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a b s t r a c t

The elastic modulus of cancellous bone is derived based on the measured elastic properties
of separate mineral and protein phases. Adopting the mechanics of cellular solids approach,
the moduli of elasticity of cancellous, deproteinated and demineralized bone are expressed
in terms of the trabecular moduli of elasticity and the corresponding density ratios using
the power law expressions. The Young’s modulus of trabeculae of bone are related to the
Young’s moduli of deproteinated and demineralized trabeculae through a modified mix-
ture rule, which incorporates an appropriate weight function to account for the mineral/
protein interaction effects and the departure from the ideal mixture rule. Two expressions
for the effective modulus of elasticity of cancellous bone are then derived: one in terms of
the moduli of elasticity of mineral and protein trabeculae, and the other in terms of the
moduli of elasticity of deproteinated and demineralized cancellous bone. The material
parameters are specified from the results of compressive testing of untreated, deproteinat-
ed, and demineralized cancellous bovine femur bone. The osteoporotic decrease of the elas-
tic moduli is then analyzed. Two evolution equations are introduced, one for the rate of loss
of the mineral content of cancellous bone, and the other for the protein loss. Both losses are
associated with the corresponding density and volume changes, for which appropriate
equations are proposed. Based on these, and the evolution equations for morphological
parameters accounting for the trabecular microarchitecture, the evolution equations are
derived for the elastic moduli of deproteinated, demineralized and composite cancellous
bone. A particular model of osteoporotic degradation is considered in which it is assumed
that the relative ratios of the mineral and protein loss are equal to each other during the
progression of osteoporosis.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cancellous (trabecular, spongy) bone is a porous inner
portion of vertebrae, ribs, skull and the head of the femur,
which is surrounded by hard outer layer – cortical

(compact) bone. For example, the metaphyses and epiphy-
ses of long bones consist of trabecular compartment sur-
rounded by thin shell of cortical bone; the diaphyses are
entirely cortical. Cortical bone predominates in the appen-
dicular skeleton and can resist both tension and compres-
sion (thus bending), while cancellous bone is concentrated
in the axial skeleton and is structured to resist compres-
sion. On the micro-scale, cortical bone consists largely of
secondary osteons (10–20 concentric rings of lamellae that
surround a central cavity – the Haversian canal, containing
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one or more blood vessels and nerves). Trabeculae of can-
cellous bone are composed almost exclusively of lamellar
bone arranged in packets (hemiosteons). Cancellous bone
is an open cell porous network consisting of rod- and
plate-like elements (trabeculae, 50–300 lm thick and up
to about 1 mm long), which provide room for blood vessels
and marrow, and make the entire bone lighter. While the
porosity of cortical bone is in the range of 5–10%, the
porosity of cancellous bone is about 40% in the femoral
neck, to more than 90% in the elderly spine. Mammalian
skeletal bone is made up of around 65 wt.% inorganic mat-
ter (mineral phase), 25 wt.% organic matter (dominantly
type I collagen), and 10 wt.% water. On a volumetric basis,
bone consists of about 33–43 vol.% minerals, 32–44 vol.%
organic matter, and 15–25 vol.% water (Gong et al., 1964;
Olszta et al., 2007).

Dry cancellous bone can be considered as a composite
material consisting of interpenetrating mineral and protein
phases. This is confirmed by demineralization and
deproteinization processes, which result in stand-alone
cellular structures of pure mineral (deproteinated bone)
or pure protein (demineralized bone), as shown in Fig. 1.
Bone minerals consist of impure hydroxyapatite crystals,
Ca10(PO4)6(OH)2, with 4–6% of the phosphate groups
replaced by carbonate groups, which provides stiffness
and strength, while the biopolymer protein phase is
composed of type-I collagen, which provides ductility of
the bone and its toughness or ability to absorb energy
before fracture (Fritsch et al., 2009a,b; Viguet-Carrin
et al., 2010). The collagen is also providing a template for
mineral deposition, as the mineral crystals are aligned with
the collagen fibril axis (Boskey, 2001).

Mechanical properties of cancellous bone are influenced
by the trabecular density (fraction of the bone actually
occupied by the trabecular bone tissue), the densities of
its mineral and protein phases (degree of matrix minerali-
zation and collagen cross-link concentration), their inter-
action, and the microstructural arrangement of trabecular
network (micro-architecture or fabric); Hellmich et al.
(2004) and Fritsch and Hellmich (2007).1 The elastic stiff-
ness and the strength of cancellous bone are nonlinearly re-
lated to the apparent bone density (Rice et al., 1988;
Keaveny et al., 2001). For example, Marcus and Bouxsein
(2008) cite that a 25% decrease in density, associated with
15 years of age-related bone loss, gives rise to 44% decrease
of the stiffness of trabecular human bone, with a similar ef-
fect on the bone strength. In cancellous bone of the proximal
tibia, a decline in apparent density of 25% is associated with
a 30–40% reduction in compressive strength and fracture
toughness. Microstructural changes of trabecular network
due to bone loss, such as thinning or loss of trabecular ele-
ments, also exert strong effect on the bone strength. For
example, the loss of trabecular connectivity due to the loss
of trabecular cross-struts cause a decrease of the buckling
strength of isolated trabeculae (Bell et al., 1967), resulting
in decrease in strength of the entire bone. In some bones
(vertebrae and proximal tibia), the detrimental effect of
the decrease of the bone mass on its strength is offset by

Fig. 1. Photographs of cross-sections (5 � 5 mm) of cancellous bovine femur: (a) control/untreated (UT), (b) demineralized (DM), and (c) deproteinated (DP)
bone samples (adopted from Chen et al., 2011). The volumes of the UT, DM, and DP samples are nearly the same, i.e., V = Vm = Vp.

