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1. INTRODUCTION

The study of a droplet spreading over solid surfaces is a
fundamental problem in the mechanics of wetting, which facil-
itates a better understanding of how to modify the properties of a
surface to make it more or less wettable. This is of importance for
various technological processes in the chemical and glass industry,
in mechanical, electronic, soil, and rock engineering, in agriculture,
and in biology.1�3 For example, differentmethods ofmodifying the
surface of polymerized material in order to make it more hydro-
phobic were recently investigated and quantitatively characterized
by dynamic contact angle measurements, with an application to
microfluidic chips.4 In their study of microbead suspensions,
often used in microfluidic devices for transporting biomolecules,
Waghmare andMitra5 found that both the surface tension and the
equilibrium contact angle decrease with an increase in the microbe-
ad volume fraction in the suspension. The equilibrium contact
angle between a droplet and a substrate is also an important
parameter in the study of water removal from the gas diffusion
layer,6 where a larger contact angle results in faster water re-
moval. Recent experimental studies of electrowetting dynamics by
Marinescu et al.7 revealed that the contact angle hysteresis can be
eliminated by applying short voltage pulses, in addition to the
steady-state bias, because they facilitate the depinning of the contact
line and activate the droplet motion. This is of importance for the
analysis of systems that exploit the electrowetting effect, such as
variable-focus lances, microfluidic systems, and electronic displays.

When a liquid droplet is slowly placed on a solid, flat substrate,
it spreads to its equilibrium configuration with the macroscopic
contact angle between the plane tangent to the droplet and a
smooth substrate at the points of the three-phase (solid/liquid/
vapor) intersection specified by Young’s equation:8

cos θ ¼ σsv � σsl

σlv
ð1Þ

The surface energy (tension) between the two phases indi-
cated by subscripts is denoted by σ. Thus, according to Young’s
equation, the contact angle θ is a material parameter dependent
only on the involved surface energies. If the droplet spreads on a
substrate in the absence of gravity, then the equilibrium shape is a
spherical cap because for a given volume this shape minimizes the
free energy of the system. The axisymmetric shape in the
presence of gravity is more difficult to determine and requires
the numerical integration of a nonlinear second-order differential
equation

� r00

ð1 þ r02Þ3=2
þ 1

rð1 þ r02Þ1=2
¼ 2

b
þ Δγ

σlv
z ð2Þ

The coordinate origin is taken at the top of the droplet, with the z
axis directed downward as shown in Figure 1. The superimposed
prime denotes the derivative with respect to z. Equation 2 follows
from Laplace’s equation, relating the pressure difference across
the surface of the droplet to its surface energy scaled by the mean
curvature.9,10 The liquid/vapor specific weight difference is Δγ.
The radius of curvature at navel point O is denoted by b. The
integration of eq 2 proceeds incrementally, starting from apex
z = 0 of the droplet up to level z = h at which the slope of the
droplet matches Young’s contact angle (eq 1), which is indepen-
dent of gravity11�13 The thus-determined value z = h represents
the actual height of the spread droplet and therefore the location
of the substrate. Because b is not known a priori, the integration
procedure is iterative: the calculations are performed for various
assumed values of b, and the true value of b is determined a
posteriori by matching it to the prescribed volume of the droplet.

Received: June 3, 2011
Revised: August 1, 2011

ABSTRACT: The extent of a droplet’s spreading over a flat, smooth
solid substrate and its equilibrium height in the presence of gravity are
determined approximately, without a numerical solution of the
governing nonlinear differential equation, by assuming that the droplet
takes on the shape of an oblate spheroidal cap and by minimizing the
corresponding free energy. The comparison with the full numerical
evaluations confirms that the introduced approximation and the
obtained results are accurate for contact angles below about 120�
and for droplet sizes on the order of the capillary length of the liquid.
The flattening effect of gravity is to increase the contact radius and decrease the height of the droplet, with these being more
pronounced for higher values of the Bond number.
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The original calculations of this type were performed by
Bashforth and Adams,14 who provided extensive tables with
the results corresponding to different values of nondimensional
parameter b2Δγ/σlv. More complete and accurate tables were
later given by Padday.15,16 These calculations, as well as the
experimental observations, reveal that for droplets with a Young’s
contact angle below about 120� the equilibrium shape of the
droplet is very nearly the shape of an axisymmetric ellipsoidal cap
(i.e., an oblate spheroidal cap). Consequently, in this range of θ,
it is appealing to inquire if there is an alternative, simplified
method to determine the equilibrium droplet configuration
based on the energy minimization within the class of ellipsoidal
droplet shapes without solving the nonlinear differential equa-
tion (eq 2). An ellipsoidal (oblate spheroid) droplet model was
also adopted in an earlier study byWhyman and Bormashenko.17

