
Provided for non-commercial research and educational use.  
Not for reproduction, distribution or commercial use.

This article was originally published in the Reference Module in Materials Science and Materials Engineering, 
published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the 
author’s institution, for non-commercial research and educational use including without limitation use in instruction 

at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s 
administrator.

All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing 
copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. 

For exceptions, permission may be sought for such use through Elsevier’s permissions site at:

 http://www.elsevier.com/locate/permissionusematerial

Lubarda V.A., Mechanics of Materials: Plasticity. In: Saleem Hashmi (editor-in-chief), Reference Module in Materials 
Science and Materials Engineering. Oxford: Elsevier; 2016. pp. 1-24.

ISBN: 978-0-12-803581-8 
Copyright © 2016 Elsevier Inc. unless otherwise stated. All rights reserved.



Author's personal copy
Mechanics of Materials: Plasticity$

VA Lubarda, University of California, San Diego, CA, USA

r 2016 Elsevier Inc. All rights reserved.

1 Yield Surface 1

1.1 Yield Surface in Strain Space
 2

1.2 Yield Surface in Stress Space
 2

2 Plasticity Postulates, Normality and Convexity of the Yield Surface
 3

2.1 Ilyushin's Postulate
 3

2.2 Drucker's Postulate
 4

3 Constitutive Equations of Elastoplasticity
 5

3.1 Strain Space Formulation
 5

3.2 Stress Space Formulation
 5

3.3 Yield Surface with a Vertex
 6

4 Constitutive Models of Plastic Deformation
 6

4.1 Isotropic Hardening
 6

4.2 Kinematic Hardening
 7

4.3 Combined Isotropic-Kinematic Hardening
 8

4.4 Multisurface Models
 8

5 Pressure-Dependent Plasticity
 8

5.1 Drucker–Prager Yield Condition for Geomaterials
 8

5.2 Gurson Yield Condition for Porous Metals
 8

5.3 Constitutive Equations of Pressure-Dependent Plasticity
 9

6 Non-Associative Plasticity
 9

6.1 Yield Vertex Model for Fissured Rocks
 11

7 Deformation Theory of Plasticity
 11

7.1 Application of Deformation Theory Beyond Proportional Loading
 11

8 Thermoplasticity
 12

9 Rate-Dependent Plasticity
 13

9.1 Power-Law and Johnson–Cook Models
 14

9.2 Viscoplasticity Models
 14

10 Phenomenological Plasticity Based on the Multiplicative Decomposition
 15

10.1 Elastic and Plastic Constitutive Contributions
 16

10.2 Rate Dependent J2 Flow Theory
 17

11 Strain Gradient Plasticity
 18

11.1 Gradient-Enhanced Effective Plastic Strain
 18

11.2 Rate of Work
 19

11.3 Principle of Virtual Work
 19

11.4 Helmholtz Free Energy
 20

11.5 Yield Condition and Plastic Loading Conditions
 21

11.6 Recoverable and Dissipative Parts of q and tk
 21

11.7 Yield Surface in qdisij Space
 22

11.8 Proportional Loading
 22

References
 22

1 Yield Surface

Materials capable of plastic deformation usually have an elastic range of purely elastic response. This range is a closed domain in
either stress or strain space whose boundary is called the yield surface. The shape of the yield surface depends on the entire
deformation path from the reference state. The yield surfaces for actual materials are mainly smooth, but may have or develop
pointed pyramidal or conical vertices. Physical theories of plasticity Hill (1967) imply the formation of a corner or vertex at the
☆Change History: March 2015. V.A. Lubarda has changed the title to Mechanics of Materials: Plasticity. Section 11: ‘Strain Gradient Plasticity’ has been added,
The Section References has been enriched by additionally cited references in Section 11, and 3 more references in the rest of the manuscript.
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loading point on the yield surface. Experimental evidence, on the other hand, suggests that, while relatively high curvature at the
loading point is often observed, sharp corners are seldom seen Hecker (1976). Experiments also indicate that yield surfaces for
metals are convex in Cauchy stress space, if elastic response within the yield surface is linear and unaffected by plastic flow.
1.1 Yield Surface in Strain Space

The yield surface in strain space is defined by g E;Hð Þ ¼ 0, where E is the strain tensor, andH the pattern of internal rearrangements
due to plastic flow, i.e., the set of appropriate internal variables including the path history by which they are achieved Rice (1971).
The shape of the yield surface specified by function g is different for different choices of E. If elastic response within the yield
surface is Green-elastic, associated with the strain energy c¼ c E;Hð Þ per unit reference volume, the corresponding stress is T¼∂c/
∂E. From the strain state on the current yield surface, an increment of strain dE directed inside the yield surface constitutes an
elastic unloading. The associated incremental elastic response is governed by

_T¼K : _E; L¼ ∂2c
∂E#∂E

½1�

where L¼L E;Hð Þ is a tensor of elastic moduli of the material at the considered state of strain and internal structure. An increment
of strain directed outside the current yield surface constitutes plastic loading. The resulting increment of stress consists of elastic
and plastic parts, such that

_T¼ _Teþ _Tp ¼K : _Eþ _Tp ½2�

The elastic part of the stress rate _Te gives a stress decrement deT associated with elastic removal of the strain increment dE. The
plastic part of the stress rate _Tp gives a residual stress decrement dpT in a considered infinitesimal strain cycle. A transition between
elastic unloading and plastic loading is a neutral loading, in which an infinitesimal strain increment is tangential to the yield
surface and represents pure elastic deformation. Thus,

∂g
∂E

: _E

40; for plastic loading

¼ 0; for neutral loading

o0; for elasticun loading

8><
>: ½3�

The gradient ∂g/∂E is codirectional with the outward normal to a locally smooth yield surface g¼0 at the state of strain E. For
incrementally linear response, all infinitesimal increments dE with equal projections on the normal ∂g/∂E, produce equal plastic
increments of stress dpT, since the components of dE obtained by projection on the plane tangential to the yield surface represent
elastic deformation only.
1.2 Yield Surface in Stress Space

The yield surface in stress space is defined by f T;Hð Þ ¼ 0. The stress T is a work conjugate to strain E, in the sense that T : _E
represents the rate of work per unit initial volume Hill (1978). The function f is related to g by

f T E;Hð Þ;H½ � ¼ g E;Hð Þ ¼ 0 ½4�

provided that physically identical conditions of yield are imposed in both spaces. If elastic response within the yield surface is
Green-elastic, associated with the complementary strain energy f¼ f T;Hð Þ per unit reference volume, the corresponding strain is
E¼∂f/∂T. For material in the hardening range relative to measures E and T, an increment of stress dT from the stress state on the
yield surface, directed inside the yield surface constitutes an elastic unloading. The associated incremental elastic response is
governed by

_E¼M : _T; M¼ ∂2f
∂T#∂T

½5�

The tensor M¼M T;Hð Þ is a tensor of elastic compliances of the material at the considered state of stress and internal structure.
An increment of stress directed outside the current yield surface constitutes plastic loading in the hardening range of material
response. The resulting increment of stain consists of elastic and plastic parts, such that

_E¼ _Eeþ _Ep ¼M : _Tþ _Ep ½6�

During plastic loading of hardening material, the yield surface locally expands, the stress state remaining on the yield surface.
The elastic part of the strain rate _Ee gives an elastic increment of strain deE which is recovered upon elastic unloading of the stress
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increment dT. The plastic part of the strain rate _Ee gives a residual increment of strain dpE which is left upon removal of the stress
increment dT. A transition between elastic unloading and plastic loading is a neutral loading, in which an infinitesimal stress
increment is tangential to the yield surface and produces only elastic deformation. Thus, in the hardening range

∂f
∂T

: _T

40; for plastic loading

¼ 0; for neutral loading

o0; for elastic unloading

8><
>: ½7�

The gradient ∂f/∂T is codirectional with the outward normal to a locally smooth yield surface f¼0 at the state of stress T. For
incrementally linear response, all infinitesimal increments dT with equal projections on ∂f/∂T produce equal plastic increments of
deformation dpE, since the components of dT obtained by projection on the plane tangential to the yield surface give rise to elastic
deformation only.