1 There are other factors that may influence mechanical properties of
bone. For example, larger crystals may be present in older bone. This
increased crystalline size could impair the mechanical properties by
permitting earlier crack initiation and decreasing bone ductility (Burr,
2002; Faibish et al., 2006). See also Fantner et al. (2005).
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the development of an increased anisotropy of the trabecu-
lar structure porosity increases predominantly in the verti-
cal direction, as the horizontally oriented trabeculae thin
and disappear faster than vertically oriented trabeculae.2

This helps the load-carrying capacity along vertical (axial)
direction, but is accompanied by the decrease in the load-
carrying capacity in horizontal (transverse) directions,
which increases the risk of fracture due to nonhabitual,
off-axis loading (Ding et al., 2002; Morgan et al., 2008). For
example, the ratio of compressive strengths of vertically
and horizontally loaded specimens from human lumbar ver-
tebrae increases from approximately 2 at age of 20 to 3.5 at
age 80. During this time period, the ash density of vertebral
trabecular bone decreases approximately by 50%, with the
mechanical properties decrease of as much as 75–90%
(Bouxsein, 2008).

The objective of the present paper is to derive the elas-
tic properties of cancellous bone based on the measured
elastic properties of isolated mineral and protein phases.
After deriving the relationships between the mass densi-
ties of individual phases and the composite matrix, the ap-
proach from the mechanics of cellular solids is adopted to
express the moduli of elasticity of cancellous, deproteinat-
ed and demineralized bones in terms of the trabecular
moduli of elasticity and the corresponding density ratios
using the power law expressions. The Young’s modulus
of bone’s trabeculae are related to the Young’s moduli of
deproteinated and demineralized trabeculae by a modified
mixture rule, in which an appropriate weight function is
incorporated to account for the mineral/protein interaction
effects and the corresponding departure from the ideal
mixture rule. Two alternative expressions for the effective
modulus of elasticity of cancellous bone are then derived,
one in terms of the moduli of elasticity of mineral and pro-
tein trabeculae, and the other in terms of the moduli of
elasticity of deproteinated and demineralized bone. It is
shown that the modulus of elasticity of cancellous bone
is far from being governed by a mixture rule in terms of
moduli of elasticity of mineral and protein phases. The pre-
sented analysis is applied to cancellous bovine femur bone.
The needed material parameters are specified from the re-
sults obtained in compressive testing of cancellous sam-
ples from untreated, deproteinated, and demineralized
femur bone. In the second part of the paper, the osteopo-
rotic deterioration of elastic moduli is studied. Two evolu-
tion equations are introduced, one for the rate of loss of the
mineral content of cancellous bone, and the other for the
protein loss. Both losses are associated with the
corresponding density and volume changes, for which
appropriate equations are proposed. Based on these, and
the evolution equations for morphological parameters
accounting for the trabecular microarchitecture, the evolu-
tion equations are derived for the elastic moduli of depro-
teinated, demineralized and composite cancellous bone.
An osteoporotic degradation is then considered in which
it is assumed that the relative ratios of the mineral and

protein loss are equal to each other during the progression
of osteoporosis.

2. Volume fractions and density relationships

Consider a representative volume element of cancellous
bone whose volume is V.3 Denoting by V⁄ the volume of its
trabeculae (rods and struts), and by Vo the volume of its hol-
low portion, we can write V = V⁄ + Vo. Cowin (1999) refers to
porosity external to and surrounding the trabeculae as the
porosity of the inter-trabecular space. Similarly, if Vp and
Vm are the volumes of demineralized (protein) and deprote-
inated (mineral) phase of the material sample, we can write
Vm ¼ V�m þ Vo

m and Vp ¼ V�p þ Vo
p. Assuming that the bonding

interactions between the mineral (m) and protein (p) phase
do not appreciably affect the volumes, and since trabecular
thinning by demineralization and deproteinization domi-
nantly removes trabecular volume inside the sample (which
is an order of magnitude higher that trabecular volume from
trabecular elements at the boundary of the sample), it fol-
lows that V = Vm = Vp and V� ¼ V�m þ V�p, i.e.,

V ¼ Vm ¼ V�m þ Vo
m; V ¼ Vp ¼ V�p þ Vo

p;

V ¼ V� þ Vo ¼ V�m þ V�p þ Vo;

Vo
m ¼ Vo þ V�p; Vo

p ¼ V0 þ V�m:

ð1Þ

The volume fractions of trabeculae and inter-trabecular
space are f⁄ = V⁄/V and f0 = V0/V = 1 � f⁄, with similar defini-
tions for f �m and f �p .

The mass densities (q) of cancellous, deproteinated and
demineralized bone samples are defined such that

m ¼ qV ¼ q�V�; mm ¼ qmVm ¼ q�mV�m;

mp ¼ qpVp ¼ q�pV�p ð2Þ

with the conservation of mass condition m = mm + mp. In
(2), q�m is the density of the mineral phase per unit mineral
volume within the trabeculae ðV�mÞ, i.e., q�m ¼ mm=V�m. In
contrast, qm is the apparent density of the mineral phase
per unit bulk volume (including voided intertrabecular
space) of the deproteinated trabecular sample (Vm), i.e.,
qm = mm/Vm. Similar interpretations apply to densities q�p
and qp of the protein phase. In view of the introduced
assumption V = Vm = Vp, the conservation of mass yields
the additive rule for the cancellous bone density,

q ¼ qm þ qp ð3Þ

and the mixture rule for the trabecular density,

q� ¼ fmq�m þ fpq�p: ð4Þ

The volume fractions of the mineral and protein portions of
trabeculae are defined by

fm ¼ V�m=V�; f p ¼ V�p=V� ðfm þ fp ¼ 1Þ: ð5Þ

The corresponding mass ratios are

2 In accord with Wolffs law, the loaded bone tends to adapt its inner and
outer architecture to the environment (loads), so that trabeculae align
along stress trajectories to better carry the weight.

