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A B S T R A C T

A pileup of edge dislocations against an arbitrarily inclined flat bimetallic interface is considered. Equilibrium
positions of dislocations are determined for a given number of dislocations and specified material properties,
assuming that the resolved shear stress along the pileup plane from a remotely applied loading is uniform and
equal for all interface inclination angles. Numerical results are compared for pileups at 0°, 30°, 45°, and 60°
relative to the interface normal. The overall dislocation distribution is mildly affected by the inclination of the
interface, although there are some notable differences. While an inclined interface repels the first and last
dislocation stronger than the orthogonal interface, for piled-up dislocations in-between this is not necessarily the
case. Small differences in the pileup length and the proximity of the leading dislocation to differently inclined
interfaces can considerably affect the interface stresses. The magnitude of interface stresses decreases with the
increase of the shear moduli ratio G2/G1 due to stronger repulsion exerted on dislocations by stiffer interfaces.
The disparity in Poisson’s ratio also affects the interface stresses. The back stress behind a trailing dislocation is
evaluated and discussed.

1. Introduction

The study of dislocation pileups against second-phase particles and
grain boundaries has been a classical topic of mechanics and materials
science of importance for the analysis of inelastic material response and
fracture. An early study of dislocation pileups was performed by
Eshelby et al. (1951), who considered pileups in an infinite homo-
geneous medium in which the leading dislocation was assumed to be
locked. Further contributions were made by many investigators, who
addressed pileups of screw and edge dislocations against circular in-
homogeneities and bimetallic interfaces. The effects of elastic aniso-
tropy and the nonlinearity due to dislocation cores were examined, as
well as the stress fields of double ended pileups in stacked slip planes
and of multiple dislocation-wall pileups (Chou, 1966; Barnett and
Tetelman, 1967; Barnett, 1967; Kuang and Mura, 1968; Thölén, 1970;
Smith, 1972; Kuan and Hirth, 1976; Wagoner, 1981; Öveçoğlu et al.,
1987; Voskoboinikov et al., 2007; 2009; Hall, 2010; Baskaran et al.,
2010; Geers et al., 2013; Scardia et al., 2014; Zhang, 2017; Kapoor and
Verdhan, 2017).

Edge dislocation pileups against a plane bimetallic interface were
studied analytically by the method of continuously distributed in-
finitesimal dislocations by Kuang and Mura (1968). They solved ana-
lytically the singular integral equation for equilibrium positions of
dislocations, but their solution involved infinite products which were
quite demanding for computations. Discrete edge dislocation pileups
were investigated numerically by Kuan and Hirth (1976), who

incorporated in their analysis the nonlinear dislocation core terms.
Wagoner (1981) studied the corresponding anisotropic elastic effects.
Öveçoğlu et al. (1987) also considered discrete edge dislocation pileups
against a plane bimetallic interface, and evaluated the interface stresses
for various combinations of material parameters. More recently,
Voskoboinikov et al. (2009) presented an asymptotic analysis of dis-
location pileups against a bimetallic interface, while Lubarda (2017a)
presented an analysis of dislocation pileups against both a circular in-
homogeneity and a flat bimetallic interface.

In all of the above work the dislocation pileups were assumed to be
along the glide direction orthogonal to the interface. In the present
paper we extend these analyzes by considering discrete edge dislocation
pileups against a flat bimetallic interface which is arbitrarily oriented
relative to the pileup (glide) direction. We solve numerically the non-
linear algebraic equations that specify equilibrium positions of dis-
locations, for a given number of dislocations and specified material
properties. The magnitude of the resolved shear stress along the pileup
direction is assumed to be uniform and equal for each inclination φ of
the interface. The derivation of the expressions for dislocation forces,
which must vanish in equilibrium, is lengthy and tedious, but we were
able to cast them in a relatively compact form for any angle φ. The
simplified expressions are then deduced for = ∘φ 0 , 30°, 45°, and 60°.
The overall dislocation distribution is mildly affected by the inclination
of the interface, although there are some notable differences. While an
inclined interface repels the first and last dislocation stronger than the
interface orthogonal to the glide plane, for piled-up dislocations in-
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between this is not necessarily the case. Furthermore, small differences
in the pileup length and the proximity of the leading dislocation to
differently inclined interfaces can considerably affect the interface
stresses. The magnitude of these stresses decreases with the increase of
the shear moduli ratio G2/G1 due to stronger repulsion exerted on
dislocations by stiffer interfaces. The disparity in Poisson’s ratio also
affects the interface stresses. The variation of the back stress behind a
trailing dislocation of a pileup is determined for different orientation of
the interface. There is a small effect of φ on the magnitude of the back
stress. Far behind a trailing dislocation, the back stress approaches the
stress levels caused by a superdislocation of the Burgers vector Nb lo-
cated at the interface, independently of φ. An analysis of screw dis-
location pileups against an inclined bimetallic interface is reported in
Lubarda (2017b).