In a softening range of material response eqn [6] still holds, although the elastic and plastic parts of the strain rate have purely
formal significance, since in the softening range it is not physically possible to perform an infinitesimal cycle of stress starting from
a stress point on the yield surface. The hardening is, however, a relative term: material that is in the hardening range relative to one
pair of stress and strain measures, may be in the softening range relative to another pair.
2 Plasticity Postulates, Normality and Convexity of the Yield Surface

Several postulates in the form of constitutive inequalities have been proposed for certain types of materials undergoing plastic
deformation. The two most well-known are by Drucker (1960) and Ilyushin (1961).
2.1 Ilyushin's Postulate

According to Ilyushin's postulate the network in an isothermal cycle of strain must be positive

I
E
T : dE40 ½8�

if a cycle at some stage involves plastic deformation. The integral in [8] over an elastic strain cycle is equal to zero. Since a cycle of
strain that includes plastic deformation in general does not return the material to its state at the beginning of the cycle, the
inequality [8] is not a law of thermodynamics. For example, it does not apply to materials which dissipate energy by friction. For
materials obeying Ilyushin's postulate it can be shown that (Hill and Rice, 1973; Havner, 1992)

dpT : dEo0 ½9�

Since during plastic loading the strain increment dE is directed outward from the yield surface, and since the same dpT is
associated with a fan of infinitely many dE around the normal ∂g/∂E, all having the same projection on that normal, the inequality
[9] requires that dpT is codirectional with the inward normal to a locally smooth yield surface in strain space,

dpT ¼ � dg
∂g
∂E

½10�

The scalar multiplier dg40 is called a loading index. At a vertex of the yield surface, dpT must lie within the cone of limiting
inward normals.

The inequality [9] and the normality rule [10] hold for all pairs of conjugate stress and strain measures, irrespective of the
nature of elastic changes caused by plastic deformation, or possible elastic nonlinearities within the yield surface. Also, [10] applies
regardless of whether the material is in a hardening or softening range.

If elastic response within the yield surface is nonlinear, Ilyushin's postulate does not imply that the yield surface is necessarily
convex. For a linearly elastic response, however, it follows that

ðE0 � EÞ : dpT40 ½11�

provided that there is no change of elastic stiffness caused by plastic deformation (dK¼0), or the change is such that dK is negative
semi-definite. The strain E0 is an arbitrary strain state within the yield surface. Since dpT is codirectional with the inward normal to
a locally smooth yield surface in strain space, [11] implies that the yield surface is convex. The convexity of the yield surface is not
an invariant property, because dK can be negative definite for some measures (E, T), but not for others.
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Plastic stress and strain rates are related by _Tp ¼ � K : _Ep, so that, to first order,

dpT¼ � K : dpE ½12�

Since for any elastic strain increment δE, emanating from a point on the yield surface in strain space and directed inside of it,

dpT : δE40 ½13�

substitution of [12] into [13] gives

dpE : δTo0 ½14�

Here, δT¼K : δE is the stress increment from the point on the yield surface in stress space, directed inside of it (elastic
unloading increment associated with elastic strain increment δE). Inequality [14] holds for any δT directed inside the yield surface.
Consequently, dpE must be codirectional with the outward normal to a locally smooth yield surface in stress T space,

dpE¼ dg
∂f
∂T

; dg40 ½15�

At a vertex of the yield surface, dpE must lie within the cone of limiting outward normals. Inequality [14] and the normality
rule [15] hold for all pairs of conjugate stress and strain measures.

If material is in a hardening range relative to E and T, the stress increment dT producing plastic deformation dpE is directed
outside the yield surface, satisfying

dpE : dT40 ½16�

If material is in the softening range, the stress increment dT producing plastic deformation dpE is directed inside the yield
surface, satisfying the reversed inequality in [16]. The normality rule [15] applies to both hardening and softening. Inequality [16]
is not measure invariant, since material may be in the hardening range relative to one pair of conjugate stress and strain measures,
and in the softening range relative to another pair.

The normals to the yield surfaces in stress and strain space are related by

∂g
∂E

¼K :
∂f
∂T

½17�

This follows directly from eqn [4] by partial differentiation.
2.2 Drucker's Postulate

A non-invariant dual to [8] is I
T
E : dTo0 ½18�

requiring that the net complementary work (relative to measures E and T) in an isothermal cycle of stress must be negative, if the
cycle at some stage involves plastic deformation. Inequality [18] is non-invariant because the value of the integral in [18] depends
on the selected measures E and T, and the reference state with respect to which they are defined. This is because T is introduced as a
conjugate stress to E such that, for the same geometry change, T:dE (and not E:dT) is measure invariant. If inequality [18] applies
to conjugate pair (E, T), it follows that in the hardening range [16] holds, and dpE is codirectional with the outward normal to a
locally smooth yield surface in stress T space, eqn [15]. At a vertex of the yield surface, dpE must lie within the cone of limiting
outward normals. In the softening range,

dpE : dTo0 ½19�

Since dT is now directed inside the current yield surface, [19] also requires that dpE is codirectional with the outward normal to
a locally smooth yield surface in stress T space, with the same generalization at a vertex as in the case of hardening behavior.

If elastic response is nonlinear, the yield surface in stress space is not necessarily convex. A concavity of the yield surface in the
presence of nonlinear elasticity for a particular material model has been demonstrated by Palmer et al., (1967). For linear elastic
response, however,

ðT � T0Þ : dpE40 ½20�
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provided that there is no change of elastic stiffness caused by plastic deformation (dM¼0), or that the change is such that dM is
positive semi-definite. The stress state T0 is an arbitrary stress state within the yield surface. Since dpE is codirectional with the
outward normal to a locally smooth yield surface in strain T space, [20] implies that the yield surface in a considered stress space is
convex. Inequality [20] is often referred to as the principle of maximum plastic work (Hill, 1950; Johnson and Mellor, 1973;
Lubliner, 1990). If inequality is assumed at the outset, it by itself assures both normality and convexity.
3 Constitutive Equations of Elastoplasticity

3.1 Strain Space Formulation

The stress rate is a sum of elastic and plastic parts, such that

_T¼ _Teþ _Tp ¼K : _E�_g
∂g
∂E

½21�

For incrementally linear and continuous response between loading and unloading, the loading index is

_g¼ 1
h

∂g
∂E

: _EÞ; ∂g
∂E

: _E40
�

½22�

where h40 is a scalar function of the plastic state on the yield surface in strain space, determined from the consistency condition
_g ¼ 0. Consequently, the constitutive equation for elastoplastic loading is

_T¼ K� 1
h

∂g
∂E

#
∂g
∂E

� �� �
: _E ½23�

The fourth-order tensor within the square brackets is the elastoplastic stiffness tensor associated with the considered measure
and reference state. Within the framework based on Green-elasticity and normality rule, the elastoplastic stiffness tensor possesses
reciprocal or self-adjoint symmetry (with respect to first and second pair of indices), in addition to symmetries in the first and last
two indices associated with the symmetry of stress and strain tensors.

The inverted form of [23] is

_E¼ Mþ 1
H

M :
∂g
∂E

� �
#

∂g
∂E

: M
� �� �

: _T ½24�

where

H¼ h� ∂g
∂E

: M :
∂g
∂E

½25�
3.2 Stress Space Formulation

The strain rate is a sum of elastic and plastic parts, such that

_E¼ _Eeþ _Ep ¼M : _Tþ _g
∂f
∂T

½26�

The loading index is obtained from the consistency condition _f ¼ 0,

_g¼ 1
H

∂f
∂T

: _T
� �

½27�

where H is a scalar function of the plastic state on the yield surface in stress space. Thus,

_E¼ Mþ 1
H

∂f
∂T

#
∂f
∂T

� �� �
: _T ½28�

The fourth-order tensor within the square brackets is the elastoplastic compliance tensor associated with the considered
measure and reference state.
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The scalar parameter H can be positive, negative or equal to zero. Three types of response can be identified within this
constitutive framework. These are Hill (1978)

H40;
∂f
∂T

: _T40 hardening

Ho0;
∂f
∂T

: _To0 softening

H¼ 0;
∂f
∂T

: _T¼ 0 ideally plastic

½29�

Starting from the current yield surface in stress space, the yield point moves outward in the case of hardening, inward in the
case of softening, and tangentially to the yield surface in the case of ideally plastic response. In the case of softening, _E is not
uniquely determined by prescribed stress rate _T, since either eqn [28] applies, or the elastic unloading expression _E¼M : _T. In the
case of ideally plastic response, the plastic part of the strain rate is indeterminate to the extent of an arbitrary positive multiple,
since _c in eqn [27] is indeterminate.
3.3 Yield Surface with a Vertex

Physical theories of plasticity imply the formation of a corner or vertex at the loading point on the yield surface. Suppose that the
yield surface in stress space has a pyramidal vertex formed by n intersecting segments foi4¼0, then near the vertex

