 3. Maximum rebound heights during repeated impacts of a ping pong ball with a horizontal flat surface of a ping pong
tabletop. The ball is released from the height h0 = 1 m. In part (a) the coefficient of restitution is k = 0:92, while in part (b) k = 0:825.
Shown also are the maximum rebound heights in the case of elastic impact with air resistance (k = 1, kh0 = 0:1312), and inelastic
impact without drag (k = 0:92 or 0:825, kh0 = 0).
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height to fall below 10 cm (h35 =9:81 cm). If the coeffi-
cient of restitution was k=0:825, the decrease of the

successive maximum rebound heights would be much
more rapid, as shown in Figure 3(b). In an actual
experiment, however, a slight spin of the ball, either ini-
tial or induced by a small non-sphericity of the ball
and/or a nonsymmetric air flow, or a small roughness
or tilt of the rebound surface, would quickly cause a
departure from perfectly vertical rebounds.

Time-dependent position of the ball

The plots of the non-dimensional position of the ball ky
versus the non-dimensional time gt=vT during the first
eight rise-and-fall cycles of motion of the ball initially
launched from the ground with velocity v0 =0:5vT are
shown in Figure 4(a) for k2 =0:75 and in Figure 4(b)
for k2 =0:85 (dashed curves). These curves are
obtained from (2.3) and (2.5) by replacing v0 and h0
with kvn and hn (nø 1), where vn and hn are defined by
(3.2) and (3.4), respectively. The solid curves corre-
spond to perfectly elastic impacts. The decrease of
rebound heights in the presence of air resistance is more
rapid for higher values of the launch velocity v0,
because the drag force is stronger and acts longer. The
dotted curves in Figure 4 depict the position of the ball
in the case of inelastic impacts with k2 =0:75 and
k2 =0:85, but in the absence of air resistance (c=0).
The position of the ball during the nth cycle of motion is

then specified by y(t)= kn�1v0t� gt2=2, where
04t42kn�1v0=g for n=1, 2, 3, . . ..

The duration of the nth rebound cycle is

Tn =
vT
g

tan�1
knv0=vTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+Sn�1v20=v
2
T

q
0
B@

1
CA+ cosh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+Snv

2
0=v

2
T

1+Sn�1v20=v
2
T

s2
64

3
75, (nø 1), ð3:7Þ

which is obtained by the generalization of expression
(2.6) for T0. The duration of the first n+1 cycles of
motion is T0!n=

Pn
i=0 Ti. If k \ 1, this sum is

bounded as n! ‘, that is, the duration of infinitely
many cycles of motion is finite (assuming that quadra-
tic air damping continues to hold even for infinitesi-
mally small rebounds). For example, if v0 = vT=2, the
bound is T0!‘ =5:866vT=g for k2 =0:75, and
T0!‘ =9:052vT=g for k2 =0:85. However, once the
cycle time (3.7) decreases to the order of the velocity-
dependent duration of the impact process itself, the lat-
ter needs to be included in the analysis of the bouncing
motion. Furthermore, once the rebound velocity
becomes so sufficiently small that the Reynolds number
falls below 103, the drag coefficient cd becomes a non-
linear function of the Reynolds number, and the quad-
ratic damping model ceases to apply. If k=1, the time
T0!n monotonically increases with the increase of n
without a bound, in spite of the presence of damping
by air. This means that the duration of the nth cycle
decreases much more rapidly with the increase of n in
the presence of inelastic deformation during impacts.
For example, for v0 = vT=2 and k2 =0:85, the
duration of the 50th rebound cycle of motion is
T50 =0:0105vT=g, while for k=1 it is
T50 =0:2709vT=g, about 26 times greater. The duration
of the first cycle of motion, preceding the first rebound
cycle, is T0 =0:9449vT=g.