In the presented analysis, the dimensionless material parameters α
and β (Dundurs, 1969) are used, which are defined in terms of
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After nondimensionalisation of the problem, the two dimensionless
parameters that play a prominent role for the most part of the analysis
are the parameters q and γ, defined in terms of α and β by
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For example, if = ∞Γ (rigid interface, G2 > > G1), the dimensionless
parameters are
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2. Edge dislocation pileups

Fig. 1 shows a pileup of N positive edge dislocations of a Burgers
vector = >b b 0x against a bimetallic interface inclined by an angle

φ≠ ± 90° relative to the glide plane normal. It is assumed that the
resolved shear stress along the glide plane of dislocations, caused by
remotely applied loading, is uniform along the glide plane and in-
dependent of φ. We denote this shear stress by τa. It is the only part of
applied stress that is relevant to dislocation motion (glide) considered
in this paper. The external loading has to be such that τa is directed
toward the interface, i.e., = −=τ τ ,xy

a
y

a
0 in order to have a driving force

for piling-up of dislocations in the case Γ > 1. The contribution to the
resolved shear stress from the interactions among dislocations in the
presence of the interface can be calculated by using the results of
Head (1953) and Dundurs (1969), as described in the appendix of the
paper. For the ith dislocation, at the position xi, this shear stress is
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The first term on the right hand-side is the self-shear stress contribution
of the dislocation at xi, due to its image effects caused by the interface,
while the second term is the sum of resolved shear stresses caused by all
other dislocations in the pileup. In the equilibrium pileup configuration,
the glide component of dislocation force on each dislocation must
vanish,
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The expressions for τb, j(xi) are derived in the appendix of this paper
for any angle φ≠ ± 90°. In particular, if the interface is orthogonal to
glide plane ( = ∘φ 0 ), the resolved shear stress τb, j(xi) takes an explicit,
compact form

= ⎡
⎣
⎢ −

+
+

+
−

+
⎤
⎦
⎥τ x k b

x x
γ

x x
q

x x x
x x

( ) 1 1 2
( )

( )
.b j

i
i j i j

j i j

i j

,
1 3 (5)

For = ∘φ 30 , the expression is
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while for = ∘φ 45 ,
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Finally, for = ∘φ 60 the resolved shear stress is found to be
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In the limiting case = ∘φ 90 , a pileup is along the interface, made of
N interface edge dislocations, provided that the leading dislocation in
the pileup is locked. In this case, the interaction shear stress is
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where x is measured from the position of the locked dislocation =x( 0),1
and + = + −γ α β1 (1 )/(1 )2 . From the physical point of view, pileups of
interface dislocations are of less significance, albeit they may be of some
interest in the analysis of semicoherent interfaces, for which interface
dislocations play important role in misfit accommodation and strain re-
laxation (Freund, 1993; Lubarda and Kouris, 1996; Lubarda, 1998).

Fig. 1. A pileup of N edge dislocations against a bimetallic interface under uniform re-
solved shear stress along the glide plane =y 0. A bimetallic interface ( =u 0) is inclined
by an angle φ relative to the glide plane normal y. In the equilibrium configuration the
configurational force on each dislocation vanishes ( =f 0i ), which specifies the corre-

sponding positions of dislocations xi ( = ⋯i N1, 2, 3, , ).
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3. Equilibrium positions of dislocations

In the equilibrium configuration the dislocation force on each dis-
location in a pileup must vanish ( =f 0i ). In view of (4), this gives a
system of N nonlinear algebraic equations for the positions of disloca-
tions,

∑+ = = ⋯
≠

γ
ξ

τ ξ i N
2

( ) 1, ( 1, 2, , ).
i j i

N
b j

i
,

(10)

Following Öveçoğlu et al. (1987), we introduced in (10) the di-
mensionless coordinates
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and the dimensionless stresses are denoted by =τ τ τ/b j b j a, , .
In the case of four selected values of φ, the incorporation of ex-

pressions (5)–(8) for τb, j(ui) into (10) gives:
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Two dimensionless material parameters that appear in these expres-
sions are q and γ, defined in terms of Dundurs parameters α and β by
(2).