∏
n

i ¼ 1
foi4 T;Hð Þ ¼ 0; n � 2 ½30�

It follows that

_E¼ Mþ
Xn
i ¼ 1

Xn
j ¼ 1

H�1
oij4

∂foi4

∂T
#

∂foj4

∂T

� �" #
: _T ½31�

This is an extension of the constitutive structure [28] for the smooth yield surface to the yield surface with a vertex. Elements of
the matrix inverse to plastic moduli matrix Hoij4are denoted by Hoij4

�1 . The references Koiter (1953), Hill (1978), Asaro (1983),
and Asaro and Lubarda (2006) can be consulted for further analysis.
4 Constitutive Models of Plastic Deformation

4.1 Isotropic Hardening

Experimental determination of the yield surface shape is commonly done with respect to Cauchy stress s. Suppose that this is
given by f(r, k)¼0, where f is an isotropic function of r and k¼k(W) is a scalar which defines the size of the yield surface. This
depends on the history parameter, such as the effective plastic strain

W¼
Z t

0
2Dp : Dpð Þ1=2 dt ½32�

The hardening model in which the yield surface expands during plastic deformation preserving its shape is known as the
isotropic hardening model. Since f is an isotropic function of stress, the material is assumed to be isotropic. For non-porous metals
the onset of plastic deformation and plastic yielding is unaffected by moderate superimposed pressure. The yield condition can
consequently be written as an isotropic function of the deviatoric part of the Cauchy stress, i.e., its second and third invariant, f (J2,
J3, k)¼0. The well-known examples are the Tresca maximum shear stress criterion, or the von Mises yield criterion. In the latter
case,

f ¼ J2 � k2ðWÞ ¼ 0; J2 ¼ 1
2
r0 : r0 ½33�

The corresponding plasticity theory is referred to as the J2 flow theory of plasticity. The yield stress in simple shear is k. If Y is the
yield stress in uniaxial tension, k¼ Y=

ffiffiffi
3

p
. The consistency condition gives

_g¼ 1
4k2hpt

r0 : so
� �

; H¼ 4k2hpt ½34�
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where the plastic tangent modulus in shear test is hpt ¼ dk=dW. The stress rate

s
o ¼ r

o þ r tr D; r
o ¼ _r�W � rþ r �W ½35�

represents the Jaumann rate of the Kirchhoff stress t¼(det F)s, when the current state is taken as the reference (det F¼0). The
deformation gradient is F, and the material spin is W. The total rate of deformation is therefore

D¼ Mþ 1
2hpt

r0#r0

r0 : r0

� �
: s
o ½36�

The elastic compliance tensor for infinitesimal elasticity is

M¼ 1
2m

I� l
2mþ 3l

δ#δ
� �

½37�

The Lamé elastic constants are l and m. The second- and fourth-order unit tensors are designated by δ and I. The plastic
deformation is in this case isochoric (tr Dp¼0), and principal directions of Dp are parallel to those of r(DpBr0). The inverted
form of [36] is

s
o ¼ L� 2m

1þ hpt =m
r0#r0

r0 : r0

� �
: D ½38�

where

K¼ lδ#δþ 2mI ½39�

is the elastic stiffness tensor. Constitutive structures [36] and [38] have been extensively used in analytical and numerical studies of
large plastic deformation problems (Neale, 1981; Needleman, 1982). Infinitesimal strain formulation, derivation of classical
Prandtl-Reuss equations for elastic-ideally plastic, and Levy–Mises equations for rigid-ideally plastic material models can be found
in standard texts or review papers (Hill, 1950; Naghdi, 1960).
4.2 Kinematic Hardening

To account for the Bauschinger effect and anisotropy of hardening, a simple model of kinematic hardening was introduced by
Prager (1956). According to this model, the initial yield surface does not change its size and shape during plastic deformation, but
translates in the stress space according to some prescribed rule. Thus, f (r� a, k)¼0, where a represents the current center of the
yield surface (back stress), and f is an isotropic function of the stress difference r� a. The size of the yield surface is specified by the
constant k. The evolution of the back stress is governed by

a
o ¼ cðaÞDp þ CðaÞ 2Dp : Dpð Þ1=2 ½40�

where c and C are appropriate scalar and tensor functions of a. This representation is in accord with assumed time independence of
plastic deformation, which requires eqn [40] to be homogeneous relation of degree one.

If C¼0 and c is taken to be constant, the model corresponds to Prager's linear kinematic hardening. The plastic tangent
modulus hp in shear test is in this case constant and related to c by c¼2hpt . The resulting constitutive structure is

D¼ Mþ 1
2hpt

ðr0 � aÞ#ðr0 � aÞ
ðr0 � aÞ : ðr0 � aÞ

� �
: s
o ½41�

with the inverse

s
o ¼ K� 2m

1þ hpt =m
ðr0 � aÞ#ðr0 � aÞ
ðr0 � aÞ : ðr0 � aÞ

� �
: D ½42�

If C in eqn [40] is taken to be proportional to a (i.e., C¼ � c0a, c0¼const.), a nonlinear kinematic hardening model of
Armstrong and Frederick (1966) is obtained. Details can be found in Khan and Huang (1995). Ziegler (1959) used as an evolution
equation for the back stress

a
o ¼ _bðr0 � aÞ ½43�

The proportionality factor _b is determined from the consistency condition in terms of r and a.
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4.3 Combined Isotropic-Kinematic Hardening

In this hardening model the yield surface expands and translates during plastic deformation, so that

f r� a; kð Þ ¼ 0; k¼ kðWÞ ½44�

The function k(W), with W defined by eqn [32], specifies expansion of the yield surface, while evolution eqn [40] specifies its
translation.
4.4 Multisurface Models

Motivated by the need to better model nonlinearities in stress–strain loops, cyclic hardening or softening, cyclic creep, and stress
relaxation, more involved hardening models were suggested. Mroz (1967) introduced a multi-yield surface model in which there is
a field of hardening moduli, one for each yield surface. Initially the yield surfaces are assumed to be concentric. When the stress
point reaches the inner-most yield surface, the plastic deformation develops according to linear hardening model with a prescribed
plastic tangent modulus, until the active yield surface reaches the adjacent yield surface. Subsequent plastic deformation develops
according to linear hardening model with another specified value of the plastic tangent modulus, until the next yield surface is
reached, etc. Dafalias and Popov (1975) and Krieg (1975) suggested a hardening model which uses the yield (loading) surface and
the limit (bounding) surface. A smooth transition from elastic to plastic regions on loading is assured by introducing a continuous
variation of the plastic tangent modulus between the two surfaces.
5 Pressure-Dependent Plasticity

For porous metals, concrete and geomaterials like soils and rocks, plastic deformation has its origin in pressure-dependent
microscopic processes and the yield condition for these materials, in addition to deviatoric components, depends on hydrostatic
component of stress, i.e., its first invariant I1¼ trr.
5.1 Drucker–Prager Yield Condition for Geomaterials

Drucker and Pruger (1952) suggested that yielding of soil occurs when the shear stress on octahedral planes overcomes cohesive
and frictional resistance to sliding on those planes. The yield condition is consequently

f ¼ J1=22 þ 1
3
aI1 � k¼ 0 ½45�

where a is a frictional parameter. This geometrically represents a cone in the principal stress space with its axis parallel to
hydrostatic axis. The radius of the circle in the deviatoric plane is

ffiffiffi
2

p
k, where k is the yield stress in simple shear. The angle of the

cone is tan�1ð ffiffiffi
2

p
a=3Þ. The yield stresses in uniaxial tension and compression are according to eqn (45),

Yþ ¼
ffiffiffi
3

p
k

1þ a=
ffiffiffi
3

p ; Y� ¼
ffiffiffi
3

p
k

1� a=
ffiffiffi
3

p ½46�

For the yield condition to be physically meaningful, the restriction holds ao
ffiffiffi
3

p
. If the compressive states of stress are

considered positive (as commonly done in geomechanics), the minus sign appears in front of the second term in eqn [45].
When Drucker–Prager cone is applied to porous rocks, it overestimates the yield stress at higher pressures and inadequately

predicts inelastic volume changes. To circumvent this, DiMaggio and Sandler (1971) introduced an ellipsoidal cap to close the
cone at certain level of pressure. Other shapes of the cap were also used. Details can be found in Chen and Han (1988).
5.2 Gurson Yield Condition for Porous Metals

