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Mechanics of a liquid drop deposited on a solid substrate
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New derivations of Young–Laplace’s and Young’s equations for a liquid drop deposited on a smooth

solid substrate are presented, based on an integral form of equilibrium conditions applied to

appropriately selected finite portions of the drop. A simple proof for the gravity independence of the

contact angle is constructed and compared with a commonly utilized but more involved proof based on

the energy minimization. It is demonstrated that the vertical component of the adhesive force along a

triple contact line does not depend on the specific weight of the liquid, provided that the line tension

along a triple contact is ignored. The uplifting of the surface of the substrate due to vertical force is

calculated by using a linear elasticity theory. The resulting singularity in the vertical displacement and

the discontinuity in the radial displacement along a triple contact line are eliminated by incorporating

in the analysis the effective width of the triple contact region. It is shown that the radial displacement

vanishes on the surface of the substrate outside its contact with a deposited drop.
Fig. 1 (a) An infinitesimal element around a triple contact line con-

sisting of a thin surface layer of a solid substrate under surface tensions

ssv and ssl, and an infinitesimal portion of a liquid–vapor interface under

surface tension s . The tangential component s cos q is balanced by
1. Introduction

The study of a drop’s spreading over solid substrates is a

fundamental problem in the mechanics of wetting.1–3 Two central

results in this field are Young–Laplace’s equation, relating the

pressure difference across the liquid–vapor interface of a drop to

its curvature and surface tension, Dp ¼ 2slvk, and Young’s

equation, relating the contact angle between a drop and a

solid substrate to the surface tensions of the problem, cos q ¼
(ssv � ssl)/slv. The indices (sv, sl, lv) designate the solid–vapor,

solid–liquid, and liquid–vapor interfaces, and s stands for the

surface tension or energy.

Different derivations of Young–Laplace’s and Young’s

equations are possible. The original derivation by Young4 and

Laplace5 is based on the consideration of the equilibrium of an

infinitesimal element of a pressurized thin membrane. Young’s

derivation of the expression for the contact angle is based on the

consideration of the equilibrium of a material element around a

triple contact line, which consists of an infinitesimal segment of a

liquid–vapor interface and a thin layer from the surface of a solid

substrate (Fig. 1a). The equilibrium condition in the horizontal

direction then gives slvcos q¼ ssv � ssl. Although Young did not

refer to it, the vertical component of the surface tension slvsin q is

balanced by the reaction forceY exerted along the contact line by

the substrate. The existence and the origin of such adhesive force

required for the vertical equilibrium has, however, been dis-

cussed in the literature,2,6 sometimes with the opposing views.7–10
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Furthermore, a significant amount of research has been devoted

to the determination of the shape of the deformed surface of a

soft substrate, particularly the uplifting of the surface caused by

the vertical component of the capillary force.11–24 Yet, in many

treatises of the subject, the vertical force is not shown on the

graph and the consideration of the balance of forces in the

vertical direction is omitted altogether.25 This is in contrast with
lv lv

ssv � ssl, and the vertical component slvsin q by the adhesive force Y. (b)

The free-body diagram of the extracted edge ring of the drop which was

in contact with the substrate in part (a) along its horizontal side. (c) The

free-body diagram of the isolated thin surface layer of the substrate.

The free-body diagram from part (a) is recovered by superposing the free-

body diagrams from parts (b) and (c).
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Fig. 2 (a) A liquid drop deposited on a solid substrate in a vapor

atmosphere. The gravity field is g, the radius of the contact circle between

the drop and the substrate is R, and the contact angle is q. (b) The free-

body diagram of the portion of the drop above the level z ¼ z(r). The

liquid pressure at that level is pl(z). The vapor pressure along the liquid–

vapor interface is pv(z) and the liquid–vapor surface tension along the

perimeter of radius r is slv.
the well-known equilibrium considerations of the floating lenses,