3 The representative volume element (RVE) is small enough to be
considered homogeneous in the continuum mechanics sense, but large
enough to include sufficiently many trabeculae (or osteons, for cortical
bone). We shall later specify the size of RVE in our consideration of
cancellous bone to be about (2 mm)3.
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cm ¼ ðmm=mÞ ¼ ðqm=qÞ ¼ fmðq�m=q�Þ;
cp ¼ ðmp=mÞ ¼ ðqp=qÞ ¼ fpðq�p=q�Þ; ð6Þ

with cm + cp = 1. In view of the above definitions and
assumptions, the following density relationships can be
readily derived

ðqm=q
�
mÞ ¼ fmðq=q�Þ; ðqp=q

�
pÞ ¼ fpðq=q�Þ;

ðq=q�Þ ¼ qm=q
�
m

� �
þ qp=q

�
p

� �
:

ð7Þ

In particular, Eq. (7) specifies the volume fraction of tra-
beculae, because (V⁄/V) = (q/q⁄). The third equation in (7)
is obtained by adding the first two. It is also noted that
fpðqm=q�mÞ ¼ fmðqp=q�pÞ.

Other phase densities could be introduced. For example,
the mineral density per unit volume V⁄ of the trabeculae as
a composite (mineral + protein phase) is q̂�m ¼ mm=V�.
Clearly, q̂�m ¼ fmq�m, where fm ¼ V�m=V� is the mineral vol-
ume fraction. Also, if q⁄ = m/V⁄ is the mass density of the
bone per unit volume of trabeculae, then q� ¼ q̂�m þ q̂�p. It
may also be recalled that the medical term BMD (bone
mineral density) refers to a measure of the mineral density
per centimeter square, obtained from X-ray or computed
tomography (CT) scan. As such, this measure is used in
the medical practice to estimate the strength of bones.

3. Young’s moduli of elasticity

Adopting the approach used in the mechanics of cellular
solids (Gibson and Ashby, 1997), the effective moduli of
elasticity of cancellous bone, and its mineral and protein
phase, are related to the moduli of elasticity of the corre-
sponding trabeculae and the density ratios according to

E ¼ E�ðq=q�Þn; Em ¼ E�mðqm=q
�
mÞ

nm ; Ep ¼ E�pðqp=q
�
pÞ

np :

ð8Þ

These power-law relationships are motivated by the fact
that small changes in the density ratios may lead to
pronounced changes in the mechanical properties (Carter
and Hayes, 1977; Ashby, 1983; Gibson, 1985; Christensen,
1986; Rice et al., 1988; van Rietbergen and Huiskes, 2001).
The exponents n, nm, and np depend on the microarchitec-
tural details of trabecular structure (e.g., rod-rod vs.
rod-plate like trabeculae).4 The elastic modulus of such
trabeculae (E⁄) is not a simple weighted sum of the elastic
moduli of pure mineral and pure protein ðE� – f mE�mþ fpE�pÞ,
because of interaction effects between the mineral and
protein within each trabecula. We thus adopt a modified
mixture rule for Young’s modulus of trabeculae,

E� ¼ /fmE�m þ fpE�p; / ¼ /ðfmÞ: ð9Þ

The weight function / = /(fm) governs the departure from
the ideal mixture rule (/ = 1), and accounts for the effects
of interaction between the mineral and protein phase, as
well as the differences in micro-porosity or other microar-
chitectural features of demineralized, deproteinated, and
cancellous trabeculae. Lucchinetti (2001) refers to / as an
‘‘efficiency or reinforcement’’ parameter. The individual
trabecular moduli E⁄, E�m, and E�p are themselves dependant
on the micro-porosity of UT, DP, and DM trabeculae, but
this intrinsic (cortical-bone-type) porosity is much smaller
than porosity due to intertrabecular space (BV/TV – bone
volume/tissue volume), and for simplicity, it is not explic-
itly included in the analysis in this section, although it will
be considered in Section 4, when dealing with osteoporotic
degradation of mechanical properties of bone.5 A simple
form / = fm is well-suited to reproduce the experimental
data for bovine femur bone, discussed in the next section.
When (9) is substituted into (8), the effective modulus of
elasticity of cancellous bone (E) can be expressed in terms
of the moduli of elasticity of mineral and protein trabecu-
lae (E�m and E�p), as

E ¼ ð/fmE�m þ fpE�pÞ½ðqm=q
�
mÞ þ ðqp=q

�
pÞ�

n
; ð10Þ

or, in terms of the moduli of elasticity of mineral and pro-
tein phase (Em and Ep), as

E ¼ /f 1�n
m ðqm=q

�
mÞ

n�nm Em þ f 1�n
p ðqp=q

�
pÞ

n�np Ep: ð11Þ

Clearly, the effective modulus of elasticity of cancellous
bone is far from being governed by a mixture rule, i.e.,
E – fmEm + fpEp. There are other more sophisticated tools
to estimate the elastic properties of composites, such as
those based on the mean field (self-consistent) or micro-
structural homogenization methods (Nemat-Nasser and
Hori, 1999; Zaoui, 2002; Hellmich et al., 2004; Ostoja-Star-
zewski, 2007; Fritsch et al., 2010; Wang et al., 2009), but
we proceed for simplicity with a modified mixture rule
(9), leading to (10) and (11).

3.1. Experimental data: bovine femur bone

Sample preparation: Bovine cancellous femur bone sam-
ples were obtained from a local butcher. The age of cattle
at slaughter was about 18 months. The bone was carefully
cleaned to remove any marrow and lipid components,
using pressurized stream of compressed air and water.
About 100 samples for compression testing (cubes
5 � 5 � 5 mm) were prepared from close locations of the
bone in order to minimize variations in density and min-
eral content. The samples were first roughly cut by hand-
saw and then by a diamond blade with the surfaces as
parallel as possible. Samples were stored in a refrigerator
until chemical treatment and testing were performed.
The 5 � 5 � 5 mm cubic samples (with mass of about
0.1 g) were the smallest samples we could smoothly cut
and test. Smaller cubes, with edge length of about 2 mm

4 The bone structure of trabeculae is similar to the second (lamellae,
lacunae) level of the cortical bone structure. This includes lamellae,
lacunae, canaliculi, and cement lines, but generally no vascular channels
(like cortical bone). However, lamellae, (2–6) lm thick, are arranged
longitudinally within trabecular packets along the trabeculae, while they
are arranged concentrically in cortical bone. At the next hierarchial level of
structure (below about 0.5 lm), the collagen fibril organization within
lamellae, and collagen-mineral structure, are commonly assumed to be the
same as for cortical bone.