Based on a rigid-perfectly plastic analysis of spherically symmetric deformation around a spherical cavity, Gurson (1977) suggested
a yield condition for porous metals in the form

f ¼ J2 þ 2
3
uY2

0 cosh
I1
2Y0

� �
� ð1þ u2ÞY

2
0

3
¼ 0 ½47�

where u is the porosity (void/volume fraction), and Y0¼const. is the tensile yield stress of the matrix material. Generalizations to
include hardening matrix material were also made. The change in porosity during plastic deformation is given by the evolution
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equation
_u¼ ð1� uÞtr Dp ½48�

Other evolution equations, which take into account nucleation and growth of voids, have been considered. To improve its
predictions and agreement with experimental data, Tvergaard (1982) introduced two additional material parameters in the
structure of the Gurson yield criterion. Mear and Hutchinson (1985) incorporated the effects of anisotropic (kinematic) hardening
by replacing J2 of r0 in eqn [47] with J2 of r0 � a, where a is the back stress.
5.3 Constitutive Equations of Pressure-Dependent Plasticity

The two considered pressure-dependent yield conditions are of the type

f ðJ2; I1;HÞ¼ 0 ½49�

For materials obeying Ilyushin’s postulate, the plastic part of the rate of deformation tensor is normal to the yield surface, so
that

Dp ¼ _g
∂f
∂r

;
∂f
∂r

¼ ∂f
∂J2

r0 þ ∂f
∂I1

δ ½50�

The loading index is

_g¼ 1
H

∂f
∂J2

r0 þ ∂f
∂I1

δ
� �

: s
o ½51�

where H is an appropriate hardening modulus. Therefore,

Dp ¼ 1
H

∂f
∂J2

r0 þ ∂f
∂I1

δ
� �

#
∂f
∂J2

r0 þ ∂f
∂I1

δ
� �� �

: s
o ½52�

The volumetric part of the plastic rate of deformation is

tr Dp ¼ 3
H

∂f
∂I1

∂f
∂J2

r0 þ ∂f
∂I1

δ
� �

: s
o ½53�

For the Drucker–Prager yield condition,

∂f
∂J2

¼ 1
2
J�1=2
2 ;

∂f
∂I1

¼ 1
3
a ½54�

and

H¼ dk
dW

; W¼
Z t

0
ð2Dp0

: Dp0 Þ1=2dt ½55�

For the Gurson yield condition,

∂f
∂J2

¼ 1;
∂f
∂I1

¼ 1
3
uY0sinh

I1
2Y0

� �
½56�

and

H¼ 2
3
uð1� uÞY3

0 sinh
I1
2Y0

� �
u� cosh

I1
2Y0

� �� �
½57�
6 Non-Associative Plasticity

Constitutive equations in which plastic part of the rate of strain is normal to locally smooth yield surface f¼0 in stress space,

_Ep ¼ _g
∂f
∂T

½58�
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are often referred to as associative flow rules. A sufficient condition for this constitutive structure to hold is that material obeys the
Ilyushin's postulate. However, many pressure-dependent dilatant materials with internal frictional effects are not well described by
associative flow rules. For example, associative flow rules largely overestimate inelastic volume changes in geomaterials like rocks
and soils (Rudnicki and Rice, 1975), and in certain high-strength steels exhibiting the strength-differential effect by which the yield
strength is higher in compression than in tension (Spitzig et al., 1975). For such materials, plastic part of the rate of strain is taken
to be normal to plastic potential surface p¼0, which is distinct from the yield surface. The resulting constitutive structure,

_Ep ¼ _g
∂p
∂T

½59�

is known as non-associative flow rule Nemat-Nasser (1983). The consistency condition _f ¼ 0 gives

_g¼ 1
H

∂f
∂T

: _T ½60�

so that

_Ep ¼ 1
H

∂p
∂T

#
∂f
∂T

� �
: _T ½61�

Since p af, the plastic compliance tensor in eqn [61] does not possess a reciprocal symmetry.
Consider inelastic behavior of geomaterials whose yield is governed by the Drucker–Prager yield condition of eqn [45]. A non-

associative flow rule can be used with the plastic potential

p¼ J1=22 þ 1
3
bI1 � k¼ 0 ½62�

The material parameter b is in general different from the frictional parameter a of eqn [45]. The rate of plastic deformation is

Dp ¼ _g
∂p
∂r

¼ _g
1
2
J�1=2
2 r0 þ 1

3
bδ

� �
½63�

The consistency condition _f ¼ 0 gives the loading index

_g¼ 1
H

1
2
J�1=2
2 r0 þ 1

3
aδ

� �
: s
o
; H¼ dk

dW
½64�

Consequently,

Dp ¼ 1
H

1
2
J�1=2
2 r0 þ 1

3
bδ

� �
#

1
2
J�1=2
2 r0 þ 1

3
aδ

� �� �
: s
o ½65�

The deviatoric and spherical parts are

Dp0 ¼ 1
2H

r0

J1=22

r0 :
s
o

2J1=22

þ 1
3
atr so

 !
½66�

tr Dp ¼ b
H

r0 :
s
o

2J1=22

þ 1
3
a tr so

 !
½67�

The parameter b can be expressed as

b¼ tr Dp

ð2Dp0
: Dp0 Þ1=2

½68�

which shows that b is the ratio of the volumetric and shear part of the plastic strain rate, often called the dilatancy factor (Rudnicki
and Rice, 1975). Frictional parameter and inelastic dilatancy of material actually change with progression of inelastic deformation.
An analysis which accounts for their variation is presented by Nemat-Nasser and Shokooh (1980). Constitutive formulation of
elastoplastic theory with evolving elastic properties is studied by Lubarda and Krajcinovic (1995) and others; see also Lubarda
(2002).
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6.1 Yield Vertex Model for Fissured Rocks

In a brittle rock, modeled to contain a collection of randomly oriented fissures, inelastic deformation results from frictional sliding
on the fissure surfaces. Inelastic dilatancy under overall compressive loads is a consequence of opening the fissures at asperities and
local tensile fractures at some angle at the edges of fissures. Individual yield surface may be associated with each fissure. The
macroscopic yield surface is the envelope of individual yield surfaces for fissures of all orientations, similarly to slip models of
metal plasticity (Rudnicki and Rice, 1975; Rice, 1976). Continued stressing in the same direction will cause continuing sliding on
(already activated) favorably oriented fissures, and will initiate sliding for a progressively greater number of orientations. After
certain amount of inelastic deformation, the macroscopic yield envelope develops a vertex at the loading point. The stress
increment normal to the original stress direction will initiate or continue sliding of fissure surfaces for some fissure orientations. In
isotropic hardening idealization with smooth yield surface, however, a stress increment tangential to the yield surface will cause
only elastic deformation, overestimating the stiffness of response. In order to take into account the effect of the yield vertex in an
approximate way, a second plastic modulus Hi is introduced, which governs the response to part of the stress increment directed
tangentially to what is taken to be the smooth yield surface through the same stress point. Since no vertex formation is associated
with hydrostatic stress increments, tangential stress increments are taken to be deviatoric, and eqn [66] is replaced with

Dp0 ¼ 1
2H

r0

J1=22

r0 :
s
o

2J1=22

þ 1
3
a tr so

 !
þ 1
2H1

s
o0� r0 : s

o

2J2
r0

 !
½69�

The dilation induced by the small tangential stress increment is assumed to be negligible, so that eqn [67] applies for tr Dp. The
constitutive structure of eqn [69] is intended to model the response at a yield surface vertex for small deviations from proportional
(straight ahead) loading s

o
Br0. For the full range of directions of stress increment, the relationship between the rates of stress and

plastic deformation is not expected to be necessarily linear, although it is homogeneous in these rates in the absence of time-
dependent creep effects.
7 Deformation Theory of Plasticity

Simple plasticity theory has been suggested for proportional loading and small deformation by Hencky (1924) and Ilyushin
(1963). A large deformation version of the theory can be formulated by using the logarithmic strain and its conjugate stress. Since
stress proportionally increase, elastoplastic response is described macroscopically by constitutive structure of nonlinear elasticity,
where strain is a function of stress. The strain tensor is decomposed into elastic and plastic part, E¼EeþEp, elastic part is expressed
in terms of stress by generalized Hooke's law, and plastic part is assumed to be