or drops deposited on liquid substrates, which are based on

Neumann’s triangle construction.26–28

The variational derivation of Young–Laplace’s and Young’s

equations is based on the energy minimization, in the spirit of the

Gibbs thermodynamics.29 The Young–Laplace’s equation

follows as the Euler–Lagrange equation of the variational prin-

ciple, while Young’s equation is obtained as the transversality

condition accounting for the boundary conditions.30–35 This

approach is particularly appealing because it incorporates in the

analysis the gravity, demonstrating explicitly that the specific

weight of the liquid does not affect the equilibrium contact angle,

provided that the line tension along the triple contact line is

omitted from the analysis, which has previously been a topic of

an active debate.36–41

The variational approach is powerful but mathematically

involved, having some physical aspects of the problem embedded

in the analysis only implicitly. It is, therefore, desirable to

provide a more direct derivation of Young–Laplace’s and

Young’s equations, with an additional insight into the physical

origin of the gravity independence of the contact angle. This is

accomplished in this paper by using equilibrium conditions from

Newtonian mechanics in an integral form, applied to appropri-

ately selected finite portions of the drop, or the entire drop. The

presented analysis is remarkably simple and is able to deliver all

mechanics results related to the equilibrium drop’s shape. As

such, it represents a valuable complement to the existing varia-

tional analysis, reviewed in the Appendix of this paper. The

integral equilibrium conditions furthermore deliver the expres-

sions for the horizontal and vertical components of the adhesive

force between a drop and a solid substrate along a triple contact

line, demonstrating explicitly their independence from the

specific weight of the drop, if the line tension is ignored. In the

last section of the paper we shed new light on the determination

of the deformed shape of the surface of the substrate by using a

linear theory of elasticity, and discuss the singularity of the

vertical component and the discontinuity of the radial compo-

nent of displacement below the triple contact line. The singu-

larities are eliminated by incorporating in the analysis the

effective width of the triple contact region. It is shown that the

radial displacement vanishes on the surface of the substrate

outside its contact with a deposited drop.
2. Derivation of Young–Laplace’s equation

Consider the equilibrium configuration of a liquid drop, sur-

rounded by its equilibrium vapor (or another, less dense fluid),

deposited on a solid flat substrate (Fig. 2a). The mass density of

the liquid is rl, the mass density of the surrounding vapor is rv,

and the gravity field is g. Fig. 2b shows a free-body diagram of

the portion of the drop above the level z ¼ z(r). The surface

tension slv acts along the perimeter of radius r at height z in the

direction tangential to the drop surface. Denoting by pl(z) and

pv(z) the liquid and vapor pressures at the two sides of the liquid–

vapor interface z ¼ z(r), where 0 # r # r, the hydrostatic

equations are

pl(z) ¼ pl(z) + gl[z(r) � z] and pv(z) ¼ pv(z) + gv[z(r) � z], (1)
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where gl ¼ rlg and gv ¼ rvg are the specific weights of liquid and

vapor. In equilibrium the net force should be zero. Thus, making

the sum of all force components in the z-direction for the portion

of the drop shown in Fig. 2b equal to zero gives

ðr
0

�
plðzÞ � pvðzÞ

�
2prdr� 2prslvsin f� gl

ðr
0

2pr½zðrÞ � z�dr ¼ 0:

(2)

The total force in the z-direction from the pressure pv, acting

over the curved surface of the drop, is equal to the integral of pv
over the projected area orthogonal to the z-direction, which

yields the corresponding contribution to the first integral on the

left-hand side of eqn (2). The radius of the circular base at the

level z is r, and f is the indicated angle between the drop’s profile

z ¼ z(r) and the base z ¼ z. By using eqn (1), eqn (2) becomes

ðr
0

rDp
�
zðrÞ�dr ¼ slvrsin f; Dp

�
zðrÞ� ¼ pl

�
zðrÞ�� pv

�
zðrÞ�:

(3)

The notation pl(z(r)) means pl evaluated at the level z(r). The

application of the derivative d/dr to both sides of eqn (3) then

gives

rDp
�
zðrÞ� ¼ slv

�
sin fþ rcos f

df

dr

�
: (4)

Since

tan f ¼ � 1

r0
; sin f ¼ 1

ð1þ r02Þ1=2
; cos f ¼ � r0

ð1þ r02Þ1=2
;

(5)
Soft Matter, 2012, 8, 10288–10297 | 10289



where r0 ¼ dr/dz, and since dr0/dr ¼ r00/r0, we have

df

dr
¼ 1

1þ r02
r00

r0
: (6)

The substitution of eqn (6) into eqn (4) yields

Dp ¼ 2slvk; 2k ¼ 1

rð1þ r02Þ1=2
� r00

ð1þ r02Þ3=2
; (7)

which is the axisymmetric form of Young–Laplace’s equation,

expressing the equilibrium of an infinitesimal element of a drop’s

surface locally. The derivation also delivers the geometric

expression for the mean curvature k in terms of r and its deriv-

atives, as given in eqn (7).

3. Contact angle and its gravity independence

Fig. 3a shows a free-body diagram of one-half of the drop,

together with a thin layer of the solid substrate on which it is

deposited. The forces with the components in the longitudinal

direction are only shown, as only they participate in the equi-

librium condition in that direction. For the general use of free-

body diagrams in mechanics, ref. 42 and 43 can be consulted. The

surface tensions within the solid–liquid and solid–vapor inter-

faces are denoted by ssl and ssv. The surface tension slv acts in the

horizontal direction along the curved liquid–vapor interface of

the vertical cut through the drop surface. The line tension along

the triple contact line is denoted by s, and in the free-body

diagram of Fig. 3a it acts at the two points where the vertical cut

intersects the triple contact line. The equilibrium condition in the

longitudinal direction is obtained by making the sum of all force

components in the longitudinal direction, acting on the free-body

shown in Fig. 3a, equal to zero. This gives

ðssl � ssvÞ2Rþ slvLþ 2s�
ð
A

�
plðzÞ � pvðzÞ

�
dA ¼ 0; (8)
Fig. 3 (a) The free-body diagram of one-half of the drop atop a thin

substrate layer. The forces with the components in the longitudinal

direction are only shown. The surface tensions of the solid–liquid, solid–

vapor, and liquid–vapor interfaces are ssl, ssv, and slv. The line tension

along the triple contact line is s. (b) The mid-section of the drop with

indicated variables used in the integration procedure.