(a) (b)

Figure 4. The non-dimensional position of the ball ky versus the non-dimensional time gt=vT during the first eight cycles of motion
of the ball initially launched from the ground with velocity v0 = 0:5vT. The dashed curves correspond to inelastic impacts with
(a) k2 = 0:75 and (b) k2 = 0:85, in the presence of air resistance (c 6¼ 0). The dotted curves correspond to inelastic impacts in
vacuum (c = 0). The solid curves correspond to elastic impacts (k = 1) in the presence of air resistance (c 6¼ 0).
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If air resistance is absent or ignored, the durations
of the corresponding cycles of motion are Tn =2knv0=g
(for nø 0). The duration of n+1 cycles is
T0!n =(2v0=g)

Pn
i=0 ki, assuming that all impacts are

instantaneous. If there are infinitely many cycles, then
T0!‘ =(2v0=g)(1� k)�1, which represents the upper
bound for the total duration of motion in the absence
of air resistance. The bouncing frequency thus tends to
infinity. This singular behavior can be remedied by
including in the analysis the finite duration of compres-
sion and restitution phases of the impact processes,
once Tn becomes of that order. In the context of an
inelastic bead bouncing off a stationary flat surface,
such phases have been analyzed in3.

On the determination of k from a dropping ball test

Expression (3.6) can be conveniently used to determine
the coefficients of restitution during repeated rebounds
from the flat surface by measuring the rebound heights
hn. For example, the coefficient of restitution after the
first rebound (k1) can be determined from the measured
height h1 = hexp1 as

k1 =
exp (2khexp1 )� 1

1� exp (�2kh0)

� �1=2
, ð3:8Þ

where h0 is the height from which the ball was dropped
with zero initial speed. If air resistance is ignored (k! 0),
the expression in (3.8) reduces to the well-known result in
vacuum k2

1 = hexp1 =h0.
39 One can similarly estimate k2

from the condition h2 = hexp2 , and likewise for the coeffi-
cients of restitution of subsequent impacts. Measuring the
time of flight between rebounds has also been used to
determine the coefficient of restitution (‘‘listening to the
coefficient of restitution’’40–43).

We performed a dropping ball test with new
(unused) plastic (non-celluloid) ping pong balls (ITTF
approved Butterfly and Nittaku Premium 40+balls),
that were dropped on a recreational Butterfly ping
pong table. Six tests were conducted by dropping a ball
from the height of 100 cm and by measuring the
rebound height using a vertically placed measuring
tape and a video recorder. The average rebound
heights for both brands of ball were almost equal to
each other (68.12 cm for Butterfly and 69.04 cm for
Nittaku balls). The calculations reported in the
sequel apply to Butterfly balls, having an average mea-
sured rebound height of hexp1 =68:12 cm. If air resis-
tance is ignored, the calculated coefficient of restitution
is kvacuum

1 = (hexp1 =h0)
1=2 =0:825. If air resistance is

included in the analysis, the damping coefficient for the
ball of radius R=2cm is c=3:5437310�4 kg/m, and
the parameter k= c=m=0:1312m�1, where m=2:7 g
is the mass of the ping pong ball. Thus, from (3.8) it
follows that in this case k1 =0:921. Consequently,
there is a difference of more than 10% in the calculated
value of the coefficient of restitution, depending on

whether the air resistance was included in the calcula-
tion or not.

The velocity of the ping pong ball just before its
impact with a table is, from (3.1), v1 =4:15m/s in the
case of air resistance, versus vvacuum1 = (2gh0)