Ep ¼ φT0 ½70�

where φ is an appropriate scalar function. Suppose that a nonlinear relationship s¼ sðgpÞ is available from the elastoplastic shear
test. Define the plastic secant and tangent moduli by hps ¼ s=gp, hpt ¼ ds=dgp, and let

s¼ 1
2
T0 : T0

� �1=2

; gp ¼ 2Ep : Epð Þ1=2 ½71�

The scalar function f is then f¼ 1=2hps . Although deformation theory of plasticity is total strain theory, it is useful to cast it in
the rate-type form, particularly when the considered boundary value problem needs to be solved in an incremental manner. The
resulting expression for the plastic part of the total rate of deformation is

Dp ¼ 1
2hps

s
o0 þ 1

2hpt
� 1
2hps

� � ðs0#s0Þ : so
s0 : s0

½72�

where s
o
is the Jaumann derivative of the Kirchhoff stress.
7.1 Application of Deformation Theory Beyond Proportional Loading

Deformation theory agrees with flow theory of plasticity only under proportional loading, since then specification of the final state
of stress also specifies the stress history. For general (non-proportional) loading, more accurate and physically appropriate is the
flow theory of plasticity, particularly with an accurate modeling of the yield surface and hardening behavior. Budiansky (1959),
however, indicated that deformation theory can be successfully used for certain nearly proportional loading paths, as well. The
stress rate s

o0 in eqn [72] does not then have to be codirectional with s0, and the plastic part of the rate of deformation depends on
both components of the stress rate s

o0 one in the direction of s0and the other normal to it. In contrast, according to flow theory with
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the von Mises smooth yield surface, the component of the stress rate s
o0 normal to s0 (thus tangential to the yield surface) does not

affect the plastic part of the rate of deformation. Since the structure of the deformation theory of plasticity under proportional
loading does not use any notion of the yield surface, eqn [72] can be used to approximately describe the response when the yield
surface develops a vertex. Rewriting eqn [72] in the form

Dp ¼ 1
2hps

s
o0 � ðs0#s0Þ : so

s0 : s0

" #
þ 1
2hpt

ðs0#s0Þ : so
s0 : s0

½73�

the first term on the right-hand side gives the response to component of the stress increment normal to s0. The associated plastic
modulus is hps . The plastic modulus associated with the component of the stress increment in the direction of s0 is hpt . A corner
theory that predicts continuous variation of the stiffness and allows increasingly non-proportional increments of stress was
formulated by Christoffersen and Hutchinson (1979). When applied to the analysis of necking in thin sheets under biaxial
stretching, the results were in better agreement with experiments than those obtained from the theory with smooth yield
characterization. Similar observations were long known in the field of elastoplastic buckling. Deformation theory predicts buckling
loads better than flow theory with a smooth yield surface Hutchinson (1974).
8 Thermoplasticity

Non-isothermal plasticity is here considered assuming that temperature is not too high, so that creep deformation can be
neglected. The analysis may also be adequate for certain applications under high stresses of short duration, where temperature
increase is more pronounced but viscous (creep) strains have no time to develop (Prager, 1958; Kachanov, 1971). Thus, infini-
tesimal changes of stress and temperature applied to the material at a given state produce a unique infinitesimal change of strain
that is independent of the speed with which these changes are made. Rate-dependent plasticity models will be presented in
Section 9.

The formulation of thermoplastic analysis under described conditions can proceed by introducing a non-isothermal yield
condition in either stress or strain space. For example, the yield condition is stress space is f T; y;Hð Þ ¼ 0. The response within the
yield surface is thermoelastic. If the Gibbs energy relative to selected stress and strain measures is f¼ f T; y;Hð Þ per unit reference
volume, the strain is E¼∂f/∂T.

Let the stress state T be on the current yield surface. The rates of stress and temperature associated with thermoplastic loading
satisfy the consistency condition _f ¼ 0, which gives

∂f
∂T

: _Tþ ∂f
∂y

_y� _gH¼ 0 ½74�

The hardening parameter is H¼H T; y;Hð Þ, and the loading index is _g40. Three types of response are possible,

H40;
∂f
∂T

_T :þ ∂f
∂y

_y40 thermoplastic hardening

Ho0;
∂f
∂T

_T :þ ∂f
∂y

_yo0 thermoplastic softening

H¼ 0;
∂f
∂T

: _Tþ ∂f
∂y

_y¼ 0 ideally thermoplastic

½75�

This parallels the isothermal classification of eqn [29].
Since rate-independence is assumed, the constitutive relationship has to be homogeneous of degree one in rates of stress, strain

and temperature. For thermoplastic part of the rate of strain this is satisfied by the normality structure

_Ep ¼ _g
∂f
∂T

½76�

which, in view of eqn [74], becomes

_Ep ¼ 1
H

∂f
∂T

: _Tþ ∂f
∂y

_y
� �

∂f
∂T

½77�
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The strain rate is a sum of thermoelastic and thermoplastic parts. The thermoelastic part is

_Ee ¼ ∂2f
∂T#∂T

: _Tþ ∂2f
∂T∂y

_y ½78�

For example, if

f¼ 1
4m

tr T2 � l
3lþ 2m

tr2T
� �

þ aðyÞtr T þ bðy;HÞ ½79�

there follows

_E
e ¼ 1

2m
I� l

2mþ 3l
δ#δ

� �
: _Tþa0ðyÞ _yδ ½80�

where l and b are the Lame type elastic constants corresponding to selected measures, a and b are appropriate functions of
indicated arguments, and a0 ¼da/dy.

Suppose that non-isothermal yield condition in the Cauchy stress space is temperature-dependent von Mises condition

f ¼ 1
2
r0 : r0 � ½φðyÞkðWÞ�2 ¼ 0 ½81�

The thermoplastic part of the deformation rate is then

Dp ¼ 1
2φhpt

r0#r0

r0 : r0
: s
o � r0

φ0

φ
_y

� �
½82�

where hpt ¼ dk=dW, and φ0 ¼dφ/dy. Combining with eqn [80], the total rate of deformation is

D¼ 1
2m

I� l
2mþ 3l

d#d

� �
þ 1
2φhpt

r0#r0

r0 : r0

� �
: s
o þ a0 yð Þd� φ0

2φ2hpt
r0

� �
y
: ½83�

The inverse equation is

s
o ¼ lδ#δþ 2mI� 2m

1þ φhpt =m
r0#r0

r0 : r0

� �
: D� ð3lþ 2mÞa0δ� 1

1þ φhpt =m
φ0

φ
r0

� �
_y ½84�

Infinitesimal strain formulation for rigid-thermoplastic material was given by Prager (1958). See also Lee (1969), and Naghdi
(1990). Experimental investigation of non-isothermal yield surfaces was reported by Phillips (1982).

In the case of thermoplasticity with linear kinematic hardening (c¼ 2hpt ), and the temperature-dependent yield surface

f ¼ 1
2
ðr0 � aÞ : ðr0 � aÞ � ½φðyÞk�2 ¼ 0; k¼ const: ½85�

there follows

Dp ¼ 1
2hpt

ðr0 � aÞ#ðr0 � aÞ
ðr0 � aÞ : ðr0 � aÞ : s

o � φ0

φ
ðr0 � aÞ _y

� �
½86�
9 Rate-Dependent Plasticity

This section is devoted to inelastic constitutive equations for metals in the strain rate sensitive range of material response, where
time effects play an important role. There is an indication from the dislocation dynamics point of view (Johnston and Gilman,
1959) that plasticity caused by crystallographic slip in metals is inherently time-dependent. Once it is assumed that the rate of
shearing on a given slip system depends on local stresses only through the resolved shear stress in slip direction, the plastic part of
the rate of strain is derivable from a scalar flow potential Rice (1971) as

_Ep ¼ ∂O T; y;Hð Þ
∂T

½87�
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The history of deformation is represented by the pattern of internal rearrangements H, and the absolute temperature is y.
Geometrically, the plastic part of the strain rate is normal to surfaces of constant flow potential in stress space. There is no yield
surface in the model and plastic deformation commences from the onset of loading. Time-independent behavior can be recovered,
under certain idealizations – neglecting creep and rate effects, as an appropriate limit Rice (1970).
9.1 Power-Law and Johnson–Cook Models

The power-law representation of the flow potential in the Cauchy stress space is

O¼ 2 _g0

mþ 1
J1=22

k

 !m

J1=22 ; J2 ¼ 1
2
r0 : r0 ½88�

where k¼k(y, H) is the reference shear stress, _g0 is the reference shear strain rate to be selected for each material, and m is the
material parameter (of the order of 100 for metals at room temperature and strain rates below 104 s�1; Nemat-Nasser, 1992). The
corresponding plastic part of the rate of deformation is

Dp ¼ _g0
J1=22

k

 !m
r0

J1=22

½89�

The equivalent plastic strain is usually used as the only history parameter H, and the reference shear stress depends on W and y
according to

k¼ k0 1þ W
W0

� �a

exp �b
y� y0
ym � y0

� �
½90�

Here, k0 and W0 are the normalizing stress and strain, y0 and ym are the room and melting temperatures, and a and b are the
material parameters. From the onset of loading the deformation rate consists of elastic and plastic constituents, although for large
m the plastic contribution may be small if J2 is less than k.