The presented analysis in this article is restricted to a perfectly
smooth surface of the substrate. A recent elaboration on the
expression for the equilibrium contact angle of a droplet residing
on a rough surface under different wetting conditions (Cassie�
Baxter andWenzel equations) can be found in refs 18 and 19. For
example, if r is the roughness factor of the surface of the substrate
(the actual area divided by the projected area), then the Wenzel
equation is obtained by replacing the numerator of Young’s
equation (eq 1) with r(σsv� σsl). Furthermore, in experiments it

is often found that the three-phase contact line is immobile not
only for θ = θY but also over the interval θr < θ < θa. Angle θa is
known as the advancing contact angle, and θr is known as the
receding contact angle. The so-called contact angle hysteresis
θa � θr may be as much as 10� (or more), which is commonly
attributed to the surface roughness, chemical contamination,
or inhomogeneity.20�22 For the study of the dynamics of the
wetting process and the dynamic contact angle, see refs 20 and 23.

There are other ways in which gravity can affect the droplet’s
spreading and its equilibrium configuration, which are not
discussed in this article. For example, Sakai and Fujii24 found
that the apparent contact angle on rough surfaces is raised by
gravity, which they attributed to an increase in the interface
energy between the solid and fluid phases caused by gravity
because gravity works against gas adsorption (penetration) into
the troughs of a rough surface (which by itself decreases the
solid/liquid interface tension). The concept of a “fuzzy” solid/
liquid interface was used by Letellier et al.25 to describe substrates
with ill-defined geometry (porous, structured, and fractal).
Oscillations of liquid drops under gravity have been studied by
Perez et al.26 Other dynamic wetting problems are discussed in
the review by Zisman1 and in the book by de Gennes et al.3 The
effect of gravity on the shape of a pendant liquid droplet10,16,27,28

or a liquid droplet placed vertically (on a vertical substrate) or on
a tilted plane29�32 has also been studied, but these studies are
beyond the scope of this article.

2. ELLIPSOIDAL DROPLET APPROXIMATION

Consider a liquid droplet of volume V0 and specific weight γl
surrounded by its equilibrium vapor (or another less-dense
liquid) with specific weight γv as it is slowly deposited on a
solid, flat substrate. Before touching the substrate, the droplet is
assumed to be flattened in the vertical direction by gravity, as
shown in Figure 2a, although the determination of this shape
does not enter the subsequent analysis. Let σsv be the surface
energy (tension) of the solid/vapor interface, and let σlv
(henceforth denoted for simplicity by σ) be the surface energy
of the liquid/vapor interface. The free energy of the system,
which includes the surface of a flat substrate and the droplet in

Figure 1. Equilibrium shape of a liquid droplet residing on a flat
substrate in gravity field g. The equilibrium contact angle is θ, and the
height of the droplet is h. Coordinate origin O is at the apex of the
droplet.

Figure 2. (a) Liquid droplet just before it is placed on top of a solid substrate. (b) Droplet configuration upon spreading into an ellipsoidal cap
configuration. The contact angle is θ, the radius of the circular solid/liquid interface isR, the height of the droplet is h, and its mass center is at a distance z
above the surface of the substrate.
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this initial configuration, is

E0 ¼ Asσsv þ S0σ þ V0z̅0Δγ ð3Þ
where As is the surface area of the substrate, S0 and V0 are the
droplet’s surface and volume, respectively,Δγ = γl� γv, and z0 is
the elevation of the mass center C0 of the droplet relative to the
surface of the substrate. When the droplet is placed in contact
with a flat, smooth solid substrate, depending on the physical and
chemical properties of the involved substances, the droplet may
wet the solid surface, spreading until it reaches its equilibrium
configuration, such as shown in Figure 2b. The corresponding
free energy of the system is