10290 | Soft Matter, 2012, 8, 10288–10297
where L is the length of the liquid–vapor interface in the middle

cross-section of the drop, and A is the area of that cross-section.

Since liquid pressure is constant along the line z ¼ const.

(Fig. 3b), the pressure difference pl(z) � pv(z) along this line can

be calculated as the pressure difference across the liquid–vapor

interface at z ¼ z, which is given by Young–Laplace’s expression

eqn (7), Dp¼ 2slvk. Consequently, by writing dA¼ 2rdz, the area

integral in eqn (8) becomesð
A

�
plðzÞ � pvðzÞ

�
dA ¼ 2slv

ðh
0

ð2krÞdz; (9)

with h as the height of the drop. Furthermore, it can be verified

from eqn (7) that

2kr ¼ ð1þ r02Þ1=2� d

dz

"
rr0

ð1þ r02Þ1=2
#
: (10)

When this is substituted into the integral on the right-hand side

of eqn (9), there follows

ðh
0

ð2krÞdz ¼ L

2
� Rcos q; (11)

because (1 + r02)1/2dz ¼ dL is the arc length along the liquid–

vapor interface in the (z, r) plane, r0(h) ¼ 0 by the symmetry

around the z axis, and

r0ð0Þ ¼ �cot q;
r0ð0Þ�

1þ r02ð0Þ�1=2 ¼ �cos q: (12)

Consequently, eqn (9) givesð
A

�
plðzÞ � pvðzÞ

�
dA ¼ slvðL� 2Rcos qÞ: (13)

By introducing eqn (13) into eqn (8), we obtain the generalized

Young’s equation, also referred to as the Boruvka–Neumann

equation,44,45

ssl � ssv þ slvcos qþ s
R
¼ 0; (14)

i.e.,

cos q ¼ ssv � ssl

slv

� s
Rslv

: (15)

If the line tension is ignored, eqn (15) reduces to Young’s

equation. The presented derivation provides an explicit proof

that the contact angle q between the drop and a substrate is

independent of the gravity, or the specific weight of liquid, if the

line tension is ignored, and if the surface tension is assumed to be

independent of the curvature. An alternative proof available in

the literature,31,33 based on the variational approach and energy

minimization, is longer and more mathematically involved

(Appendix).

If the line tension is retained in the analysis, the gravity affects

the contact angle through the radius R, appearing in the second

term on the right-hand side of eqn (15), which depends on the

volume and the specific weight of the liquid. Since the typical

value of the ratio s/slv is about 1 nm,46 and can be either positive

or negative,47 the line tension effect cannot be neglected for
This journal is ª The Royal Society of Chemistry 2012



droplets of initial radius below about 100 nanometers.48,49 The

positive line tension increases the equilibrium value of the

contact angle, while the negative line tension decreases it.45

4. Vertical component of the adhesive force

Fig. 4 shows a free-body diagram of the equilibrium configura-

tion of the entire liquid drop. The liquid pressure at the solid–

liquid interface is p0l , and the constant vapor pressure at the

solid–vapor interface is p0v. Denoting by pl(z) and pv(z) the liquid

and vapor pressures at the two sides of the liquid–vapor inter-

face, z ¼ z(r), we can write

p0l ¼ pl(z) + glz(r) and p0v ¼ pv(z) + gvz(r). (16)

If H and Y are the horizontal and vertical components of the

adhesive force along the triple contact line, the equilibrium

condition in the vertical direction for the entire drop is

ðR
0

�
p1

0 � pvðzÞ
�
2prdr� 2pRY � gl

ðR
0

2przðrÞdr ¼ 0: (17)

Since, from eqn (16),

pl
0 � pv(z) ¼ pl(z) � pv(z) + glz(r), (18)

the substitution of eqn (18) into eqn (17) gives

Y ¼ 1

R

ðR
0

Dprdr; Dp ¼ plðzÞ � pvðzÞ; (19)

i.e.,

Y ¼ slv

R

ðR
0

2krdr; (20)

because Dp ¼ 2slvk by eqn (7).