Another representation of the flow potential, constructed according to Johnson and Cook (1983) model, is

O¼ 2 _g0

a
k exp a

J1=22

k
� 1

 !" #
½91�

The reference shear stress is

k¼ k0 1þ b
W
W0

� �c� �
1� y� y0

ym � y0

� �d
" #

½92�

where a, b, c, d are the material parameters. The corresponding plastic part of the rate of deformation is in this case

Dp ¼ _g0 exp a
J1=22

k
� 1

 !" #
r0

J1=22

½93�
9.2 Viscoplasticity Models

For high strain rate applications in dynamic plasticity (Cristescu, 1967; Clifton, 1983), the flow potential can be taken as

O¼ 1
ζ

J1=22 � ksðWÞ
h i2

½94�

where ζ is the viscosity coefficient, and ks(W) represents the shear stress–plastic strain relationship from the (quasi) static shear test.
The positive difference J1=22 � ksðWÞbetween the measure of the current dynamic stress state and corresponding static stress state
(at the given level of equivalent plastic strain W) is known as the overstress measure Malvern (1951). The plastic part of the rate of
deformation is

Dp ¼ 1
ζ

J1=22 � ksðWÞ
h i r0

J1=22

½95�
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The inverted form of eqn (95) is

r0 ¼ ζDp þ 2ksðWÞ Dp

2Dp : Dpð Þ1=2
½96�

which shows that the rate-dependence in the model comes from the first term on the right-hand side. In quasi-static tests, viscosity
ζ is taken to be equal to zero, and eqn [96] reduces to time-independent von-Mises isotropic hardening plasticity. In this case, flow
potential O is constant within the elastic range bounded by the yield surface J1=22 ¼ ksðWÞ.

More general representation for O is possible by using the Perzyna (1966) viscoplastic model. For example, one can take

O¼ C
mþ 1

f ðrÞ � ksðWÞ½ �mþ1 ½97�

which yields

Dp ¼ C f ðrÞ � ksðWÞ½ �m ∂f
∂r

½98�

If f ¼ J1=22 , C¼2/ζ, and ks(W)¼k0¼const., eqn [98] gives

Dp ¼ 1
ζ

J1=22 � k0
� �m r0

J1=22

½99�

which is a nonlinear Bingham model. If ks(W) ¼ 0, f ¼ J1=22 , and C¼ 2 _g0=km, eqn (98) reproduces the power-law J2 creep given by
eqn (89).
10 Phenomenological Plasticity Based on the Multiplicative Decomposition

In this section we introduce a multiplicative decomposition of the total deformation gradient into elastic and plastic parts to
provide an additional framework for dealing with finite elastic and plastic deformation. We apply the decomposition in the
specific context of a strain rate dependent, J2-flow theory of plasticity. Consider the current elastoplastically deformed config-
uration of the material sample. Let F be the deformation gradient that maps an infinitesimal material element dX from initial
configuration to dx in current configuration, such that dx¼F �dX. Introduce an intermediate configuration by elastically des-
tressing the current configuration to zero stress. Such configuration differs from the initial configuration by a residual (plastic)
deformation, and from the current configuration by a reversible (elastic) deformation. If dxp is the material element in the
intermediate configuration, corresponding to dx in the current configuration, then dx¼Fe � dxp, where Fe represents a deformation
gradient associated with elastic loading from the intermediate to current configuration. If the deformation gradient of plastic
transformation is Fp, such that dxp¼Fp � dX, the multiplicative decomposition of the total deformation gradient into its elastic and
plastic parts holds

F¼ Fe � Fp ½100�

The decomposition was introduced in the phenomenological rate-independent theory of plasticity by Lee (1969). The his-
torical background and the role of the multiplicative decomposition in the constitutive description of other types of inelastic
deformation can be found in Lubarda (2004). In the case when elastic destressing to zero stress is not physically achievable due to
possible onset of reverse inelastic deformation before the state of zero stress is reached, the intermediate configuration can be
conceptually introduced by virtual destressing to zero stress, locking all inelastic structural changes that would take place during
the actual destressing. The deformation gradients Fe and Fp are not uniquely defined because the intermediate unstressed con-
figuration is not unique. Arbitrary local material rotations can be superposed to the intermediate configuration, preserving it
unstressed. In applications, however, the decomposition (100) can be made unique by additional specifications, dictated by the
nature of the considered material model. For example, for elastically isotropic materials the elastic stress response depends only on
the elastic stretch Ve, and not on the rotation Re from the polar decomposition Fe¼Ve �Re. Consequently, the intermediate
configuration can be specified uniquely by requiring that elastic unloading takes place without rotation (Fe¼Ve). An alternative
choice will be pursued in the constitutive derivation presented here. See also Lubarda (2002) and Nemat-Nasser (2009).

The velocity gradient in the current configuration at time t is defined by

L¼ _F�F�1 ½101�
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The superposed dot designates the material time derivative. By introducing the multiplicative decomposition of deformation
gradient [100], the velocity gradient becomes

L¼ _Fe�Fe�1 þ Fe � _Fp�Fp�1
	 
 � Fe�1 ½102�

The rate of deformation D and the spin W are, respectively, the symmetric and antisymmetric part of L,

D¼ _Fe�Fe�1
	 


s þ Fe � _Fp�Fp�1
	 
 � Fe�1

� �
s ½103�

W ¼ _Fe�Fe�1
	 


a þ Fe � ð _Fp�Fp�1Þ � Fe�1
� �

a ½104�

Since Fe is specified up to an arbitrary rotation, and since the stress response of elastically isotropic materials does not depend
on the rotation, we shall choose the unloading program such that

Fe � ð _Fp�Fp�1Þ � Fe�1� �
a ¼ 0 ½105�

With this choice, therefore, the rate of deformation and the spin tensors are

D¼ ð _Fe�Fe�1Þs þ Fe � ð _Fp�Fp�1Þ � Fe�1 ½106�

W ¼ _Fe�Fe�1
	 


a ½107�
10.1 Elastic and Plastic Constitutive Contributions

It is assumed that the material is elastically isotropic in its initial undeformed state, and that plastic deformation does not affect its
elastic properties. The elastic response is then given by

s¼ Fe � ∂C
eðEeÞ
∂Ee � FeT ½108�

The elastic strain energy per unit unstressed volume, Ce
, is an isotropic function of the Lagrangian strain Ee¼(FeT � Fe� I)/2.

Plastic deformation is assumed to be incompressible (det Fe¼det F), so that s¼(det F)r is the Kirchhoff stress. By differentiating
eqn [108], we obtain

_s� _Fe�Fe�1
	 
 � s� s � ð _Fe�Fe�1ÞT ¼ L̂ : ð _Fe�Fe�1Þs ½109�

The rectangular components of L̂ are

L̂ijkl ¼ FeimF
e
jn

∂2Ce

∂Eemn∂Eepq
FekpF

e
lq ½110�

Equation [109] can be equivalently written as

_s� ð _Fe�Fe�1Þa � sþ s � ð _Fe�Fe�1Þa ¼ L̂ : ð _Fe�Fe�1Þs ½111�

The modified elastic moduli tensor L has the components

Lijkl ¼ L̂ijkl þ 1
2
ðsikδjl þ sjkδil þ silδjk þ sjlδikÞ ½112�

In view of eqn [107], we can rewrite eqn [111] as

s
o ¼L : ð _Fe�Fe�1Þs ½113�

where

s
o ¼ _s�W � sþ s �W ½114�
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is the Jaumann rate of the Kirchhoff stress with respect to total spin. By inversion, eqn [3] gives the elastic rate of deformation as

De ¼ _Fe�Fe�1	 

s ¼L�1 : s

o ½115�

Physically, the strain increment De dt is a reversible part the total strain increment D dt, which is recovered upon loading-
unloading cycle of the stress increment s

o
dt. The remaining part of the total rate of deformation,

Dp ¼D�De ½116�

is the plastic part, which gives a residual strain increment left upon the considered infinitesimal cycle of stress. When the material
obeys Ilyushin's work postulate, the so defined plastic rate of deformation Dp is codirectional with the outward normal to a locally
smooth yield surface in the Cauchy stress space, i.e.,