The system of nonlinear Eq. (10), and its special forms (12)–(15),
were solved numerically by using the fsolve function within the Matlab
software. Among three available iterative algorithms, fsolve chooses by
default the trust-region dogleg algorithm based on the interior-re-
flective Newton method and the method of preconditioned conjugate
gradients (Coleman and Li, 1994; Conn et al., 2000). Details of the
numerical procedure based on an interior penalty function method, in
which numerical solution is sought by solving a sequence of un-
constrained minimization problems, can be found in
Öveçoğlu et al. (1987).

Fig. 2a shows the equilibrium positions of =N 5 dislocations for
different values of the shear moduli ratio = >G GΓ / 12 1 . The Poisson
ratios are taken to be = =ν ν 1/31 2 . The stiffer the interface (greater Γ),
the stronger the repulsion exerted on dislocations and the more remote
their positions from the interface. There is only a mild dependence of
the overall dislocation distribution on the angle φ. Fig. 2b shows the
same in the case of =N 10 dislocations. Due to stronger repulsion from

other dislocations, the proximity of the leading dislocation to the in-
terface increases with the increase of the number of dislocations in a
pileup. Furthermore, for =N 5, the interface in a bimetallic solid repels
the first and last dislocation in a glide plane with φ≠ 0 stronger than
those in the glide plane with =φ 0. Depending on the number of dis-
locations in a pileup, several dislocations before the last dislocation can
also be repelled stronger in the case φ≠ 0 than in the case =φ 0. For
example, for =N 10 and the same set of considered material properties,
the 1st, 9th, and 10th dislocations are repelled stronger; for =N 15, the
1st and the 12th–15th dislocations are repelled stronger; for =N 20, the
first and the 16th–20th dislocations are repelled stronger. This is a
consequence of the interplay of the contributions to the resolved-shear
stress from individual dislocations in a pileup for differently inclined
interface and the interface image effect on the dislocation stress fields.
For a given N and φ, dislocations have to adjust their positions to make
the total resolved shear stress along the glide plane, produced by dis-
location interactions and remotely applied stress, vanish for each dis-
location in its equilibrium position. The fact that the interface in a bi-
metallic solid repels the first and last dislocation in a glide plane with
φ≠ 0 stronger than those in the glide plane with =φ 0 does not ne-
cessarily imply the same for all piled-up dislocations in-between.

The variation of ξ1 with Γ is shown in Fig. 3a and c in the case of
four selected values of the angle φ. Fig. 3b and d show the corre-
sponding normalized length of the pileup −ξ ξN 1. Fig. 4 shows the
variation of ξ1 and −ξ ξN 1 with φ for pileups of 5 dislocations in the
case =Γ 2, and = =ν ν 1/31 2 . Similar plots can be obtained for other
values of Γ. Both ξ1 and −ξ ξN 1 increase with the increase of Γ. The
effect of Poisson’s ratios ν1 and ν2 on the dislocation distribution and
the stress field can also be significant, which has been examined for
orthogonal pileups by Öveçoğlu et al. (1987) and Lubarda (2017a).

4. Interface stresses

Piled-up dislocations cause large shear and tensile stresses at the
interface between two materials, which can trigger slip on the other
side of interface or nucleate cracks. The normal and shear stresses (σuu,
σuv) along the interface, caused by dislocations, can be obtained by
superposition of contributions from individual dislocations. From the
general stress expressions listed in the Appendix, the dislocation-in-
duced interface stresses, expressed in a dimensionless form ̂ =σ σ τ/ a for
each stress component, are
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where =ξ x x/ ,i i =η v x/ , = + −d ξ c η ξ s( ) ,i i i
2 2 2 2 and =x k b τ/ a

1 . The
abbreviations =c φcos and =s φsin are used. At the intersection of the
interface and the glide plane, the stress components are
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The interface stresses appearing in (16)–(18) depend on the material
parameters g and + q1 , which are defined in (2).

Fig. 5a and b show the variation of the normalized stresses ̂σuu and
̂σuv along the interface in the case =N 5, =G G/ 2,2 1 and = =ν ν 1/31 2 .

Different curves correspond to four indicated values of the angle φ.
Fig. 6a and b show the variation of the stress components ̂σ (0, 0)uu and

̂σ (0, 0)uv with φ∈ [0, 90°) at the point of the intersection of the glide
plane and the interface in the case =N 5 and = =ν ν 1/31 2 . Part (a) is
for =G G/ 22 1 and part (b) for =G G/ 42 1 . The magnitude of these
stresses decreases with the increase of G2/G1 due to stronger repulsion
exerted on dislocations by stiffer interface. While the shear stress
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̂σ (0, 0)uv is a monotonically increasing function of φ, the normal stress
̂σ (0, 0)uu has its maximum at = ∘φ 45 . For larger N, the magnitude of

interface stresses is significantly increased because dislocations are
closer to the interface and there are more of them to build the stress.