E ¼ ðAs � πR2Þσsv þ ðπR2Þσsl þ Sσ þ Vz̅Δγ ð4Þ
where R is the radius of the circular region of the liquid/solid
interface, S and V are the surface and the volume of the spreading
droplet, and z is the elevation of the mass center C of the droplet
relative to the surface of the substrate. The solid/liquid interface
energy is σsl. As discussed in the Introduction, the determination
of the exact equilibrium shape of the droplet requires a numerical
integration of the nonlinear differential equation (eq 2), keeping
the volume of the droplet constant, and imposing appropriate
boundary conditions at the top of the droplet and at contact
points between the droplet and the substrate. Instead of this exact
but semi-inverse procedure in which b in eq 2 is not known a
priori, we shall proceed by assuming that the equilibrium shape of
the droplet is an axisymmetric ellipsoidal (oblate spheroidal) cap
shape. This assumption, whose accuracy and range of validity will
be evaluated a posteriori, significantly simplifies the analysis. The
surface area of the spheroidal cap, whose cross section in the
vertical plane of symmetry is shown in Figure 2b, can be readily
obtained by integration,

S ¼ πac
a
c
� 1� h

c

� �
1 þ e2 1� h

c

� �2
" #1=2

8<
:

þ 1
e

arsinhðeÞ � arsinh e 1� h
c

� �� �� ��
ð5Þ

The unknown semiaxes of the ellipse are a and c, and the
height of the droplet is h. The eccentricity of the oblate spheroid
is defined by

e2 ¼ a2

c2
� 1 g 0 ð6Þ

and the function arsinh in eq 5 designates the inverse sine
hyperbolic function. The volume of the ellipsoidal cap is

V ¼ π

3
a2c

h
c

� �2

3� h
c

� �
ð7Þ

Its centroid, relative to the surface of the substrate, is specified by

z̅ ¼ h
4

4� h
c

3� h
c

ð8Þ

To proceed, it is convenient to introduce parametric equations
of the ellipse in the vertical plane of symmetry so that at the
contact point

R
c
¼ a

c
sin ϑ,

h
c
¼ 1� cos ϑ ð9Þ

By introducing eq 9 into eqs 5 and 7, we obtain

S ¼ c
a

πR2

sin2 ϑ
a
c
� cos ϑð1 þ e2 cos2 ϑÞ1=2

�

þ 1
e
½arsinhðeÞ � arsinhðe cos ϑÞ�

�
ð10Þ

V ¼ π

3
c
a

R3

sin3 ϑ
ð1� cos ϑÞ2ð2 þ cos ϑÞ ð11Þ

Furthermore, from eq 8, we have

z̅ ¼ c
a

R
sin ϑ

ð1� cos ϑÞð3 þ cos ϑÞ
4ð2 þ cos ϑÞ ð12Þ

If the liquid of a droplet is incompressible and if there is no
evaporation during its spreading, the constant volume condition
V = V0 gives

R
R0

¼ 22=3 sin ϑ

ðc=aÞ1=3ð1� cos ϑÞ2=3ð2 þ cos ϑÞ1=3
c
R0

¼ 22=3ðc=aÞ2=3
ð1� cos ϑÞ2=3ð2 þ cos ϑÞ1=3

ð13Þ

where R0 is the radius of an imagined spherical droplet with
volume V0 = (4π/3)R0

3.

3. FREE-ENERGY MINIMIZATION

Within the class of the considered ellipsoidal cap shapes, the
equilibrium droplet configuration minimizes the free energy E in
eq 4. This energy depends on the parameter ϑ and the aspect
ratio c/a (i.e., E = E(ϑ, c/a)), and thus the necessary minimiza-
tion conditions are ∂E/∂ϑ = 0 and ∂E/∂(c/a) = 0. These
conditions give two simultaneous nonlinear equations for ϑ
and c/a, which must be solved numerically. The location of the
energy minimum of the function E = E(ϑ, c/a) can be found
numerically, without deriving the explicit form of the stationary
conditions. For such calculations, the free-energy expression
(scaled by R0

2πσ) is written as

E
R0

2πσ
¼ � ðcos θYÞf1ðϑ, c=aÞ þ f2ðϑ, c=aÞ þ Bof3ðϑ, c=aÞ

ð14Þ
where the auxiliary nondimensional functions are defined by

f1 ¼ 24=3ð1 þ cos ϑÞ
ðc=aÞ2=3ð1� cos ϑÞ1=3ð2 þ cos ϑÞ2=3

f3 ¼ 22=3ð1� cos ϑÞ1=3ð3 þ cos ϑÞ
3ða=cÞ2=3ð2 þ cos ϑÞ4=3

ð15Þ
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a

f1
sin2 ϑ
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c
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The surface-energy parameter is

cos θY ¼ σsv � σsl

σ
ð17Þ

The nondimensional number

Bo ¼ R0
2Δγ

σ
ð18Þ

represents the effect of gravity relative to the surface tension,
referred to in the fluid mechanics literature as the Bond number.
The latter can also be expressed as Bo = (R0/l)