Dpjj ∂f
∂r

½117�
10.2 Rate Dependent J2 Flow Theory

Classical J2 flow theory uses the yield surface as generated earlier as a flow potential. Thus the current yield criteria r¼ κ defines a
series of yield surfaces in stress space, where k serves the role of a scaling parameter. Here we rephrase the yield criterion in terms of
the effective stress, r¼ ð3=2r0ijr0ijÞ1=2; k is then the uniaxial yield stress. J2 flow theory assumes that Dp||r0 . This amounts to taking

Dpjj ∂r
∂r0

½118�

or

Dp
ij jj

∂r
∂r0ij

¼ 3
2

r0ij
r

½119�

Thus we can write

Dp ¼ _e
p 3
2

r0

r
½120�

where _e
p
is an effective plastic strain rate whose specification requires an additional model statement. By incorporating [120] we

can write from eqn [113]

s
o ¼L : De ¼L : ðD�DpÞ ¼ L : D� _e

p 3
2

r0

r

� �
½121�

We adopt a simple power-law expression of the form

_e
p ¼ _e0

r
g

� �1=m

½122�

where _e0 is a reference strain rate and 1/m represents a strain rate sensitivity coefficient. For common metals, 50o1/mo200. For
values of 1/mB100, or larger, the materials will display a very nearly rate-independent response in the sense that r will track g at
nearly any value of strain rate.

Strain hardening is described as an evolution of the hardness function g. This is often taken to be

gðepÞ ¼ r0 1þ ep

ey

� �n

½123�

where

_e
p ¼ 2

3
Dp : Dp

� �1=2

; ep ¼
Z t

0

2
3
Dp : Dp

� �1=2

dt ½124�

are the effective plastic strain rate and effective plastic strain, respectively. The remaining parameters are the material parameters;
the initial yield stress is s0, and n is the hardening exponent.
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11 Strain Gradient Plasticity

In classical plasticity there is no material length scale in the framework of the constitutive theory, so that this theory cannot predict
the size effects experimentally observed in plastic deformation problems at micron or smaller scales, as in the bending and torsion
testing of very thin beams and wires, inelastic response of nanograined materials, dispersion strengthening by small particles,
measurements of indentation hardness at the micron and submicron scales, micro-electromechanical systems and thin film
applications, etc. (Fleck et al., 1994; Nix and Gao, 1998; Stoulken and Evans, 1998). In general, the observed trend is that smaller is
stronger. This size-dependent strengthening has been attributed to the effects of strain gradients on plastic deformation. The theory
which includes these effects has been put forward by Aifantis (1984), Muhlhaus and Aifantis (1991), Fleck and Hutchinson (1993,
1997, 2001), and Gao et al. (1999), with subsequent developments by many investigators, including, inter alia, Huang et al.
(2004), Gurtin and Anand (2009), Fleck and Willis (2009), Gudmundson (2004), Hutchinson (2012), and Fleck et al. (2014).

From the dislocations point of view, the gradients of plastic strain can be associated with the storage of geometrically necessary
dislocations, while the work hardening of material under uniform strain is associated with random trapping and storage of
dislocations referred to as statistically stored dislocations (Fleck et al., 1994; Nix and Gao, 1998). In this section we present a
simple formulation of the phenomenological strain gradient plasticity which includes only one material (constitutive) length
scale, in the absence of which the theory reduces to the classical J2 plasticity theory. To a large extent, the presented formulation is
based on the infinitesimal strain formulation by Hutchinson (2012). No explicit referral is made to specific dislocation
mechanisms and interactions among individual dislocations, which is on the agenda of the discrete dislocation dynamics and
dislocation based plasticity at even smaller scales, for example, Devincre and Kubin (1997), Tadmor et al. (1999), Needleman
(2000), Zbib et al. (2002), and Bittencourt et al. (2003).
11.1 Gradient-Enhanced Effective Plastic Strain

The rectangular components of the infinitesimal strain are denoted by eij, which are related to the displacement components ui by
eij¼(ui,jþ uj,i)/2, where ( ),i designates the derivative with respect to the spatial coordinate xi. It is assumed that the elastoplastic
rate of strain is the sum of elastic and plastic contributions, such that _eij ¼ _eeij þ _epij . The rates are defined with respect to any

monotonically increasing time-like parameter t. The elastic part of the strain rate depends on the rate of the Cauchy stress (sij)
according to the generalized Hooke's law

_eeij ¼
1
2m

_r0ij þ
1
9κ

_rkkδij ½125�

where m and κ are the elastic shear and bulk moduli, respectively. The plastic part of the strain rate is assumed to be codirectional
with the deviatoric part of the Cauchy stress (s0ij), as in the classical J2 flow theory of plasticity,

_epij ¼ _epmij; mij ¼ 3
2

r0ij
req

½126�

The equivalent (von Mises) stress seq is

req ¼ 3
2
r0ijr

0
ij

� �1=2

; r0ij ¼ rij � 1
3
rkkδij ½127�

while the loading index _ep satisfies

_ep ¼ 2
3
_epij _e

p
ij

� �1=2

40 ½128�

Its path-dependent integral over the history of deformation gives the effective plastic strain ep. The spatial gradient of ep will be
used as a cumulative measure of plastic strain gradients, i.e.,

ep ¼
Z

_ep dt; ep;k ¼
Z

_ep;kdt ½129�

In the strain gradient plasticity, a gradient-enhanced effective plastic strain can be the defined by Hutchinson (2012)

Ep ¼ e2p þ l2ep;kep;k
� �1=2

½130�
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where l is the material length scale of the specific problem at hand, introduced in [130] by the dimensional consideration. With the
so defined measure of the cumulative plastic strain, it will be assumed that the specific plastic work (per unit volume) is

wp ¼
Z Ep

0
r0ðepÞdep ½131�

where s0¼s0(ep) is obtained from the stress–plastic strain curve in one-dimensional simple tension test. The assumed form [131]
implies that the plastic work required to deform the material element to the strain level represented by Ep, in the presence of strain
gradients, is equal to that at the strain level ep¼Ep, in the absence of plastic gradients Hutchinson (2012). More involved
representation of the expression for wp could be introduced, such as one proposed by Fleck et al. (2014). The elastic portion of the
work, associated with elastic strain eeij, is

we ¼ mee
0
ij e

e0
ij þ

1
2
κee2kk ; ee

0
ij ¼ eeij �

1
3
eekkδij ½132�

such that the total work done per unit volume is w¼weþwp. If the plastic part of the total strain epij is obtained from _epij by the

integration along a specified history of deformation, the elastic part follows from eeij ¼ eij � epij . This is related to the Cauchy stress

by Hooke's law rij ¼ 2mee
0
ij þ κeekkδij.
11.2 Rate of Work

The rate of work is the sum of elastic and plastic parts, _w¼ _we þ _wp. The elastic part is obtained from [132] as _we ¼ rij _eeij. The

expression for the plastic part is derived by differentiation of [131], which gives

_wp ¼ r0ðEpÞ _Ep; _Ep ¼ ep
Ep

_ep þ l2
ep;k
Ep

_ep;k ½133�

The rate _wp can be either positive or negative, depending on the sign of _Ep. Furthermore, it can be expressed as

_wp ¼ q_ep þ sk _ep;k ½134�

where the quantities q and sk are the work conjugates to the plastic strain and strain gradient measures ep and ep,k. By comparing
[133] and [145], these are

q¼ r0ðEpÞ epEp ; sk ¼ l2r0ðEpÞ ep;kEp
½135�

Thus, the total rate of work can be expressed as

_w¼ rij _eeij þ q_ep þ sk _ep;k ½136�
11.3 Principle of Virtual Work

In absence of body forces, the principal of virtual work for the strain gradient plasticity readsZ
V
ðrijδeeij þ qijδe

p
ij þ sijkδe

p
ij;kÞdV ¼

Z
S
ðTiδui þ tijδe

p
ijÞdS ½137�

where the (deviatoric) microstress qij is the work conjugate to plastic strain epij , and the moment stress tijk is the work conjugate to

plastic strain gradient epij;k. The virtual elastic strain increment is δeeij ¼ δeij � δepij . The Gauss divergence theorem applied to [137]

yields the equations of equilibrium

rij;j ¼ 0; sijk;k þ r0ij � qij ¼ 0 ½138�

and the relations between the traction vector Ti and the Cauchy stress tensor sij, and between the (deviatoric) moment traction
tensor tij are the moment stress tensor tijk,