5. Back stress behind a pileup

Piled-up dislocations exert a back stress behind a trailing dislocation
of a pileup (ξN). This back stress opposes the resolved shear stress from
the applied loading and may be sufficiently large to prevent further

emission of dislocations from a dislocation source on a slip plane. This
has the consequences on raising the flow stress of material and its rate
of strain hardening (Hull and Bacon, 2011; Shetty, 2013). For a pileup
in a homogeneous medium, with the leading dislocation pinned, the
back stress along the glide plane, far behind a trailing dislocation
(x≫ xN), is = −τ NGb π ν x/[2 (1 ) ],bs where x is a distance from the
pinned dislocation at =x 0 (Eshelby et al., 1951; Anderson et al.,
2017). This stress variation is the same as the stress variation behind a
superdislocation of the Burgers vector Nb, located at =x 0.

In the present context of the pileup against an inclined bimetallic

(a) (b)
Fig. 2. (a) The equilibrium positions =ξ x x/i i of =N 5 dislocations vs. the shear moduli ratio = G GΓ /2 1. The Poisson ratios are taken to be = =ν ν 1/31 2 . The length scale is =x k b τ/ a1 .

(b) The same for =N 10 dislocations.

(a) (b)

(c) (d)
Fig. 3. (a) The position of the leading dislocation in the pileup ξ1 vs. G2/G1 in the case =N 5 and = =ν ν 1/31 2 . (b) The corresponding length of the pileup −ξ ξ( )N 1 . (c) & (d) The same as

(a) and (b) in the case of =N 10 dislocations.
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interface (Fig. 1), the back stress at any point x > xN along the glide
direction, behind a trailing dislocation of the pileup (xN), can be de-
termined by summing-up the contributions from all dislocations in the
pileup,

∑= = − − +
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τ τ x τ x σ σ x φ σ x φ( ), ( ) 1
2

( ) ( )sin 2 ( )cos 2 ,
i

N
i b i

uu vv
i

uv
ibs

1
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(19)

where −σ σ x( ) ( )uu vv
i and σ x( )uv

i are specified by the expressions listed at
the end of the Appendix of this paper. Fig. 7a shows the variation of the
normalized back stress τbs/τa behind the trailing dislocation in the case
of a pileup with =N 5, = =G GΓ / 2,2 1 and = =ν ν 1/31 2 . Two orienta-
tion angles ( = ∘φ 0 and 80°) are used, indicating a quite small effect of φ
on the back stress. This is further illustrated in Fig. 7b, which shows the
φ-variation of the back stress evaluated at the point = +ξ ξ lN . The
normalized length of the pileup is = = −l L x ξ ξ/ ,N 1 where =x k b τ/ a

1 .
Far behind a trailing dislocation (ξ≫ l), the back stress behaves as the
stress behind a superdislocation of the Burgers vector Nb located at the
interface, which is

= + = + + = +
−

τ k γ Nb
x

τ γ N
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γ α
β

(1 ) (1 ) , 1 1
1
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The variation of τsd/τa is shown by a dotted curve in Fig. 7a.

6. Conclusions

Discrete pileups of edge dislocations against a flat bimetallic inter-
face which is arbitrarily oriented relative to the pileup direction were
considered. We solve numerically the nonlinear algebraic equations

that specify equilibrium positions of dislocations, for a given number of
dislocations and specified material properties. The magnitude of the
resolved shear stress along the pileup direction was assumed to be
uniform and equal for each inclination φ of the interface. The deriva-
tion of the expressions for the dislocation forces, which must vanish in
equilibrium, is lengthy and tedious, but we were able to cast them in a
relatively compact form for any angle φ. The simplified expressions
were then deduced for = ∘φ 0 , 30°, 45°, and 60°. For a wide range of
material parameters that were considered, the overall dislocation dis-
tribution was found to be mildly affected by the inclination of the in-
terface, although there are some notable differences. While an inclined
interface repels the first and last dislocation stronger than the interface
orthogonal to the glide plane, for piled-up dislocations in-between this
is not necessarily the case. Furthermore, small differences in the pileup
length and the proximity of the leading dislocation to the differently
oriented interface can considerably affect the interface stresses. The
magnitude of these stresses decreases with the increase of the shear
moduli ratio G2/G1 due to stronger repulsion exerted on dislocations by
stiffer interfaces. The disparity in Poisson’s ratio also affects the inter-
face stresses. The variation of the back stress behind a trailing dis-
location of a pileup is determined for different orientation of the in-
terface. There is a small effect of φ on the magnitude of the back stress.
Far behind a trailing dislocation, the back stress approaches the stress
levels caused by a superdislocation of the Burgers vector Nb located at
the interface, independently of φ. The presented analysis and the
evaluated interface and back stresses may be of importance for the
study of interface cracking, the onset of plastic yield, and the prediction
of the rate of strain hardening in polycrystalline metal aggregates.
Further mathematical analysis on whether the observations made in