5 The bone marrow around trabeculae is very vascularized by embedded
capillaries carrying the blood flow and providing oxygen supply, needed for
metabolic bone modeling and remodeling. There is a smaller number of
vascular structures within trabeculae themselves (Lafage-Proust et al.,
2010), which also contribute to their microporosity.
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and mass about 5 mg, would still be large enough to con-
tain sufficiently many trabeculae to make them statisti-
cally equivalent as representative volume elements.
Although we could not experiment with them, they could
be considered as the smallest representative element for
cancellous bovine femur bone to which our continuum
constitutive model applies.6 More on experimental tech-
niques for bone mechanics, see Turner and Burr (2001).

Demineralization and deproteination process: Bone sam-
ples were demineralized (DM) by aging in 0.6 N hydrochlo-
ric acid (HCl) at room temperature using the procedures
outlined in Toroian et al. (2007) and Chen et al. (2011).
Acid solutions were changed daily in order to avoid satura-
tion that can affect the demineralization process. The
whole process took about 4 days. The completeness of
demineralization was verified by the mineral absence in
the solution using the procedure described by Castro-
Ceseña et al. (2011). Bone samples were deproteinated
(DP) by aging (incubating) in a 2.6 wt.% sodium hypochlo-
rite (NaOCl) solution at 37 �C, following the procedure out-
lined in Chen et al. (2011) and Chen and McKittrick (in
press). The solutions were changed daily, and the whole
process took about 7 days.

Compression testing: Three different sets of the samples
were prepared: 40 untreated (UT), 30 demineralized (DM)
and 30 deproteinated (DP). UT and DP samples were tested
in dry condition. DM samples were subjected to a critical
point drying procedure before testing in order to avoid
an extensive shrinkage. Before compression testing the
surfaces of the samples were lubricated by petroleum jelly
(vaseline). Compression testing of untreated bone samples
was performed on universal testing machine equipped
with 30 kN load cell (Instron 3367 Dual Column Testing
Systems, Norwood, MA). Compression testing of deminer-
alized and deproteinated bone samples was performed
on universal testing machine equipped with 500 N load
cell (Instron 3342 Single Column System, Norwood, MA).
Compression testing for samples from all three groups
was performed at a strain rate of 1 � 10�3 s�1. An external
deflectometer SATEC model I3540 (Epsilon Technology
Corp., Jackson, WY) was used in order to measure the small
displacement. All samples were loaded until compressive
failure.

Experimental data: The reported modulus of elasticity
for a single hydroxyapatite crystal is E�m ¼ 114 GPa (Katz,
1971), while collagen has E�p ¼ 1:3 GPa (Fung, 1993). The
corresponding mass densities are q�m ¼ 3:15 g=cm3

(Heidemann and Riess, 1964) and q�p ¼ 1:35 g=cm3

(Potoczek, 2008). We have tested in our laboratory 20
cortical bone samples from the bovine femur, under dry
conditions, and have found that the modulus of elasticity
and the mass density were: E⁄ = (20 ± 2) GPa and q⁄ =
(2.04 ± 0.07) g/cm3. The modulus of elasticity was

determined from the slope of the compressive stress/strain
curve. On the other hand, the moduli of elasticity and the
mass densities of deproteinated, demineralized, and un-
treated (control) cancellous samples were:

Em ¼ ð295� 80ÞMPa; qm ¼ ð0:48� 0:02Þ g=cm3;

Ep ¼ ð110� 35ÞMPa; qp ¼ ð0:32� 0:02Þ g=cm3;

E ¼ ð1:4� 0:3Þ GPa; q ¼ ð0:8� 0:03Þ g=cm3:

The volume ratios of the mineral and protein phases
were fm = 0.39 and fp = 0.61, as calculated from (7) with
the mean values of the mass densities q, qm, qp, and q⁄.
The porosity of the cube specimen, fo = (Vo/V) = 1 � f⁄,
where f⁄ = (V⁄/V) = (q/q⁄) is the volume fraction of trabecu-
lae, was about 0.6.

The elastic moduli data for E, Em and Ep was well repro-
duced from (8) by taking nm = 3.15, np = 1.75, n = 2.84, and
/ = fm. An alternative / that works well is / = ex-
p[k(fm � 1)], with k = 3/2. For example, n was calculated
from the expression n = ln(E/E⁄)/ln(q/q⁄), and similarly
for nm and np. It is noted that E� – f mE�m þ fpE�p and
E – fmEm + fpEp, so that the mixture rules are far from being
obeyed, particularly for cancellous bones, due to their high
cellular porosities. The plots of E⁄ vs. fm, according to (9),
are shown in Fig. 2. Since the mineral volume fraction in
a bovine bone varies generally around 33–43 vol.% mineral,
part (b) of Fig. 2 shows the variation of E⁄ in that range.

4. Osteoporotic degradation of Young’s modulus

Osteoporosis is a condition of bone loss and microstruc-
tural deterioration of bone tissue, which decreases bone
strength and increases skeletal fragility, so that fractures
may occur under minor traumas, even those associated
with normal daily activities. Progression of osteoporosis
is caused by a decline in the bone formation activity rela-
tive to the resorption activity (Morita et al., 1994). Since
cancellous bone is lighter and more porous than compact
bone, it provides more surface area for bone remodeling,
it is more metabolically active, and thus more affected by
osteoporosis (Ciarallo et al., 2006).7 Type I osteoporosis sig-
nifies a loss of trabecular bone after menopause, caused by
the lack of endogenous estrogen, while type II osteoporosis
represents a loss of cortical and trabecular bone in men
and women as the end result of age-related bone loss,
caused by long-term remodeling inefficiency, lack of dietary
calcium and vitamin D, and associated mineral absorbtion
and handling (Marcus and Bouxsein, 2008). The calcium le-
vel in the body, including the amount of calcium in the
bones, is regulated by the parathyroid glands through the
secretion of parathyroid hormone. Bone degradation due to
mineral loss can be determined from measurement of the
bone mineral content (BMC), which can be accomplished
by quantitative computed tomography, dual-photon absorp-
tiometry, dual X-ray absorptiometry, and ultrasound (Shah
et al., 1993). In osteoporosis the likelihood of fracture is 10
to 20 times higher than normal. For example, osteoporosis

6 The lower hierarchial level would be at the length scale of individual
trabeculae, where the study of their individual deformation or fracture
could be conducted, e.g., by using micro computed tomography, or high-
resolution magnetic resonance (Kaufman and Siffert, 2001; Odgaard, 2001;
Viguet-Carrin et al., 2010), and micro finite element modeling of trabecular
microarchitecture (van Rietbergen et al., 1995; van Rietbergen and Huiskes,
2001), but such analysis is beyond the scope of the present paper.