1=2 =
4:43m/s. The terminal velocity of the ball is
vT =8:65m/s; it would take about 2 s to nearly reach
this velocity, provided that the dropping height h0 is
sufficiently large. It should be noted that very accurate
measurements of the initial and rebound heights are
needed to determine the value of k. For example, if the
average rebound height was found to be hexp1 =0:70m,
rather than 0:68m, the value of the coefficient of resti-
tution calculated from (3.8) would be k=0:935 rather
than 0.921. An appealing extension of the analysis
would be to measure the rebound heights of a ball
dropped from different initial heights, thus having dif-
ferent impact velocities, and from these measurements
(and the analysis presented in this paper) estimate the
dependence of the coefficient of restitution on the
impact velocity. The so-estimated velocity-dependent
coefficient of restitution could then be used to perform
an improved analysis of inelastic bouncing of the ball,
and a more accurate calculation of the maximum
rebound heights and rebound times. A comparative
study of the bouncing performance of celluloid versus
plastic ping pong balls is reported in44. There is also a
slight temperature dependence of the coefficient of res-
titution of ping pong balls. In contrast to rubbery
squash balls, the plastic material of ping pong balls is
such that the rebound height and the coefficient of res-
titution decrease with the increase of temperature.34,35

Bouncing with a variable coefficient of restitution. The effect
of a variable coefficient of restitution on the bouncing
motion of a ping pong ball with k=0:1312m�1, as
specified above, is quantified in this section. Based on
an average rebound height of 68.1 cm when the ball is
dropped from the height 100 cm, and an average
rebound height of 25.1 cm when the ball is dropped
from the height 30 cm, the coefficient of restitution
was calculated to be 0:92 and 0:948, respectively. If lin-
ear interpolation is adopted so that the coefficient
of restitution for the ith (i=1, 2, 3, . . .) impact is
ki =0:96� 0:04hi�1, the objective is to determine the
maximum rebound heights and the durations of the
ascending/descending cycles of motion. Figure 5 shows
the time-dependent position of the ball dropped from
the height h0 =1m during the first four rebound cycles
of motion (solid curve). The maximum rebound heights
are h1 =68 cm, h2 =51:6 cm, h3 =39:7 cm, and
h4 =32:2 cm, while the durations of the rebound cycles
are 0:845t, 0:729t, 0:646t, and 0:582t, where
t = vT=g=0:882 s. The corresponding coefficients of
restitution are k1 =0:92, k2 =0:933, k3 =0:94, and
k4 =0:944. If, instead of a variable coefficient of resti-
tution, a constant coefficient of restitution k=0:92
was used, the time-dependent position of the ball would
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be as shown in Figure 5 by the dashed curve. Finally,
the dash-dotted curve in Figure 5 shows the position of
the ball corresponding to a constant coefficient of resti-
tution kave =0:934, which is the average value of the
coefficients of restitution obtained from the dropping
ball tests with the heights of 30 cm and 100 cm. In the
latter case, the maximum rebound heights are h1 =69:9
cm, h2 =52 cm, h3 =40:2 cm, and h4 =31:9 cm, while
the durations of the rebound cycles of motion are
0:857t, 0:739t, 0:65t, and 0:579t. Thus, the use of the
average value of the coefficient of restitution in
the considered range of rebound heights is reproducing
the bouncing motion of the ping pong ball with a vari-
able coefficient of restitution reasonably well.

Dissipated energy

The total energy dissipated during the first n+1 cycles
of motion (the initial ascent/descent cycle and the sub-
sequent n rebound cycles, just after the (n+1)th

impact) is

Ediss
0!n=

1

2
mv20 �

1

2
m(kvn+1)

2=K0 1� k2(n+1)

1+Snv
2
0=v

2
T

� �
,

K0 =
1

2
mv20 :

ð3:9Þ

The portion of the dissipated energy due to inelastic
impacts only is

Ediss, k
0!n =

1

2
m(1� k2)

Xn+1

i=1

v2i =K0(1� k2)
Xn+1

i=1

k2(i�1)

1+Si�1v20=v
2
T

:

ð3:10Þ

The portion of the dissipated energy due to air resis-
tance is then Ediss, c

0!n =Ediss
0!n � Ediss,k

0!n .
For a given number of rebound cycles of motion n,

the portion of energy dissipated by inelastic impacts
Ediss, k
0!n is greater than the portion of energy dissipated

by air resistance Ediss, c
0!n for smaller values of the launch

velocity v0=vT, but beyond a certain value of v0=vT the
dissipated energy due to air resistance becomes increas-
ingly greater than that dissipated by inelastic impacts.
This is shown in Figure 6 for n=5 and n=10, and
for the coefficient of restitution corresponding to
k2 =0:85. The considered range of launch velocity is
0:01vT4v042vT. For v0 =0:01vT, 55.65% of K0 is dis-
sipated after 5 rebounds, and 80.32% after 10
rebounds. For v0 =2vT, 97.2% of K0 is dissipated after
5 rebounds, and 99.12% after 10 rebounds. The initial
energy is more rapidly dissipated for higher launch
velocities, because the ball stays in the air longer which
increases the dissipation due to air resistance.

In a single dropping ball test, the total dissipated
energy is Ediss =mg(h0 � h1). The portion of this
energy dissipated by inelastic impact is Ediss,k =
(1=2)m(1� k2

1)v
2
1 = (1=2) mv2T½2 � exp (�2kh0)� exp

(�2kh1)�, where expressions (3.1) and (3.8) for v1 and
k1 have been used.

Bouncing of sports balls

The obtained results may be applied to analyze the
bouncing of sports balls. For example, it is of interest
to determine the velocity (v#) that a ball player needs to
impart to the ball by his or her hand at a given height
(h0), if the ball is to bounce back to the same height
with a zero return velocity. From (2.8), the velocity v(0)
of the ball just before it hits the ground is obtained from
v2(0)= v2T + (v2# � v2T) exp (�2kh0). If the ball, after its
impact with the ground, is to bounce back to the height
h0, having zero velocity at that height, one requires that
v(0)= v0=k, where v0 = vT½exp (2kh0)� 1�1=2 is the
launch velocity from the ground required to reach the
height h0; see (2.4). Thus, it follows that

v#= vT 1+ k�2 exp (2kh0) exp (2kh0)� k2 � 1
	 
� �1=2

:

ð4:1Þ

In particular, if k=0 (no air resistance) and k . 0, this
velocity is v#= ½2gh0(k�2 � 1)�1=2. If k=1 (elastic
impact) and k. 0 (air resistance), then

Figure 5. The normalized position of a ping pong ball y=h0

versus the non-dimensional time t=t during the first four
rebound cycles, following the initial drop of the ball from the
height h0 = 1 m. The solid curve corresponds to a variable
coefficient of restitution, the dashed curve corresponds to
constant value k1 = 0:92, while the dot-dashed curve
corresponds to the average value kave = 0:934, obtained in the
dropping ball tests from heights 1 m and 0:3 m.
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v#=vT½exp (2kh0)� 1�. In the latter case, therefore, there
is a simple but remarkable relationship v#= v20=vT.

Figure 7 shows the variation of v# with h0 for a bas-
ketball (R=11:4 cm, m=0:625 kg, k=0:0184 m�1,
vT =23:08m/s), a handball (R=6:5 cm, m=0:45 kg,
k=0:0178 m�1, vT =23:5m/s), and a tennis ball
(R=3:25 cm, m=57g, k=0:0164 m�1, vT =24:44m/
s). The utilized coefficients of restitution, shown in the
figure legend, are adopted from.45 For example, if
h0 =1m, a tennis player bouncing the ball off the sur-
face of the court in preparation of a serve requires a
velocity v#=3:62m/s to the ball in order that it
bounces back to the same height, while handball and
basketball players need velocities of only 2.4 and
2.72m/s, respectively. The thin curves in Figure 7 are
the corresponding results in the case when air resistance
is ignored. By examining different values of the coeffi-
cient of restitution, it is also found that inelastic
impacts have a more pronounced effect on the velocity
v# than air resistance, at least in the range of heights h0
that is of interest for the considered ball games.
According to the International Tennis Federation, a
tennis ball dropped from a height of 254 cm (100 in)
onto a concrete court must rebound to a height of no
less than 135 cm and no more than 147 cm.25,39 By
using (3.8), this implies that as long as the wear of the
ball and the court, the gauge pressure of pressurized
balls, and the ambient conditions are such that the coef-
ficient of restitution is in the range 0:7534k40:786,
the ball will pass the approval test. If air resistance is
not taken into account, the coefficient of restitution
would have to be in the range 0:7294k40:761.
According to the International Table Tennis
Federation, a non-celluloid ping pong ball dropped
from a height of 305mm (12 in) onto a standard steel