(a) (b)
Fig. 4. (a) The position of the leading dislocation ξ1 in the pileup of =N 5 dislocations vs. φ in the case =G G/ 22 1 and = =ν ν 1/31 2 . (b) The corresponding length of the pileup −ξ ξ( )N 1 .

(a) (b)
Fig. 5. a) The variation of ̂σ η(0, )uu along the interface in the case =N 5, =G G/ 2,2 1 and = =ν ν 1/31 2 . (b) The same for the shear stress ̂σ η(0, )uv .
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this paper are true in the entire range of material parameters is a
worthwhile goal of future investigation.
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Appendix A. Stresses from a dislocation near bimetallic interface

Referring to Fig. 8, and by using the expressions listed in Lubarda (1997) and Asaro and Lubarda (2006) for vertical interface, the stress
components at an arbitrary point with coordinates (u, v), produced by the =b b φcosu component of an edge dislocation with a Burgers vector b,
located at a distance xi from the origin at O, along the indicated x direction, are
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(a) (b)
Fig. 6. The variation of the stress components ̂σ (0, 0)uu and ̂σ (0, 0)uv with φ for the pileup of =N 5 dislocations and Poisson’s ratios = =ν ν 1/3,1 2 in the case: (a) =G G/ 2,2 1 and (b)

=G G/ 42 1 .

(a) (b)
Fig. 7. (a) The variation of the back stress τbs/τa behind a trailing dislocation ξN in the case of a pileup with =N 5, =G G/ 2,2 1 and = =ν ν 1/31 2 . (b) The variation of the back stress
evaluated at = +ξ ξ lN with the orientation angle φ, where = −l ξ ξN 1 is the normalized length of the pileup. The pileup corresponds to =N 5, =G G/ 2,2 1 and = =ν ν 1/31 2 .
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In these expressions, the parameters k1, q, and g are defined by expressions (2) of Section 2, and the abbreviations are used =c φcos , =s φsin , and

= − + − = + + −r u x c v x s ρ u x c v x s( ) ( ) , ( ) ( ) .i i i i i i
2 2 2 2 2 2

Likewise, for the Burgers vector component =b b φsin ,v the stress components are
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The non-singular portions of these stresses at the center of the dislocation ( =x xi) are
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The resolved shear stress along the u-direction is determined from the stress transformation formula = = − − +τ σ σ σ φ σ φ(1/2)( )sin 2 cos 2 ,xy uu vv uv
which gives
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γ
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independently of φ≠ 90°. This expression is used in Eq. (4) of Section 2.
At the point along the x-direction, at distance xj≠ xi from the origin at O, the (u, v) coordinates are =u v x c s( , ) ( , ),j while = −r x x( )i j i

2 2 and
= + +ρ x x x x φ2 cos 2i i j i j

2 2 2 . Consequently, the previously listed stress expressions become
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Fig. 8. An edge dislocation with a Burgers vector b at a distance xi from a bimetallic interface. The angle between the glide direction (x) and the interface normal (u) is φ. The (u, v)
components of the Burgers vector are =b b φcosu and =b b φsinv . Indicated also is an arbitrary point with coordinates (u, v), and a point along the x-direction at a distance xj from the
origin at O.
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The total stresses from both components of the Burgers vector are the sums of the corresponding expressions for the bu and bv component
individually. For example, = +σ x σ x σ x( ) ( ) ( )uu
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A1. Special cases

If the glide direction is orthogonal to the interface ( = ∘φ 0 ), the resolved shear stress is
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Finally, if the glide direction is at = ∘φ 60 , the resolved shear stress is
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A2. Back stress evaluation

The contributions to the back stress τbs(x) in Eq. (19) are obtained from the derived expressions in this appendix for −σ σ x( ) ( )uu vv
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j
, and σ x( )uv
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replacing in them xj with x. This gives
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with = + +ρ x x xx φ2 cos 2i i i
2 2 2 .
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