2, where the length
scale l = (σ/Δγ)1/2 is known as the capillary length.2 Clearly, Bo
is less than 1% ifR0 is less than 1/10 of l. For a water droplet in air,
Δγ = 9.8 kN/m3 and σ = 0.073 N/m so that the capillary length
l = 2.73 mm. Brunner et al.33 deposited droplets of a perfluor-
opolyether-type lubricant, known as Fomblin Zdol, on a solid,
smooth surface coated with a layer of nitrogenated carbon
(CNx), typically used in hard disk drives. They considered
surface energies in the range of σ = (16 � 25.5) � 10�3 J/m2

and σsv = 52.3 � 10�3 J/m2. In this case, with Δγ = 20 kN/m3

and σ = 0.022 J/m2, the capillary length is l = 1.05 mm. Thus,
gravity imposes a more appreciable effect on Fromblin Zdol than
on water droplets. Table 1 lists the capillary length for selected
liquids in contact with air at room temperature.

It should also be pointed out that the accurate analytical and
experimental estimates of σsv and σsl are still challenging. For
example, surface energy σsl depends on solid and liquid bonding
and the attractive van der Waals interactions between the solid
and liquid near their interface. Experimental methods of measur-
ing surface tension by using sessile and pendant drops and
bubbles, as well as other means, have recently been discussed
in ref 10.

Upon finding minimizers ϑ and c/a of the energy expression
(eq 14), the extent of a droplet’s spreading (R) and its height (h)
are determined numerically from eqs 9 and 13. The correspond-
ing value of the equilibriumcontact angle isθ= arctan[(c/a) tanϑ)]
because the slope at the contact point is tan θ = ((c/a)2R)/
(c� h), and in view of eq 9, (c/a) = (tan θ)/(tanϑ). As discussed
in sections 4 and 5 for droplet sizes on the order of the capillary
length of the liquid and for θY in eq 17 that is less than about
120�, the predicted value of the contact angle (θ) is only slightly
different from the Young’s value of the contact angle (θY)
because in these cases the ellipsoidal shape of the droplet is an
excellent approximation of the droplet’s shape obtained by
solving the nonlinear differential equation (eq 2).

Next we consider limiting cases Bo, 1 and Bo. 1. If Bo, 1,
then the last (gravity) term on the right-hand side of eq 14 can be
neglected and the energy analysis leads the spherical cap shape of
a droplet (a = c, e = 0, ϑ = θ). In this case, f2 = 2f1/(1 + cos θ) and
the stationary condition ∂E/∂θ = 0 yields cos θ = cos θY
(i.e., the equilibrium contact angle is given by Young’s equation
(eq 1)). For the completeness of the analysis, an independent
analysis of the equilibrium droplet’s shape in the absence of
gravity is presented in the Appendix. The perturbation methods
and the matched asymptotic expansions, with the Bond number
as a small parameter, were also used to study the shape of small
and large sessile drops.34 The matched asymptotic expansions
were earlier used in ref 35 to examine the validity of Young’s
expression for small values of the ratio of the range of inter-
molecular forces and a typical macroscopic length of the pro-
blem. See also ref 36 for an analytical study of the shape of a
liquid�vapor interface within and outside the molecular region,
with particular reference to the determination of the point on the
vapor�liquid interface, within a thin transition region, where the
angle of inclination is equal to the macroscopic contact angle.

If Bo. 1, then the gravity effects are so dominant that a drop
takes on the shape of a paddle whose thickness h is nearly
constant everywhere, except near the edges of a paddle
(Figure 3). Because the extent of the edge effects is expected
to be on the order of the capillary length l,R,3 the free energy of
the system is approximately and up to a constant term

E ¼ πR2ðσ þ σsl � σsvÞ þ V0ðh=2ÞΔγ
R2πh≈V0 ¼ ð4=3ÞR0

3π
ð19Þ

The stationary condition ∂E/∂h = 0 then gives

h
R0

¼ 2ðBoÞ�1=2 sinðθY=2Þ

R
R0

¼ 2ðBoÞ1=2
3 sinðθY=2Þ

" #1=2 ð20Þ

The expression for h in eq 20 can be rewritten as h = 2l sin(θY/2),
in agreement with eq 2.10 in de Gennes et al.3