Further progress with eqn (20) can be made by observing that

2krdr ¼ d

"
r

ð1þ r02Þ1=2
#
: (21)

When this is used to evaluate the integral in eqn (20), there

follows

ðR
0

2krdr ¼ Rsin q; sin q ¼ 1�
1þ r02ð0Þ�1=2: (22)
Fig. 4 The free-body diagram of the entire drop. The components of the

adhesive force along the triple contact line areH andY. The liquidpressure

at z ¼ 0 is pl
0, and the vapor pressure over the surface of the drop is pv(z).

This journal is ª The Royal Society of Chemistry 2012
Thus, the adhesive force eqn (20) becomes

Y ¼ slvsin q. (23)

In the absence of gravity eqn (17) reads (pl� pv)R
2p� 2RpY¼ 0.

Since Dp ¼ pl � pv ¼ 2(slv/R)sin q, eqn (23) follows.
5. Horizontal component of the adhesive force

We next elaborate on the expression for the horizontal compo-

nent of the adhesive force. Fig. 5a shows a free-body diagram of a

thin surface layer of the solid substrate, with a removed drop.

For the consideration of equilibrium in the horizontal direction,

only the forces in the horizontal plane of the substrate are shown.

The equilibrium condition in the longitudinal direction is then

(ssv � ssl)2R � 2RH � 2s ¼ 0. (24)

The horizontal component of the adhesive force is, therefore,

H ¼ ssv � ssl � s
R
: (25)

If the longitudinal equilibrium is imposed to one half of the

drop alone (free-body diagram without the solid substrate

underneath), as shown in Fig. 5b, the condition for the longitu-

dinal equilibrium is

slvL� 2RH �
ð
A

�
plðzÞ � pvðzÞ

�
dA ¼ 0: (26)

The integral in eqn (26) is equal to slv(L � 2Rcos q), as shown

in Section 3, so that eqn (26) yields an alternative expression for

the horizontal component of the adhesive force, which is

H ¼ slvcos q. (27)

Furthermore, by reconciling eqn (25) and eqn (27), we recover

the modified Young’s eqn (15).
6. The shape of the deformed substrate surface

In the absence of line tension s, the horizontal component of the

adhesive force H ¼ slvcos q is balanced by the surface tension

difference ssv � ssl, due to wetting of the solid surface below the

drop. We assume that this self-equilibrating system of tangential

forces within the infinitesimally thin surface layer of the substrate

does not induce an appreciable deformation in the bulk of the
Fig. 5 (a) The free-body diagram of a thin surface layer of the solid

substrate, with a removed drop above it. For the consideration of equi-

librium in the horizontal direction, only the forces within the plane of the

substrate are shown. (b) The free-body diagram of one-half of the drop

above the substrate layer from part (a).

Soft Matter, 2012, 8, 10288–10297 | 10291



substrate beneath it. This is consistent with a common practice of

neglecting deformation of a thick substrate due to surface tension

along the bounding free surfaces of the substrate. Consequently,

we consider the substrate deformation caused by the vertical

loading only. If there is no gravity, this loading consists of the

uniform vapor pressure pv
0 all over the substrate, and the self-

equilibrated loading shown in Fig. 6, which consists of Laplace’s

pressure p ¼ 2kslv and distributed line force Y ¼ Rkslv. For a

sufficiently stiff substrate, the deformation caused by this loading

is negligibly small, but may be more observable or measurable

for a softer substrate. The deformed surface shape of such soft

substrates will be determined in this section by using the linear

elasticity theory. Denoting by w ¼ w(r) the upward displacement

of the points on the surface of the substrate, we can write

w ¼ wp + wY. (28)

The expression for the displacement wp is well-known from the

classical linear elasticity,50–52 and is given by

wp ¼ � 2ð1� nÞpR
pG

E
� r

R

	
; r#R;

r

R

"
E

�
R

r

�
�
�
1� R2

r2

�
K

�
R

r

�#
; r$R;

8>>><
>>>:

(29)

whereG and n are the elastic shear modulus and the Poisson ratio

of the substrate material (assumed to be isotropic), and

KðkÞ ¼
ðp=2
0

dj�
1� k2sin2

j
�1=2; EðkÞ ¼

ðp=2
0

�
1� k2sin2

j
�1=2

dj

(30)

are the complete elliptic integrals of the first and second kinds,

respectively. The surface depression at the center is �wp(0) ¼
(1 � n)pR/G.