plate must rebound to a height of no less than 237mm
and no more than 265mm. By using (3.8) again, this
implies that the coefficient of restitution should be in
the range 0:9134k40:968. If air resistance is not taken
into account, the coefficient of restitution would have
to be in the range 0:8824k40:932. If the ball is
dropped from the same height h0 with the same initial
velocity v# many times, once it does not bounce back to
the height h0 it means that the coefficient of restitution
has decreased due to damage caused by repeated
impact with the ground.

(a) (b)

Figure 6. The portions of energy dissipated by air resistance (Ediss, c
0!n ) and by inelastic impacts (Ediss, k

0!n ), and the total dissipated energy
Ediss

0!n (all normalized by the initial kinetic energy K0), versus the normalized launch velocity v0=vT, in the case of (a) n = 5 and (b) n = 10
rebounds. The square of the coefficient of restitution is k2 = 0:85.

Figure 7. The variation of v# with h0 for a basketball, handball,
and tennis ball. Thick curves are obtained with air resistance
included, while thin curves are obtained when air resistance is
not included. The corresponding coefficients of restitution are
shown in the figure legend.
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It is also of interest to compare energies dissipated
due to air resistance and due to inelastic impact in a
dropping ball test. If a ping pong ball is dropped from
a height h0 =1m, and if it rebounds to the height
h1 =0:68m, the total dissipated energy is Ediss =mg
(h0 � h1)=0:0085 J. Since the calculated coefficient of
restitution in this case is approximately k=0:92 (sec-
tion On the Determination of k from a Dropping Ball
Test), the portion of the energy dissipated as a conse-
quence of inelastic impact is Ediss,k =(1=2)m(1� k2)
v21 =0:0036 J, where v1 = vT½1� exp (�2kh0)�1=2 =
4:156m/s and vT =8:65m/s. Thus, 42.35% of the dissi-
pated energy is due to inelastic impact, while 47.65% is
due to air resistance. If a ping pong ball is dropped
from a height 0:3m, and rebounds to the height 0:25m,
the total dissipated energy is Ediss =0:0013 J. Since the
coefficient of restitution in this case is k=0:948, as
determined in the previous section, the portion of the
energy dissipated due to inelastic impact is
Ediss, k =7:746310�4 J, that is, 59.58% of the dissipa-
tion is from inelastic impact and 40.42% from air resis-
tance. On the other hand, if a tennis ball is dropped
from the height h0 =2:54m and if it rebounds to the
height h1 =1:47m, the total dissipated energy is
Ediss =0:5983 J. Since the coefficient of restitution in
this case is k=0:786, the portion of the energy dissi-
pated due to inelastic impact is Ediss, k =0:5205 J, that
is, 87% is dissipated owing to inelastic impact and only
13% owing to air resistance. Finally, if a basketball ball
is dropped from a height h0 =1m and if it rebounds to
the height h1 =0:73m, the total dissipated energy is
Ediss =1:6554 J. Since the calculated coefficient of
restitution in this case is k=0:868, the portion of
the energy dissipated due to inelastic impact is
Ediss, k =1:4833 J, that is, 89.6% is dissipated due to
inelastic impact and only 10.4% due to air resistance.
From the point of view of the physics of the impact
process itself, a basketball with a soft shell tends to flat-
ten when it bounces, while the bouncing of a ping pong
ball with a stiffer shell wall may involve local buckling
at higher impact velocities.36,46 Various dynamic
sources of energy loss during bounce of tennis balls
have been examined in47.