4. NUMERICAL EVALUATION OF THE GRAVITY EFFECT

Figure 4 shows the equilibrium values of cos θ, corresponding
to the prescribed values of cos θY = (σsv � σsl)/σ∈[�1, 1] and
the selected values of the Bond number Bo. In both figures, the
solid line corresponds to Young’s equation (Bo = 0). As seen in
Figure 4a, for Bo < 0.5 the agreement between the predicted
contact angle and Young’s value is excellent, except for hydro-
phobic surfaces with θY greater than about 120�. In these cases,
the ellipsoidal approximation of a droplet’s shape is expected to
be sufficiently accurate, as confirmed in section 5. Figure 5a
shows the corresponding variation of the (normalized) extent of

Table 1. Surface Tension σ, Specific Weight γ, and Capillary
Length l = (σ/γ)1/2 for Selected Liquids in Contact with Air at
Room Temperature

liquid σ (N/m) γ (kN/m3) l (mm)

benzene 0.029 8.6 1.84

blood 0.058 10.4 2.36

carbon tetrachloride 0.0264 15.59 1.3

ethanol 0.0224 7.75 1.7

ethylene glycol 0.0473 11.04 2.07

Fromblin Zdol 0.022 20 1.05

glycerin 0.063 12.4 2.25

mercury 0.486 133.7 1.9

water 0.073 9.81 2.73

Figure 3. Paddle of a nearly constant thickness h and radius R. The
extent of the edge effects near the contact line is on the order of the
capillary length, l. The wetting contact angle is θ.



10709 dx.doi.org/10.1021/la202077w |Langmuir 2011, 27, 10705–10713

Langmuir ARTICLE

spreading (R/R0), and Figure 5b shows the variation of the
(normalized) height of the droplet (h/R0). Figure 6 shows the
cross section of the spread droplet in the plane of its symmetry
corresponding to Bo = 0, 0.5, and 1. The four cases correspond
to four different values of surface-energy parameter cos θY

(31/2/2, 0.5, 0, and �0.5). In each case, the flattening effect of
gravity is to increase the contact radius R and decrease the height
of the droplet h, with these being more pronounced for higher
values of the Bond number. The departure from the spherical cap
shape also increases with Bo. For example, in the case of Bo =

Figure 4. (a) Variation of the equilibrium value of cos θwith cos θY = (σsv� σsl)/σ for an ellipsoidal droplet model and the indicated values of the Bond
number. (b) The same in the case of 10 times higher values of the Bond number.

Figure 5. (a) Variation of the extent of equilibrium spreading (R/R0) with cos θY = (σsv� σsl)/σ for an ellipsoidal droplet model. (b) Corresponding
variation of the normalized height of the droplet (h/R0). The normalizing radius is R0 = (3V0/4π)

1/3, where V0 is the volume of the droplet.

Figure 6. Cross section of the spread droplet in the plane of its symmetry in the case of Bo = 0 ( 3 3 3 ), 0.5 (---), and 1 (�). The four cases correspond to
four different values of surface-energy parameter cos θY, as indicated.
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0.25, the semiaxes ratio of the ellipsoidal (oblate spheroid) shape
is c/a = 0.653, but in the case of Bo = 1, this ratio is c/a = 0.354,
which is far below the value of 1 corresponding to a spherical
cap shape.

For Bo > 1, the ellipsoidal shape approximation is less
satisfactory, particularly for higher values of Bo (Figure 4b).
For very large values of the Bond number (Bo . 1), the
equilibrium shape of a liquid is that of a nearly flat paddle
(Figure 3), as discussed in section 3.

5. COMPARISON WITH THE RESULTS FROM THE NU-
MERICAL INTEGRATION OF ODE

The results from section 4, based on the ellipsoidal droplet
model, are now compared with the calculations obtained by the
numerical integration of differential eq 2. The integration
proceeds iteratively: the unknown radius of curvature b is
assumed, and eq 2 is integrated until the slope r0(h) matches
Young’s angle θY, calculated from eq 17 (i.e., r0(h) = cot θY). The
boundary conditions at the origin are r(0) = 0 with an infinite
slope r0(0). The obtained solution applies to a droplet with
the volume corresponding to thus-calculated r = r(z) and h. The
nondimensional version of eq 2 is

� r̅ 00

ð1 þ r̅ 02Þ3=2
þ 1

r̅ ð1 þ r̅ 02Þ1=2
¼ 2 þ ðb=R0Þ2Boz̅ ð21Þ

where r = r/b and z = z/b.