Ti ¼ rijnj ; tij ¼ sijknk ½139�
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The components of the outward unit vector, orthogonal to the considered surface element, are denoted by ni. The rate of
internal work per unit volume is

_w¼ rij _eeij þ qij _e
p
ij þ sijk _e

p
ij;k ½140�

The principle of virtual work can also be expressed in terms of δep and δep,k. Since δe
p
ij ¼ δepmij and seq¼s0ijmij, the virtual work

principle [137] can be recast as Z
V
ðrijδeeij þ qδep þ skδep;kÞdV ¼

Z
S
ðTiδui þ tδepÞdS ½141�

where

t ¼ tijmij ; sk ¼ sijkmij ; q¼ qijmij þ sijkmij;k ½142�

provided that the equilibrium conditions hold

rij;j ¼ 0 ; sk;k þ req � q¼ 0 ½143�

together with

Ti ¼ rijnj ; t ¼ sknk ½144�
11.4 Helmholtz Free Energy

By considering _ep and _ep;k to be the fluxes whose conjugate thermodynamic forces (affinities) are denoted by f and gk, the rate of

internal energy dissipation due to inelastic deformation processes is

D¼ f _ep þ gk _ep;k40 ½145�

The rate of Helmholtz free energy under isothermal conditions can then be expressed as _c¼ _w�D, i.e.,

_c¼ _w� f _ep � gk _ep;k ½146�

By substituting the rate of work expression [136] into [146] the rate of the free energy becomes

_c¼ rij _eeij þ _cp;
_cp ¼ ðq� f Þ_ep þ ðsk � gkÞ_ep;k ½147�

In view of [135], the rate of the plastic part of the free energy becomes

_cp ¼ r0ðEpÞ epEp � f

� �
_ep þ l2r0ðEpÞ ep;kEp

� gk

� �
_ep;k ½148�

Physically, the free energy in an elastoplastically deformed material consists of the elastic strain energy associated with the
overall elastic strain eeij, and the locked-in stored energy around statistically stored and geometrically necessary dislocations.

Consequently, it is assumed that the free energy can be expressed as

c¼ ceðeeijÞ þ cpðep; EpÞ ½149�

Its rate is then

_c¼ ∂ce

∂eeij
_eeij þ

∂cp

∂ep
_ep þ

∂cp

∂Ep
_Ep ½150�

In view of the expression for _Ep from [133], the above becomes

_c¼ rij _eeij þ
∂cp

∂Ep
ep
Ep

þ ∂cp

∂ep

� �
_ep þ l2

∂cp

∂Ep
ep;k
Ep

� �
_ep;k ½151�
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By comparing [148] and [151], there follows

f ¼ � ∂cp

∂ep
; gk ¼ 0;

∂cp

∂Ep
¼ r0ðEpÞ ½152�

These expressions suggest that the plastic part of the free energy can be taken as

cp ¼
Z Ep

0
r0ðepÞdep �

Z ep

0
ZðepÞr0ðepÞdep; 0:9rZðepÞr1 ½153�

The coefficient Z(ep) is specified to be in the indicated range, so that [153] reproduces the locked-in strain energy around
dislocations in the case of classical plasticity (without strain gradient effects), which is estimated to be about 10% of the increment
of plastic work at the beginning of plastic deformation, decreasing to zero with further progression of plastic deformation (Taylor
and Quinney, 1934). If it is assumed that all plastic work in the model of classical plasticity is dissipated (Z ¼ 1), [153] reduces to
the expression originally proposed by Hutchinson (2012). In that case, the entire free energy due to plastic deformation is
associated with the existence of plastic strain gradients.

With the free energy contribution cp specified by [153], the affinity f conjugate to the effective plastic strain ep follows from
[152] as

f ¼ ZðepÞr0 ep
	 
 ½154�
11.5 Yield Condition and Plastic Loading Conditions

In the considered framework of the strain gradient plasticity, the yield condition is of the von Mises (J2) type in the deviatoric
Cauchy stress space, ð3=2Þr0ijr0ij ¼ r2Y , where sY specifies the radius of the current yield surface. The loading/unloading conditions

are

r0ij _eij
r0; elastic unloading ð_ep ¼ 0Þ
40; plastic loading ð_ep40Þ

 
½155�

The consistency condition during plastic loading is ð3=2Þr0ij _r0ij ¼ rY _rY . The formulation of the entire incremental boundary

value problem, based on an appropriate functional with the specified rate potential function and the prescribed boundary
conditions on _ui and _ep, is discussed by Hutchinson (2012).
11.6 Recoverable and Dissipative Parts of q and sk

The rate of plastic part of the free energy is the non-dissipated portion of the rate of plastic work, which is given by [147]. This can
be rewritten as

_cp ¼ qrec _ep þ sreck _ep;k ½156�

where the recoverable potions of q and sk are

qrec ¼ q� f ¼ r0ðEpÞ epEp � f ; sreck ¼ sk ¼ l2r0ðEpÞ ep;kEp
½157�

The dissipative parts are

qdis ¼ f ¼ ZðepÞr0 ep
	 


; sdisk ¼ 0 ½158�

If it is assumed that Z¼1 throughout the plastic deformation, the expressions [157] and [158] reduce to those first proposed by
Hutchinson (2012).

The partition of qij and tijk proceeds similarly. Since

_cp ¼ qij _e
p
ij þ sijk _e

p
ij;k � f _ep � gk _ep;k ; gk ¼ 0 ½159�
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and since _epij ¼ _epmij implies _ep ¼ ð2=3Þmij _e
p
ij , there follows

_cp ¼ qij � 2
3
fmij

� �
_epij þ sijk _e

p
ij;k ½160�

Expressing the rate of plastic part of the free energy as

_cp ¼ qrecij _epij þ srecijk _e
p
ij;k ½161�

the comparison of [160] and [161] yields

qrecij ¼ qij � 2
3
fmij; srecijk ¼ sijk ½162�

up to their immaterial (workless) parts. The dissipative parts are accordingly

qdisij ¼ 2
3
fmij ; sdisijk ¼ 0 ½163�
11.7 Yield Surface in qdisij Space

In view of [163], the plastic yield surface can also be defined in the qdisij space,

F¼ 3
2
qdisij qdisij

� �1=2

� f ¼ 0; f ¼ ZðepÞr0ðepÞ ½164�

such that the plastic strain rate obeys the normality rule

_epij ¼ _ep
∂F
∂qdisij

½165�

Since for the hardening material, s0¼s0(ep) is a monotonically increasing function, the yield surface [164] expands iso-
tropically in the qdisij space during plastic deformation, similarly as the yield surface seq¼s0(ep) expands in the Cauchy stress space

in the case of classical von Mises plasticity (Fleck et al., 2014).
11.8 Proportional Loading

In the case of proportional loading, all stress components increase in proportion to a single scalar parameter, and the rate-type
analysis simplifies to the strain gradient J2 deformation theory of plasticity. The total plastic strain is itself codirectional with the
deviatoric stress,

epijðtÞ ¼ epðtÞmij; mij ¼ 3
2

r0ij
req

½166�

while the effective plastic strain can be expressed as

epðtÞ ¼ 2
3
epije

p
ij

� �1=2

40 ½167�

It readily follows that

qij ¼ 2
3
r0ðEpÞ epEp mij; sijk ¼ 2

3
l2r0ðEpÞ ep;kEp

mij ½168�

and

q¼ qijmij ¼ r0ðEpÞ epEp ; sk ¼ sijkmij ¼ l2r0ðEpÞ ep;kEp
½169�
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In the variational formulation, the actual solution (ui, ep) minimizes the potential energy functional Hutchinson (2012)

pðui; epÞ ¼
Z
V
½weðeeijÞ þ wpðep; ep;kÞ�dV �

Z
ST

ðTiui þ tepÞdS ½170�

where Ti and t are prescribed on the portion ST of the boundary, weðeeijÞ is defined by [132], and wp(ep,ep,k) by [131]. If ep is

unconstrained on the portion of the boundary, then t ¼ 0 over that portion; if ep is constrained to be zero, t will generally be non-
zero. Further analysis of the boundary conditions and the conditions at the interface between elastically and plastically deformed
parts of the body can be found in Gudmundson (2004), Fleck and Willis (2009), and Hutchinson (2012).
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