7 The trabecular packets, found in secondary trabecular bone, are
products of bone remodeling, which takes place from the outer surface of
trabeculae. Osteoclasts first remove bone, and then osteoblasts deposit new
bone at the places where the old bone was removed.
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causes about 1700 bone fractures per day in Europe
(according to WHO), the femoral neck fractures being the
most frequent (Tellache et al., 2008). It is estimated that
osteoporosis is responsible for about 300,000 hip fractures
per year in the United States (Ciarallo et al., 2006).

Osteoporosis is a term that describes the loss of calcium
from bones due to modification of the remodeling, but in
the process of defective remodeling of the bone, in which
resorption dominates the deposition, the collagen is lost
as well. This results in thinning and resorption of entire
individual trabeculae, as shown for an advanced stage of
osteoporosis in Fig. 3. The data on the magnitudes of sep-
arate mineral and collagen osteoporotic losses are sparse,
although there are reports that suggest that their relative
concentrations remain approximately constant during
osteoporotic bone loss. For example, Burr (2002) reported
that there is a decrease in the reducible collagen cross-
links in osteoporosis, but without alteration in collagen
concentration. The quality of the osteoporotic collagen
was reduced by morphological changes in collagen cross-
links (Oxlund et al., 1996). The collagen fibers are nar-
rower, loosely packed and more disorganized which, in
turn, leads to decreased strength and abnormal mineraliza-
tion (Bailey et al., 2002). The effect of decreased collagen

cross-linking on the biomechanical properties of bone
was previously examined by Knott and Bailey (1998).8

In our analysis of osteoporotic degradation of elastic
bone properties, two evolution equations are proposed,
one for the rate of loss of the mineral bone content, and
the other for the protein loss, i.e.,

_qm ¼ Fmðqm;qp; nm; tÞ; _qp ¼ Fpðqm;qp; nm; tÞ ð12Þ

with _q ¼ _qm þ _qp. The physical time is t, and the super-
posed dot (�) denotes the time rate d/dt. The functions Fm

and Fp are the appropriate functions of their indicated
arguments. The set of variable nm are the internal state vari-
ables, which (together with their own evolution equations)
describe the microstructural biochemomechanical changes
causing the interactive mineral/protein mass loss. These
variables could also account for the specific morphological
changes of trabecular architecture, such as thinning or
loss/interruptions of trabecular elements, decrease in the
trabecular surface available for remodeling, changes in
the degree of cross-linking of collagen fibers, etc. (Beaupré
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Fig. 2. (a) The variation of the trabecular elastic modulus E⁄ of cancellous bovine femur with the mineral volume fraction fm, according to Eq. (9). The pure
mineral and protein moduli are E�m ¼ 114 GPa and E�p ¼ 1:3 GPa. (b) The variation of E⁄ in the range around fm = 0.4, characteristic of a bovine femur.

Fig. 3. Trabecular structure of cancellous femur bone: (a) normal, (b) osteoporotic. The osteoporotic bone contains larger holes as a result of the calcium
being dissolved and put into the blood stream (from www.brsoc.org.uk/gallery, with permission from Prof. Alan Boyde: (c) a.boyde@qmul.ac.uk).

8 On the other hand, there is a decrease in collagen content with age,
which is associated with an increased bone mineralization, but this does
cause observable difference in cross-link levels.
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et al., 1990; McCalden et al., 1997; Homminga et al., 2003).
Although their explicit quantification is a challenging task,
left for future investigation, the analysis can proceed based
on the general structure (12). Later in the paper, we shall
adopt simple phenomenological expressions _qm ¼
�rmtmm and _qp ¼ �rptmp, where rm and rm are the bone
parameters accounting for the rates of osteoporotic
mineral and protein loss of the representative mass
element of cancellous bone.9 Since trabecular volume is
dominantly distributed inside of the representative volume
sample, the external volume of the very porous bone sample
can be taken, to a first approximation, as constant. For
example, even the demineralization and deproteinization
processes did not appreciably change the external volume
V of the samples, as shown in Fig. 1. Thus, the specification
of the evolution equations for _qm and _qp in (12) also speci-
fies the evolution equations for _mm ¼ V _qm and _mp ¼ V _qp.

Since mm ¼ qmV ¼ q�mV�m, it readily follows that

_qm

qm
¼

_q�m
q�m
þ

_V�m
V�m

; ð13Þ

which shows that the (normalized) rate of the mineral loss
is associated with the mineral density and volume
changes. The experimental data on the magnitudes of
these two contributions to the mineral loss is hard to find,
and in its absence we introduce a simple partition

_q�m
q�m
¼ wm

_qm

qm
;

_V�m
V�m
¼ ð1� wmÞ

_qm

qm
; ð14Þ

where wm is an appropriate parameter, which may be a
constant, or can appropriately vary during progression of
osteoporosis (0 6 wm 6 1).

Similarly, for the protein phase, we obtain

_qp

qp
¼

_q�p
q�p
þ

_V�p
V�p
; ð15Þ

and

_q�p
q�p
¼ wp

_qp

qp
;

_V�p
V�p
¼ ð1� wpÞ

_qp

qp
; ð16Þ

No further assumptions are needed in the rest of the rate-
type analysis presented in this subsection, in which we de-
rive the rates of other geometric or physical properties
needed for the subsequent study of elastic moduli degra-
dation, presented in Section 4.1.