Figure 7 shows excellent agreement between the predicted
shapes of liquid droplets obtained by the ellipsoidal droplet
model and by the described numerical solution of eq 21. In
Figure 7a, the Young’s contact angle is θY = 60�, and in Figure 7b,
it is θY = 120�. The results correspond to the Bond number Bo =
1 so thatR0 = l. In Figure 7a, the semiaxes of the ellipsoidal model
are a = 1.83R0 and c = 1.195R0. The extent of spreading is R =
1.716R0, and the height of the droplet is h = 0.78R0. The
predicted contact angle is θ = 60.4�. The radius of curvature at
the apex point of the droplet is a2/c = 2.8R0. The radius of
curvature obtained by the integration of eq 21, for the same
droplet volume V = (4π/3)R0

3 is b = 2.9R0. The corresponding
extent of spreading is R = 1.7156R0, and the height of the droplet
is h = 0.776R0.

In Figure 7b, the semiaxes of the ellipsoidal model are a =
1.199R0 and c= 0.928R0. The extent of spreading isR= 1.1238R0,
and the height of the droplet is h = 1.25R0. The predicted contact
angle is θ = 115.6�. The radius of curvature at the apex point of
the droplet is 1.549R0. The radius of curvature for the same
droplet volume and a contact angle of θ = 120� is b = 1.487R0.
The corresponding extent of spreading is R = 1.1214R0, and the
height of the droplet is h = 1.259R0.

Figure 8 shows the droplet shapes when the Young’s contact
angle is θY = 150 and 180� and the Bond number is Bo = 1. In
Figure 8a, the semiaxes of the ellipsoidal model are a = 1.138R0
and c = 0.856R0. The extent of spreading is R = 0.9R0, and the
height of the droplet is h = 1.38R0. The predicted contact angle is

Figure 7. Solid line showing the droplet profile obtained by the numerical integration of eq 21. The dashed line (barely seen) is obtained from the
ellipsoidal droplet model. The Young’s contact angles are (a) θ = 60� and (b) θ = 120�. In both cases, the Bond number is Bo = 1.

Figure 8. Solid line showing the droplet profile obtained by the numerical integration of eq 21. The dashed line is obtained from the ellipsoidal droplet
model. The Young’s contact angles are (a) θ = 150� and (b) θ = 180�. In both cases, the Bond number is Bo = 1.
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θ = 135.8�. The radius of curvature at the apex point of the
droplet is 1.513R0. The radius of curvature obtained by the
integration of eq 21 for the same droplet volume is b = 1.379R0.
The corresponding extent of spreading is R = 0.88R0, and the
height of the droplet is h = 1.4R0.

In Figure 8b, the semiaxes of the ellipsoidal model are a =
1.129R0 and c = 0.831R0. The extent of spreading is R = 0.795R0,
and the height of the droplet is h = 1.4213R0. The predicted
contact angle is θ = 144�, which is substantially lower than what
the actual contact angle should be (180�). The radius of
curvature at the apex point of the droplet is 1.534R0. The radius
of curvature for the same droplet volume is b = 1.36R0. The
corresponding extent of spreading is R = 0.676R0, and the height
of the droplet is h = 1.4472R0.

An experimental determination of the shape of sessile droplets
has been conducted by Ren et al.,30 Padday and Pitt,37 Li et al.,38

and Naydich et al.,39 among others. The results from these
investigations support the ellipsoidal approximation in the con-
sidered range of the droplet’s size and the equilibrium contact
angle. (See, for example, Figure 5 in ref 38.) A quantitative
comparison of our theoretical results with available experimental
data depends on the involved solid/liquid system and the
smoothness of the substrate surface because the surface rough-
ness, chemical contamination, and inhomogeneities give rise to
contact angle hysteresis, which may be 10� or more.20 A more
specific comparison with experimental data may require an
extension of the analysis to incorporate some of these effects as
well as more reliable data on the solid/liquid interface energy for
different systems, which is left for future investigations.

6. CONCLUSIONS

The equilibrium spreading of a liquid droplet over a flat,
smooth solid substrate in the presence of gravity has been studied
by assuming that the droplet takes on an ellipsoidal shape. The
extent of a droplet’s spreading and its equilibrium height are
determined approximately, without numerical solution of the
governing nonlinear differential equation, by applying the free-
energy minimization within the class of the oblate spheroidal
shapes. The comparison with the full numerical evaluations
reveals that the obtained results are accurate for contact angles
below 120� and for droplet sizes on the order of the capillary
length of the liquid (Bo < 1). The flattening effect of gravity is to
increase the contact radius and decrease the height of the droplet.