The expression for wY can be conveniently obtained by

superimposing the solutions of two loadings and by performing

an appropriate limit. The two loadings are the pressure p over the

circle of radius R, and the tension of magnitude p over the circle

of radius R + DR (DR � R). In the limit, the resulting

displacement is

wY ðrÞ ¼ dwp

dR
DR; pDR/Y ; (31)
Fig. 6 A self-equilibrated loading on the surface of the substrate, con-

sisting of pressure p ¼ 2kslv and distributed line force Y ¼ Rkslv.
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to first order in DR. By using eqn (29), and recalling that53

dEðkÞ
dk

¼ 1

k

�
EðkÞ � KðkÞ�; dKðkÞ

dk
¼ 1

k



EðkÞ
1� k2

� KðkÞ
�
; (32)

it follows that

wY ¼ 2ð1� nÞY
pG

K
� r

R

	
; r#R;

R

r
K

�
R

r

�
; r$R:

8>><
>>: (33)

The corresponding displacement at the center iswY(0)¼ (1� n)

Y/G. The expression (33) is a novel expression, complementing an

earlier representation of wY given by (3.96a) of ref. 52, page 77.

Since the line force (per unit length of the triple contact line) is

Y ¼ Rkslv ¼ slvsin q, while the pressure p ¼ 2kslv, with Rk ¼ sin

q, the substitution of eqn (29) and eqn (33) into eqn (28) gives the

expression for the vertical displacement

w ¼ 2w0

p

K
� r

R

	
� 2E

� r

R

	
; r#R;

r

R

"�
2� R2

r2

�
K

�
R

r

�
� 2E

�
R

r

�#
; r$R:

8>>><
>>>:

(34)

In this expression,

w0 ¼ ð1� nÞslv

G
sin q (35)

is the magnitude of the displacement at the center, w0¼�w(0). A

simple representation of the expression for the vertical displace-

ment w given by eqn (34) is novel. From eqn (35), we can identify

the elasto-capillary length scale l0¼ (1� n)slv/G, which represents

the ratioof the surface tensionslv and the elasticparameterG/(1� n).

For example, for a water drop on a Teflon substrate, l0z 1.13 �A,

while for a mercury drop on a Teflon substrate, l0 z 7.5 �A. In

the calculations, it was taken that the shear modulus and

Poisson’s ratio of Teflon were G ¼ 0.35 GPa and n ¼ 0.46,

respectively. The liquid–air surface tension slv of water is taken

to be 0.073 N m�1 and of mercury 0.486 N m�1.54 For very

deformable (silicon gel type) elastomer substrates, with the shear

modulus of 1 MPa and Poisson’s ratio close to 0.5, the length l0
is about 350 �A. For some gels and biological tissues, the shear

modulus may be 50 kPa or less, and l0 can be of the order of

micrometers.11,12,55

For a given contact angle, determined from Young’s equation

cos q ¼ (ssv � ssl)/slv, and for a given volume of the drop V0 ¼
4pR0

3/3, the radius R of a spherical cap drop, appearing in eqn

(34), is

R ¼
2R0cos

q

2

sin1=3 q

2

�
1þ 2cos2

q

2

�1=3
: (36)

Fig. 7a shows the plot of a nondimensional displacement

profile w(r)/w0. Fig. 8 shows the two displacement contributions

wp and wY (normalized by w0). The linear elasticity predicts a

displacement singularity for wY, and thus w, along the triple

contact line r ¼ R. The singularity can be eliminated by intro-

ducing a small but finite thickness of the liquid–vapor interface

layer and by considering Y to be distributed rather than
This journal is ª The Royal Society of Chemistry 2012



Fig. 7 (a) The normalized vertical displacement (w ¼ wp + wY) of the

surface of the substrate due to combined (p, Y) loading shown in Fig. 6.

The normalizing displacement factor w0 is specified by eqn (35). (b) The

corresponding normalized radial displacement (u ¼ up + uY). The

normalizing displacement factor u0 is specified by eqn (38).

Fig. 8 The normalized vertical displacement contributions wp and wY

from: (a) pressure p, and (b) line loading Y. Their sum gives the

displacement profile shown in Fig. 7a. The normalizing displacement

factor is specified by eqn (35).
concentrated line force acting on the surface of the substrate.

Such an approach, previously used in ref. 11 and 12 will be dis-

cussed further is Section 6.2. A nonlinear continuum model may

also be used, although an atomistic/molecular dynamics

approach is in essence needed to predict the uplifting of the

substrate very close to a triple contact line. Analytical and

experimental determination of the deformation of a highly elastic

silicone gel substrate due to a 10 mL water drop has recently been

reported by Jerison et al.,23 who measured surface and bulk

deformation of a thin elastic film near a three-phase contact line

using fluorescence confocal microscopy, but in their analytical

study they assumed that the contact angle is q ¼ p/2. Related

work also includes the contributions.16–24,56–59 Earlier studies

considered drops which were deposited on circular plates with

the bending stiffness,13 the analysis based on the plain strain

approximation,55,60 and the analysis of a liquid droplet deposited

in the middle of an elastic isotropic thin solid sheet,15 rather than

a semi-infinite substrate as in this paper. The formation of

circular ridges by the action of capillary forces can have signifi-

cant effects on the functioning of MEMS and other micro/nano

devices, lubrication of magnetic hard disks, molten solder

spreading in electronic packaging, painting, coating, anti-stain or

anti-frost treatments, etc. For example, the created wetting ridge

can significantly increase the spreading time of a deposited drop,

or can increase the roughness of the surface of a substrate upon

the drop’s evaporation, both having important technological

consequences.16
This journal is ª The Royal Society of Chemistry 2012
6.1. Radial displacement