First, since V� ¼ V�m þ V�p, by differentiation we obtain

_V�

V�
¼ fmð1� wmÞ

_qm

qm
þ fpð1� wpÞ

_qp

qp
: ð17Þ

In view of this, by evaluating the rate of the volume frac-
tion fm ¼ V�m=V�, there follows

_f m ¼ fmfp ð1� wmÞ
_qm

qm
� ð1� wpÞ

_qp

qp

" #
: ð18Þ

Similarly,

_f p ¼ fpfm ð1� wpÞ
_qp

qp
� ð1� wmÞ

_qm

qm

" #
; ð19Þ

so that _f m þ _f p ¼ 0, as it should be, because fm + fp = 1
throughout the osteoporotic process (by mere definitions
of fm and fp).

Second, from m = qV = q⁄V⁄, we have

_q
q
¼

_q�

q�
þ

_V�

V�
¼

_m
m
: ð20Þ

Noting that _q ¼ _qm þ _qp, the above can be rewritten as

_q
q
¼ cm

_qm

qm
þ cp

_qp

qp
; ð21Þ

where cm and cp are the current mass concentrations, as
defined in (6), the substitution of (17) and (21) into (20)
yields

_q�

q�
¼ cm � fmð1� wmÞ½ �

_qm

qm
þ cp � fpð1� wpÞ
� � _qp

qp
: ð22Þ

For the analysis in the next section, we need the time
rates of three other density ratios ðq=q�;qm=q�m, and
qp=q�p). They are derived to be

q
q�

� 	:

¼ q
q�

fmð1� wmÞ
_qm

qm
þ fpð1� wpÞ

_qp

qp

" #
ð23Þ

and

qm

q�m

� 	�
¼ qm

q�m
ð1� wmÞ

_qm

qm
;

qp

q�p

 !�
¼

qp

q�p
ð1� wpÞ

_qp

qp
: ð24Þ

4.1. Osteoporotic degradation of Young’s moduli

The elastic moduli of pure mineral and protein phases
(E�m and E�p) can be reasonably assumed to depend on the
mineral and protein densities ðq�m and q�pÞ, respectively,
i.e., on the microporosity of the individual trabeculae in
the deproteinated and demineralized bone samples. Since
surface resorption in osteoporosis dominates internal bone
deposition, resulting in thinning of the cancellous bone tra-
beculae, we assume that local (intrinsic) microporosity
within individual trabeculae is not rapidly increasing, at
least in early stages of osteoporosis, and thus we adopt
the simplest linear dependence of the aforementioned
elastic moduli on the corresponding densities. This yields
the evolution equations

_E�m ¼ E�m
_q�m
q�m
¼ E�mwm

_qm

qm
; _E�p ¼ E�p

_q�p
q�p
¼ E�pwp

_qp

qp
: ð25Þ

If wm = wp = 0, the elastic moduli E�m and E�p remain constant
during osteoporosis. The evolution equation for the elastic

9 For the analysis of remodeling of bone in response to changes in long
term mechanical loading (adaptive elasticity), see Cowin (1990, 2003) and
Currey (2002, 2003). Related references for biomechanical study of soft
tissues include Taber (1995), Holzapfel et al. (2000), Humphrey and
Rajagopal (2002), Lubarda and Hoger (2002), Lubarda (2004), and Loret and
Simoes (2010). The evolving mechanical properties due to microstructural
material changes are inherent part of inelastic damage mechanics theories,
e.g., Krajcinovic et al. (1993), Lubarda (1994), Krajcinovic (1996), and Davy
and Jepsen (2001). See also Thurner et al. (2009).
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modulus of the composite (compact) bone of each trabec-
ulae is obtained by differentiating (9). This gives10

_E� ¼ ð/þ /0fmÞE�m _f m þ E�p
_f p þ /fm

_E�m þ fp
_E�p; ð26Þ

where /0 = d//dfm. If _E�m ¼ _E�p ¼ 0, (26) simplifies to

_E� ¼ ð/þ /0fmÞE�m � E�p
h i

_f m; ð27Þ

with _f m give, in terms of density rates _qm and _qp, by Eq.
(18).

We next derive the evolution equations for the elastic
moduli of cancellous bone in its deproteinated, demineral-
ized, and untreated state (Em,Ep, and E). These can be con-
veniently obtained by differentiating the power law
constitutive expressions (8) and by utilizing the previously
established expressions for the time rates of the density ra-
tios (23) and (24). The results for the deproteinated and
demineralized bones are

_Em

Em
¼

_E�m
E�m
þ _nm ln

qm

q�m

� 	
þ nmð1� wmÞ

_qm

qm
; ð28Þ

_Ep

Ep
¼

_E�p
E�p
þ _np ln

qp

q�p

 !
þ npð1� wpÞ

_qp

qp
ð29Þ

and for the untreated bone

_E
E
¼

_E�

E�
þ _n ln

q
q�

� 	
þ n nmð1� wmÞ

_qm

qm
þ ð1� wpÞ

_qp

qp

" #
;

ð30Þ

where _nm; _np, and _n are the time rates of the morphologi-
cal parameters which account for the morphological
changes (thinning and interruptions) of trabecular struc-
ture. Experimental data indicates that smaller values of
nm and n are associated with stiffer trabecular structure,
so that nm and n should be increasing functions of time
during progression of osteoporosis. In early stages of oste-
oporosis, these parameters change only mildly, because
trabecular (rod and plate-like) structure is still not signifi-
cantly altered. In that case their rates can be taken to be
equal to zero.