For larger values of the Bond number (Bo > 1), the ellipsoidal
approximation of a droplet’s shape is less satisfactory, particularly
for higher values of the Young’s contact angle. For Bo . 1, the
liquid takes on the shape of a nearly flat paddle, except near its
edges. The ellipsoidal approximation may also be important for the
dynamic study of a droplet’s spreading by means of the mechanics
of configurational forces, which otherwise requires an involved
solution of partial differential equations from fluid mechanics.40,41

’APPENDIX: SPHERICAL AND CYLINDRICAL DRO-
PLET MODELS

For the completeness of the analysis, we summarize the results
for spherical and cylindrical droplets in the absence of gravity.19,42,43

The initial free energy of the system in Figure 9a is E0 =Asσsv + S0σ,
where S0 = 4πR0

2 is the droplet’s surface area and As is the area of
the flat surface of the solid substrate. When the droplet spreads over
the flat, smooth substrate, the free energy of the configuration
shown in Figure 9b is

E ¼ ðAs � πR2Þσsv þ ðπR2Þσsl þ Sσ þ ð2πRÞτ ð22Þ
where R is the radius of the circular region of the liquid/solid
interface and S and V are the top surface and the volume of the
spread droplet. For generality, we also include in eq 22 the line
tension τ (per unit length) associated with the excess free energy
due to atomic or molecular rearrangements around the triple-phase
contact line. By using geometric relations for spherical cap
geometry,44 we have

S ¼ 2πFh, V ¼ π

6
hð3R2 þ h2Þ ð23Þ

The height of the spread droplet is h = R tan(θ/2), which can be
used to determine the slope θ by measuring R and h as θ = 2
arctan(h/R). The radius of curvature of the surface of the droplet is
F = R/sin θ. Equation 23 can be written in terms of R and θ as

S ¼ 2πR2 1
1 þ cos θ

, V ¼ 1
3
πR3ð2 þ cos θÞsin θ

ð1 þ cos θÞ2 ð24Þ

Some liquid evaporation is inevitable, unless the atmosphere
surrounding the droplet is saturated with the vapor of the liquid.
The effect of evaporation on the contact angle between the
droplet and the substrate has been studied extensively (e.g., refs
45 and 46.) However, if it is assumed that there is no evaporation
during droplet spreading and that the liquid of the droplet

Figure 9. (a) Spherical droplet of radius R0 just before touching the solid substrate. (b) Droplet configuration upon spreading into the spherical cap
configuration. The contact angle is θ, the radius of the solid/liquid interface is R, the height of the droplet is h, and the radius of the curvature of the
liquid/vapor interface is F.



10712 dx.doi.org/10.1021/la202077w |Langmuir 2011, 27, 10705–10713

Langmuir ARTICLE

is incompressible, then constant-volume conditions V = V0 =
(4π/3)R0

3 and dV/dθ = 0 give

R ¼ 22=3R0 sin θ

ð1� cos θÞ2=3ð2 þ cos θÞ1=3

R
dθ
dR

¼ � ð2 þ cos θÞsin θ

ð25Þ

The energy dissipated by viscous flow during the spreading of
the droplet and by the friction between the expanding contact
line of the droplet and the solid substrate is ϕ = E0 � E. The
function ϕ = ϕ(j) is a monotonically increasing function of the
angle j = π � θ, with ϕ(0) = 0 (dissipation increases with
spreading). Correspondingly, E = E(j) is a monotonically
decreasing function of j, with E(0) = E0. The droplet spreading
begins atj = 0 and ceases atj =jeq, which minimizes E(j) and
maximizes ϕ(j) because the dissipated energy increases as j
increases from the initial angle j = 0 to the equilibrium angle j =
jeq. If E takes the minimum value at the boundary of the interval [0,
π], then the droplet does not spread at all (jeq = 0) or it spreads
completely into an infinitesimally thin film (jeq =π). If 0 <jeq <π,
then the function E = E(j) has its minimum within the interval [0,
π], corresponding to the stable equilibrium configuration of the
droplet. Consequently, its equilibrium configuration is determined
by the stationary condition ∂E/∂θ = 0.19,42,43

A.1. Configurational Force. An alternative derivation of the
equilibrium condition is based on the concept of the configura-
tional force. A comprehensive treatment of configurational forces
in a wide variety of mechanics problems can be found in the
monograph by Gurtin47 and the reviews by Maugin48 and Suo.49

The configurational force (F) on the droplet (per unit length of
its three-phase contact line) is orthogonal to the contact line and
is defined such that