Fig. 7b shows the radial displacement of the points on the surface

of the substrate, obtained from

u ¼ u0

8<
:� r

R
r\R;

0; r.R;
(37)

where

u0 ¼ ð1� 2nÞslvsin q

2G
: (38)

The expression for the radial displacement eqn (37) is derived

by the superposition of two contributions61

up ¼ � pð1� 2nÞ
4G

8<
:

r r#R;
R2

r
; r$R;

(39)

and

uY ¼ Yð1� 2nÞ
2G

0 r\R;

R

r
; r.R;

8<
: (40)

with p ¼ 2Y/R and Y ¼ slvsin q. The plots of the displacement

contributions up and uY are shown in Fig. 9. The displacement up

is linear, while uY ¼ 0 within r < R. In addition, up ¼ �uY for

r > R, so that u¼ 0 for r > R (Fig. 7b). The negative values of the

radial displacement u for r < Rmean that the radial displacement

there is toward the center. The linear elasticity also predicts that

the radial displacement is discontinuous at r ¼ R. The radial

displacement features shown in Fig. 7b were not previously noted

or discussed in the literature. The displacement singularity and

the displacement discontinuity will be eliminated in Section 6.2

by distributing Y over a small, but finite thickness. The linear

elasticity predictions of infinite vertical displacement and

discontinuous radial displacement can be interpreted as the

indications of the tendency for large vertical displacement and

large gradient of the radial displacement below the triple contact

line. If the substrate is incompressible (n ¼ 1/2), the radial

displacement vanishes at all points on the surface of the substrate

(u ¼ up ¼ uY ¼ 0).

6.2. Finite thickness of the surface layer

To eliminate the singularity in the vertical displacement and the

discontinuity in the radial displacement under the concentrated

line force, it is assumed that the line force Y is distributed over a

small but finite thickness, related to the thickness of the interface

of the liquid–vapor layer and the molecular interactions between

the liquid drop and the solid substrate. This thickness may vary

from 1 nm for harder substrates to millimicrons for softer rubber

or gel substrates.6,11,12,20 The vertical displacement along the

surface of the substrate due to the loading shown in Fig. 10 is

readily obtained from eqn (29) by superposing the displacements

due to tensile loading of magnitude q along r# R and the tension

loading of magnitude q along r < R0. This gives

wq ¼ 2ð1� nÞqR
pG

Wq; (41)
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Fig. 10 Uniform tensile load q applied within an annular region R0 # r

# R over the surface of the half space. The radial displacement u of the

points of this surface is measured along the r-direction, and the vertical

displacement w along the z-direction.

Fig. 9 The normalized radial displacement contributions up and uY from: (a) pressure p, and (b) line loadingY. Their sum gives the displacement profile

shown in Fig. 7b. The normalizing displacement factor is u0 from eqn (38), with p ¼ 2Y/R and Y ¼ slvsin q.

Fig. 11 (a) The vertical displacement wq along the surface of the

substrate due to distributed loading shown in Fig. 10. The normalizing

displacement factor is w0 ¼ (1 � n)q(R � R0)/G. The solid curve is for

R0 ¼ 0.9R, and the dotted curve for R0 ¼ 0.5R. (b) The corresponding

radial displacement uq. The normalizing displacement factor is u0 ¼
(1 � 2n)q(R � R0)/(4G).
where
Wq ¼

E

�
r

R

�
� R0

R
E

�
r

R0

�
; r#R0;

E

�
r

R

�
� r

R

"
E

�
R0

r

�
� 1� R0

2

r2

� �
K

�
R0

r

�#
; R0 # r#R;

r

R

"
E

�
R

r

�
� E

�
R0

r

�
þ
�
1� R0

2

r2

�
K

�
R0

r

�
�
�
1� R2

r2

�
K

�
R

r

�#
; r$R:

8>>>>>>>>>>><
>>>>>>>>>>>:
The corresponding radial displacement is obtained in the same

way by using eqn (39), with the result

uq ¼ ð1� 2nÞq
4G

0; r#R0;

r� R0
2

r
; R0 # r#R;

R2 � R0
2

r
; r$R:

8>>>>><
>>>>>:

(42)

Both eqn (41) and eqn (42) are novel displacement expressions,

not reported previously in the literature.