5. A simplified model of osteoporotic degradation

In this section we specialize the analysis by assuming
that osteoporosis decreases the bone content such that
the ratio mm/m (and thus also qm/q) remains constant.
The experimental evidence offers some support for such
an assumption (Oxlund et al., 1996; Burr, 2002). Since
m = mm + mp, the constancy of the mineral/bone ratio mm/
m also implies the constancy of the protein/bone ratio
mp/m. Together, they imply that

_mm

mm
¼

_mp

mp
¼

_m
m
;

_qm

qm
¼

_qp

qp
¼

_q
q
: ð31Þ

Furthermore, it readily follows that

_q�

q�
¼ fm

_q�m
q�m
þ fp

_q�p
q�p
¼ ðfmwm þ fpwpÞ

_q
q
; ð32Þ

_f m ¼ fmfpðwm � wpÞ
_q
q
¼ � _f p; ð33Þ

_V�

V�
¼ ð1� fmwm � fpwpÞ

_q
q
: ð34Þ

Consistent with the assumed constancy of the mass ra-
tios mm/m and mp/m, it is reasonable to also adopt the
approximation wm = wp (in the sequel both being denoted
by w), so that the density changes contribute to the mass
changes in the same way for both the mineral and protein
phases. In this case, expressions (33) and (34) reduce to

_f m ¼ _f p ¼ 0;
_V�

V�
¼ ð1� wÞ

_q
q
: ð35Þ

The evolution equations for the elastic moduli (25) and
(26) accordingly simplify to become

_E�

E�
¼

_E�m
E�m
¼

_E�p
E�p
¼ w

_q
q
; ð36Þ

while the expressions (28)–(30) reduce to

_Em

Em
¼ _nm ln

qm

q�m

� 	
þ wþ nmð1� wÞ½ �

_q
q
; ð37Þ

_Ep

Ep
¼ _np ln

qp

q�p

 !
þ wþ npð1� wÞ
� � _q

q
; ð38Þ

_E
E
¼ _n ln

q
q�

� 	
þ wþ nð1� wÞ½ �

_q
q
: ð39Þ

5.1. Numerical evaluations

The bone mass at a given time of adult life is the peak
bone mass attained at skeletal maturity minus the subse-
quently lost bone mass. Traditional radiographic tech-
niques cannot distinguish osteoporosis until it is severe
(Marcus and Bouxsein, 2008), which implies that the rate
of osteoporotic bone loss is initially very low, perhaps even
zero. Accordingly, we propose that the time rate of bone
density _q is proportional to the product of the current
density q, providing an exponential decay, and the time t,
providing a vanishing rate of bone loss at the onset of
osteoporosis (t = 0). If needed to better reproduce clinical
observations, or provide more accurate prognosis, the
power tk, with an appropriately adjusted value of k, can
be used in place of t. Thus, we propose simple evolution
equations for the mineral, protein, and composite bone
content

_qm

qm
¼

_qp

qp
¼

_q
q
¼ �rt; ð40Þ

where r is the coefficient with the dimension (time)�2,
which accounts for the rate of the mass resorption. If r is

10 If fm and fp, as well as E�m and E�p , are already known or determined, Eq.
(9) specifies E⁄ directly, but for the rate-type analysis, particularly when
solving the boundary value problems incrementally, the constitutive
equations in their rate form are needed.
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assumed to be constant, (40) can be integrated analytically
to obtain

qm ¼ q0
m expð�rt2=2Þ; qp ¼ q0

p expð�rt2=2Þ;
q ¼ q0 expð�rt2=2Þ; ð41Þ

where q0
m; q0

p , and q0 are the corresponding densities at
the onset of osteoporosis. Furthermore, we shall take for
the simplicity of numerical evaluations that wm = wp = 0,
which means that the entire mass loss takes place by the
reduction of volume (thinning and interruptions of trabec-
ulae), without density changes, i.e., _q� ¼ _q�m ¼ _q�p ¼ 0. The
volume fractions fm and fp are constant, while _V�=V� ¼ �rt.

The elastic moduli (36) and (37) of trabeculae vanish,11

_E� ¼ _E�m ¼ _E�p ¼ 0, while the expressions (37)–(39) for the
elastic moduli of cancellous bone reduce to

_Em

Em
¼ _nm ln

qm

q�m

� 	
þ nm

_q
q
; ð42Þ

_Ep

Ep
¼ _np ln

qp

q�p

 !
þ np

_q
q
; ð43Þ

_E
E
¼ _n ln

q
q�

� 	
þ n

_q
q
: ð44Þ

Their integrated forms, given by (7), can be expressed as

Em ¼ E0
m expð�rnmt2=2Þ; E0

m ¼ E�mðq0
m=q

�
mÞ

nm ; ð45Þ

Ep ¼ E0
p expð�rnpt2=2Þ; E0

p ¼ E�pðq0
p=q

�
pÞ

np ; ð46Þ

E ¼ E0 expð�rnt2=2Þ; E0 ¼ E�ðq0=q�Þn: ð47Þ

For example, if osteoporosis decreases the bone content by
10% in 10 years, from (41) the coefficient r is equal to

2.107 � 10�3(year)�2. The corresponding time variation of
the mass or density ratios, such that q/q0, determined from
(41), is shown in Fig. 4. The predicted bone density decrease
after 15 years is 21.1%; after 20 years it is 34.4%, and after
25 years it is 48.2%. Fig. 5 shows the osteoporotic degrada-
tion of the latter moduli, calculated from (45)–(47), if the
morphological parameters12 nm = 3.15, np = 1.75, and n =
2.84 did not change with time. For example, after 10 years
these moduli decrease to Em ¼ 0:718E0

m; Ep ¼ 0:832E0
p , and

E = 0.742E0, while after 20 years they are Em ¼ 0:266E0
m;

Ep ¼ 0:479E0
p , and E = 0.303E0. The different magnitudes of

the decrease is due to different trabecular microarchitectures
of deproteinated, demineralized and untreated cancellous
bone specimens, and their different microarchitecture,
accounted for by different values of the morphological
parameters nm, np and n in (45)–(47).