ð2πRÞF ¼ � ∂E
∂R

ð26Þ

By differenting eq 22 with respect to R, we have

∂E
∂R

¼ � 2πRðσsv � σslÞ þ ∂S
∂R

σ þ 2πτ ð27Þ

In view of eq 25, from eq 24 there follows ∂S/∂R= 2πR cos θ, and
substitution into eqs 26 and 27 yields

F ¼ σ
σsv � σsl

σ
� cos θ� τ

Rσ

� �
ð28Þ

The droplet reaches its equilibrium configuration when the
configurational force vanishes, which gives a transcendental
equation for the equilibrium contact angle,

cos θ þ τ

RðθÞσ ¼ σsv � σsl

σ
ð29Þ

If the line tension is ignored, then eq 29 reduces to Young’s
equation (eq 1) for the (macroscopic) equilibrium contact angle.
Thus, the equilibrium contact angle depends on σ and the
surface-energy difference σsv � σsl but is independent of the
size of the droplet. Hard solids (with covalent, ionic, or metallic
bonding) have high surface energies (0.5�5 J/m2), but weak
solids (bonded by van der Waals forces) have low surface
energies (∼0.05 J/m2).20 In a microscopically small region near
the three-phase contact line, the shape of the droplet profile may

have a rapid variation of its tangent angle,50 which cannot be
predicted by macroscopic analysis.
If the line tension effect is retained so that the spreading of the

droplet is driven by the conversion of the surface and line
energies, then the contact angle is governed by eq 29, which is
known as the generalized or modified Young’s equation
(sometimes also referred to as the Boruvka�Neumann equation51

after the generalization of the classical theory of capillary by
Boruvka and Neumann;52 see also ref 53). In this case, the
equilibrium contact angle depends not only on the three interfacial
surface energies (σ,σsv, andσsl) but also on the line tension and the
size of the initial droplet. If τ is positive, then θ is larger for larger τ
and vice versa (i.e., the wetting is more pronounced in systems
with smaller line tensions). As discussed by Widom,54 this can be
visualized as the effect of tightening or loosening the “collar”
(the three-phase contact line).

A.2. Cylindrical Droplet. The analysis of the equilibrium
contact angle for a cylindrical droplet, which is infinitely long
in the direction orthogonal to the plane of the drawing shown in
Figure 9, is of importance because there have been many
numerical calculations of the droplet’s spreading based on
molecular interactions using a 2D cylindrical droplet model in
order to reduce the extensive computational time.55,56 There has
also been an analytical study of the shape of a 2D droplet in
equilibrium with a surrounding thin film on a solid substrate in
which a disjoining�conjoining pressure accounts for intermole-
cular forces between the solid and the liquid.57 The apparent
contact angle, defined in this study as the angle between the
surface and the substrate at the inflection point in the contact line
region, is shown to depend on the size (cross-sectional area) of a
2D droplet in such a way that the cylindrical cap is a good
approximation only for large droplets.
The configurational force for driving the spreading of the

cylindrical droplet (per unit length), one on each of the two ends
of the droplet, is defined by

F ¼ � 1
2
∂E
∂R

ð30Þ

where E is the free energy of the system per unit length.
Ignoring gravity and thus assuming circular geometry, the free
energy is

E ¼ ðLs � 2RÞσsv þ 2Rσsl þ 2Rθ
sin θ

σ þ 2τ ð31Þ

The length of the top edge of the substrate before wetting is Ls,
the in-plane spread of the solid/liquid interface is 2R, and 2Rθ/
sin θ is the length of the upper circular edge of the droplet
(liquid/vapor interface). The incompressibility constraint for
the cylindrical droplet implies that during its spreading the
cross-sectional area of the droplet is constant and equal to
R0

2π:

R2θ� sin θ cos θ
sin2 θ

¼ R0
2π ð32Þ

Consequently,

R ¼ R0
π1=2 sin θ

ðθ� sin θ cos θÞ1=2

R
dθ
dR

¼ sin θðθ� sin θ cos θÞ
θ cos θ� sin θ

ð33Þ
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and from eqs 30 and 31 we obtain

F ¼ σsv � σsl � σ cos θ ð34Þ
The configurational force on a cylindrical droplet does not
depend on τ because the line tension contribution to the free
energy is constant and equal to 2τ throughout the spreading of
the droplet. In the equilibrium configuration of the droplet, the
configurational force in eq 34 vanishes, which gives Young’s
eq 1.
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