Fig. 11a shows the vertical displacement profile wq ¼ wq(r) in

the case when R0 ¼ 0.9R and 0.5R. The normalizing factor is

w0 ¼ wq(0). The formation of a blunted ridge under the load with

an increase of the interface thickness R � R0 is clear. Fig. 11b
10294 | Soft Matter, 2012, 8, 10288–10297
shows the corresponding radial displacement uq ¼ uq(r). The

radial displacement gradient is discontinuous at r ¼ R0 and r ¼
R. There is a sharp displacement gradient du/dr between r ¼ R0

and r ¼ R, which is sharper for smaller values of the difference

(R � R0), giving rise to displacement discontinuity amounting to

Y(1� 2n)/(2G) in the limitR/R0 and q(R�R0)/Y, as shown

earlier in Fig. 9b. It is noted that wq(0) ¼ wY(0), regardless of the

ratio R0/R.

Fig. 12 shows the total displacement components (w¼ wp + wq

and u ¼ up + uq), due to the tensile loading q within the range

R0 # r # R, and the pressure p within 0 # r < R0, in the case of

R0 ¼ 0.9R (wp and up are determined from eqn (29) and eqn (39),

in which R0 plays the role of R). The combined (p, q) loading is

self-equilibrating, so that p ¼ q(R2 � R0
2)/R0

2. The load q is
This journal is ª The Royal Society of Chemistry 2012



Fig. 12 (a) The vertical displacement w ¼ w(r) along the surface of the substrate due to tensile loading q shown in Fig. 10 and the pressure

p ¼ q(R2 � R0
2)/R0

2 within r < R0, where R0 ¼ 0.9R. The normalizing displacement factor is w0 ¼ (1 � n)p(R � R0)/G. (b) The same for the radial

displacement. The normalizing displacement is u0 ¼ (1 � 2v)p(R � R0)/(4G).

Fig. 13 The virtual displacement dr(z) imposed in the r-direction takes the

surfaceof the drop r¼ r(z) from its solid- to dashed-line configuration.Due

to symmetryaround the z-axis, onlyone-half of the surfaceprofile is shown.
statically equivalent to the line tension Y ¼ sslsin q in the sense

that Y ¼ q(R � R0). Since (p, q) is self-equilibrating, the

displacement w diminishes to zero at large r much faster than wq

(cf. Fig. 11a and 12a). The vertical displacement at the center is

wð0Þ ¼ �w0

R

R0

¼ �ð1� nÞs
G

Rsin q

R0

: (43)

Furthermore, since the line force Y is distributed over the finite

thickness R � R0 ¼ 0.1R, the discontinuity in the radial displace-

ment at r ¼ R from Fig. 7b is eliminated, albeit the displacement

gradient du/dr is still large in the range 0.9R < r < R (Fig. 12). The

radial displacement vanishes for r$R and, by symmetry, at r¼ 0.

The remarkable feature of vanishing radial displacement beyond

the radius r ¼ R has not been observed in the literature before.

Rusanov12 studied the deformation of an elastic substrate caused

by a deposited liquid drop, but did not impose the self-equili-

brating nature of the liquid pressure exerted by the drop and the

vertical component of adhesive force along the triple-contact line.

Furthermore, his analysis did not proceed sufficiently far to reveal

the vanishing radial displacement along the substrate outside its

contact with the drop. The wetting angle, as determined by

Young’s equation, is locally not affected by the formation of the

blunted ridge due to substrate deformation, as noted in ref. 62.

7. Conclusion

We have presented in this paper a new derivation of both the

Young–Laplace equation for the shape of a liquid drop deposited
This journal is ª The Royal Society of Chemistry 2012
on a solid substrate, and the Young equation for the contact

angle between the two. This is accomplished by applying an

integral, rather than a local form of the equilibrium condition for

an appropriately selected finite portion of the drop, or the entire

drop. It is demonstrated that, in the absence of line tension along

a triple contact line, neither the contact angle nor the vertical

adhesive force exerted on a drop by the substrate, or vice versa,

depends on the gravity or specific weight of the drop. The simple

analysis presented in this paper delivers all mechanics results

related to the equilibrium drop’s shape and, as such, it represents

a valuable complement to the existing variational analysis. The

uplifting of the surface of the substrate caused by the vertical

adhesive force is determined by using a linear elasticity theory.

The singularity in the vertical component and the discontinuity

in the radial component of the displacement below the triple

contact line are eliminated by distributing the capillary force over

a small but finite width around the contact line. It is shown that

the radial displacement vanishes on the surface of the substrate

outside its contact with a deposited drop. A nonlinear continuum

mechanics or an atomistic/molecular dynamics approach is

needed to predict the uplifting of the substrate very close to the

triple contact line. This is of importance for soft substrates

because the formation of circular ridges by the action of capillary

forces can have adverse effects on the functioning of MEMS,

NEMS, microfluidic and medical devices.