If needed to better match the observed data (e.g., to
increase or decrease the rate of osteoporotic deterioration
of Young’s moduli), the time dependent expressions for
the morphological parameters nm, np and n can be included
in the analysis. For example, by adopting the rate expres-
sion _n ¼ �0:012t1=2, i.e., n = 2.84 � 0.008t3/2, so that n =
2.84 and _n ¼ 0 at t = 0, the modulus of elasticity E de-
creases after 10 years to E = 0.762E0, and after 20 years to
E = 0.409E0 (dashed curve in Fig. 6). The corresponding
decreased values of the morphological parameter n were
2.587 and 2.125. Even less pronounced degradation of
elastic modulus is predicted by adopting a cubic expres-
sion n = 2.84 � 0.0036t2 + 0.00006t3. In this case, the
bone’s modulus of elasticity decreases after 10 years to
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Fig. 4. The time variation of the bone density ratio (q/qo) during 30 years
of progression of osteoporosis, according to Eq. (40), with the rate
coefficient r = 2.107 � 10�3 (year)�2.
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Fig. 5. The time variations of the elastic moduli ratios E/E0, Em=E0
m and

Ep=E0
p during their osteoporotic degradation, according to (45)–(47),

corresponding to constant values of the morphological parameters
n = 2.84, nm = 3.15 and np = 1.75, and with the rate coefficient
r = 2.107 � 10�3 (year)�2.

11 This means that, although the amount of bone is reduced by aging and
osteoporosis, the bone of remaining trabeculae is histologically normal, so
that the moduli E�m; E�p and E⁄ remain unchanged.

12 These values were determined in Section 3.1 from the density and
elastic moduli values of bovine femur bone. The elastic coefficients of
human femur are nearly the same as of bovine femur bone (Bronzino, 2000,
Table 18-2, p. 18-6). Human femoral neck samples, obtained from hip
replacement surgeries, were tested by Ciarallo et al. (2006). Comparable to
the bovine samples, they found that the compressive strength and the
modulus of the human samples are correlated, and are within the range of
published values for the human femoral neck (Martens et al., 1983).
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E = 0.766E0, and after 20 years to E = 0.453E0 (dotted curve
in Fig. 6). The corresponding values of the morphological
parameter n were 2.541 and 1.881. Regarding experimen-
tal data for human cancellous bone, we found in the liter-
ature that for the vertebral trabecular bone specimens, a
decrease in bone tissue of about 9% over 10 years causes
a decrease of the elastic modulus of about 15% in the axial
direction (along spine), and about 16% in transverse direc-
tion (Bouxsein, 2008, Table 23-1, p. 605).

6. Conclusions and discussion

We have presented in this paper an analysis of the
Young’s modulus of cancellous bone based on that of the
isolated mineral and protein phases. The Young’s modulus
of cancellous trabeculae is related to the Young’s moduli of
deproteinated and demineralized trabeculae by a modified
mixture rule, in which an appropriate weight function is
introduced to account for the mineral/protein interaction
effects and the corresponding departure from the ideal
mixture rule. Adopting the approach from the mechanics
of cellular solids, two alternative expressions for the mod-
ulus of elasticity of cancellous bone are derived: one in
terms of the moduli of elasticity of mineral and protein tra-
beculae, and the other in terms of the moduli of elasticity
of deproteinated and demineralized bone. The presented
analysis is applied to cancellous bovine femur bone. The
material parameters are determined experimentally by
compression testing of untreated, deproteinated, and
demineralized cancellous bovine femur bone. The osteopo-
rotic decrease of the elastic moduli is then analyzed. The
evolution equations are introduced for the rate of loss of
the mineral content of cancellous bone, and for the protein
loss. Both losses are associated with the corresponding
density and volume changes, for which appropriate equa-
tions are proposed. Based on these, and the evolution

equations for morphological parameters accounting for
the trabecular microarchitecture, the evolution equations
are derived for the elastic moduli of deproteinated, demin-
eralized and composite cancellous bone. A particular mod-
el of osteoporotic degradation is considered in which it is
assumed that the relative ratios of the mineral and protein
loss are equal to each other during the progression of oste-
oporosis. The rate parameter is adjusted so that the bone
content decreases by 10% in 10 years, which yields the de-
crease of the modulus of elasticity by about 25%. The
straightforward adjustment of the morphological parame-
ters of trabecular microarchitecture can modify (slow) the
rate of the elastic moduli degradation if needed to better
match the experimental data.

The extension of the presented work is needed to
encompass the determination of other elastic properties,
the Poisson ratio and the shear modulus of cancellous
bone, in terms of the elastic properties of its mineral and
protein phases, as well as the effect of stress on the
osteoporotic degradation of elastic properties. Decreased
physical activity of osteoporotic patients or differences in
intensity of load transferred to osteoporotic bone vs.
healthy bone exert their effects on progression of osteopo-
rosis (van Rietbergen et al., 2003; Gefen et al., 2008). Fur-
thermore, the development of elastic anisotropy of
cancellous bones during osteoporosis is an essential aspect
of the analysis. This requires the description of the trabec-
ular fabric changes (trabecular size and shape changes, tra-
becular loss of connectivity), dependent on biochemical
factors causing the mineral and collagen decay, sustained
mechanical loads, and the type of cancellous bone (e.g.,
Fyhrie and Carter, 1986; Carter et al., 1987; Cowin et al.,
1992; Sugita et al., 1999; Keaveny, 2001; Hart, 2001; Hing,
2004). For example, trabeculae in vertebrae are mostly
rod-like, while in the metaphyses and epiphyses of long
bones the trabecular structure consists of a more balanced
mixture of the rod- and plate-like trabeculae. These differ-
ent cellular structures will degrade differently by the pro-
gression of resorption cavities, resulting in differences in
the degree and the nature of the induced elastic anisot-
ropy. Morita et al. (1994) observed the highest progression
rate of osteoporosis in rod/rod trabecular structure; the
next highest rate was in plate/bar-like structure, while
the plate/plate-like trabecular structure was the least sen-
sitive. The degree of initial elastic anisotropy also varies
among different types of cancellous bones. While cancel-
lous bone from the lumbar vertebrae are approximately
transversely isotropic, that from the iliac crest and central
femoral head are nearly isotropic. This is a consequence of
functional differences between different bones: the verte-
brae are weight-bearing, whereas the iliac crest is not
(Dempster, 2000). The biomechanics study of such aspects
of bone behavior is challenging from theoretical, computa-
tional, and experimental points of view.
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