Conclusion

An analysis of the ascending/descending cycles of
motion of a spherical ball bouncing inelastically from a
horizontal flat surface was presented. The effect of air
resistance is accounted for by using the model of quad-
ratic drag, while the coefficient of restitution accounts
for inelastic impacts. The latter is assumed to be con-
stant during repeated impacts, dependent on the prop-
erties of the ball and the rebound surface. The
extension of the analysis to include the velocity-
dependent coefficient of restitution is also outlined. Air
resistance can significantly affect the experimentally

determined value of the coefficient of restitution in a
dropping ball test. The decrease of rebound heights
in the presence of air resistance is more rapid for
higher values of the launch velocity, because the
drag force is stronger and acts longer. For a given
number of rebounds, the energy dissipated by inelas-
tic impacts is found to be greater than the energy
dissipated by air resistance, provided that the launch
velocity is sufficiently small; the opposite holds for
greater launch velocities. The derived expressions
are applied to the analysis of the bouncing motion
of sports balls. The obtained results may be impor-
tant for the studying of the durability of sports balls,
the mechanics of granular materials, sand and rock
falls, powder technology, dynamical systems with
impact dampers, and for other structural mechanics
problems. In addition to being of research and tech-
nological interest, the analysis has a pedagogical
appeal. It involves theoretical, computational, and
experimental considerations in the fields of
dynamics, solid and fluid mechanics, and materials
science, which are well suited for coverage in engi-
neering courses or incorporation in individual or
group project assignments.36,43,48,49
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Appendix: Average velocities

The average velocity of a ball during its ascent and des-
cent can be defined with respect to time or position.
The average velocity with respect to time during the

ascent of the ball is fond from vtave = (1=tascent)Ð tascent
0 v(t)dt= h0=t

ascent, and similarly for the descent.

This gives

vtave =
1

2
vT ln (1+ v20=v

2
T)

1
tan�1 (v0=vT)

, ascent,
1

cosh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ v2

0
=v2

T

p , descent:

(

ðA:1Þ

The average velocity with respect to position is found
from vyave=(1=h0)

R h0
0 v(y)dy, and is given by

vyave =
2vT

ln (1+ v20=v
2
T)

v0
vT
� tan�1 (v0=vT), ascent,

ln v0
vT

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ v20=v

2
T

q
 �
� v0=vTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ v2
0
=v2

T

p , descent:

8<
:

ðA:2Þ

It can be readily verified that the time average of the

square of the velocity is (v2)tave = vtavev
y
ave. From Fig. 1

of the section Vertical Motion of the Ball in the
Presence of Quadratic Drag it is observed that

vdescentave \ vascentave , thus the descent time is longer than the

ascent time. As pointed out in12, at any given position
y (same potential energy), the kinetic energy is smaller
on the way down than on the way up, because of dissi-
pation due to air resistance. Consequently, the velocity
at any given height is smaller on the way down than
on the way up, which also means that the average
velocity during descent is smaller than during ascent. If

air resistance is ignored, then vtave = v0=2=
ffiffiffiffiffiffiffiffiffiffiffiffi
gh0=2

p
,

vyave =2v0=3, and (v2)tave = v20=3, for both ascending

and descending portions of motion.

List of notation

c damping coefficient
Ediss dissipated energy
Fd drag force
g gravitational acceleration
h maximum height of the ball
hn maximum height before the nth rebound

cycle
k damping parameter
K kinetic energy
m mass of the ball
R radius of the ball
Sn restitution dependent coefficient
t time
T0 duration of the initial cycle of motion
Tn duration of the nth rebound cycle
v velocity
v0 initial velocity
vn velocity before the nth impact
vT terminal velocity
v# drop velocity
y position coordinate
k coefficient of restitution
ki coefficient of restitution after ith impact
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