Appendix: variational analysis of a drop’s shape and
contact angle

We present in this appendix the derivation of Young–Laplace’s

and Young’s equations based on the variational approach and

energy minimization. The derivation is closely related to the

original derivations from ref. 30 and 31. Under constant ambient

pressure and temperature, the free energy of the system, con-

sisting of a liquid drop deposited in the vapor environment on a

stiff solid substrate, whose infinitesimal deformation can be

ignored, is

U ¼ slvS þ ðssl � ssvÞR2pþ 2pRsþ
ðh
0

DgzdV : (A1)
Soft Matter, 2012, 8, 10288–10297 | 10295



The last term on the right-hand side of eqn (A1) represents the

gravitational potential energy, while

S ¼
ðh
0

2prðzÞds; ds ¼ �
1þ r02ðzÞ�1=2dz (A2)

is the surface of the axisymmetric liquid–vapor interface, whose

profile r ¼ r(z) is to be determined. If the liquid is assumed to be

incompressible and if there is no evaporation, the liquid volume

V remains constant and the appropriate functional for the

variational study is

P ¼ U � lV ; V ¼
ðh
0

r2ðzÞpdz: (A3)

The Lagrangian multiplier l has the dimension of pressure. In

view of eqn (A1) and eqn (A2), the potential function P can be

written as

P ¼
ðh
0

Fðz; r; r0Þdz; (A4)

where

F ¼ slv2prðzÞ
�
1þ r02ðzÞ�1=2�r2ðzÞpðl� zDgÞ

þ 1

h

�ðssl � ssvÞr2ðzÞpþ 2prðzÞs�dðzÞ: (A5)

The Dirac delta function is �d(z), and h is the height of the drop.

The variation of the functional dP, divided by an infinitesimal

variation dr(z) at an arbitrary z ¼ z (Fig. 13), must vanish at the

equilibrium state,

dP

drðzÞ ¼ h



vF

vr
� d

dz

�
vF

vr0

��
z¼z

þ


vF

vr0
dðz� zÞ

�z¼h

z¼0

¼ 0: (A6)

The first term on the right-hand side yields the Euler–

Lagrange’s differential equation, while the second term accounts

for the boundary conditions. From eqn (A5), it readily follows

that

vF

vr
¼ 2p

h
slvð1þ r02Þ1=2�rðl� zDgÞ

i
þ 2p

h

�
Rðssl � ssvÞ þ s

�
dðzÞ;

vF

vr0
¼ 2pslv

rr0

ð1þ r02Þ1=2
;

d

dz

�
vF

vr0

�
¼ 2pslv

h
ð1þ r02Þ1=2�2rk

i
:

(A7)

The mean curvature of the drop’s profile is the arithmetic

mean of the two principal curvatures,

k ¼ 1

2
ðk1 þ k2Þ ; k1 ¼ 1

rð1þ r02Þ1=2
; k2 ¼ � r00

ð1þ r02Þ3=2
:

(A8)

Furthermore, in view of the second expression in eqn (A7),

vF

vr0
dðz� zÞ

�z¼h

z¼0

¼ 2pRslvcos qdðzÞ; (A9)
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because the slope at the apex of the drop r0(h) vanishes by

symmetry, and the cosine of the angle between the tangent to the

drop’s profile and the horizontal surface of the substrate is

cos q ¼ � r0ð0Þ�
1þ r02ð0Þ�1=2 : (A10)

Consequently, by substituting eqn (A7) and eqn (A9) into eqn

(A6), there follows

2phrðzÞ�2slvkðzÞ � lþ zDg
�

þ 2pR
�
slvcos qþ ssl � ssv þ s

R

	
dðzÞ ¼ 0: (A11)

For this to vanish, the two terms must vanish separately, which

gives

l � 2slvk(z) � zDg ¼ 0, (A12)

and

ssv � ssl � slvcos q� s
R
¼ 0: (A13)

The last expression is a modified Young’s equation, incorpo-

rating the line tension s.44,45 Eqn (A12) yields the differential

equation for the shape of the drop. To determine an expression

for the Lagrangian multiplier l, the fact that the surface of the

drop near the apex z ¼ h is locally a sphere, of some radius b, so

that eqn (A12) gives l¼ hDg + 2slv/b is used. Since Dp(h)¼ 2slv/b,

by the elementary consideration of a pressurized spherical shell,

the Lagrangian multiplier can also be interpreted as the pressure

difference between the liquid and vapor phases at z ¼ 0, i.e., l ¼
Dp(0) ¼ Dp(h) + hDg. Thus, eqn (A12) can be rewritten in

the form of Young–Laplace’s equation 2slvk(z) ¼ Dp(z), where

Dp(z) ¼ Dp(0) � zDg.
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