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Abstract A unified analysis is presented for the elastic response of a pressurized cylindri-
cally anisotropic hollow disk under assumed conditions of plane stress, or a hollow cylinder
under plane strain conditions, and a spherically anisotropic hollow sphere, made of material
which is nonuniform in the radial direction according to the power law relationship. The
solution for a cylinder under generalized plane strain is also presented. Two parameters play
a prominent role in the analysis: the material nonuniformity parameter m, and the param-
eter ϕ which accounts for the combined effects of material anisotropy, represented by the
specified parameters (α, β, γ ), and material nonuniformity, represented by the parameter m.
The radial and circumferential stresses are the linear combinations of two power functions
of the radial coordinate, whose exponents (n1 and n2) depend on the parameters m and ϕ.
New light is added to the stress amplification and shielding under combined effects of curvi-
linear anisotropy and radial nonuniformity. Different loading combinations are considered,
including the equal pressure at both boundaries, and the uniform pressure at the inner or the
outer boundary. While the stress state for the equal pressure loading is uniform in the case
of isotropic uniform material (m = 0, ϕ = 1), and for one particular radially nonuniform
and anisotropic material, it is strongly nonuniform for a general anisotropic or nonuniform
material. If the aspect ratio of the inner and outer radii decreases (small hole in a large
disk/cylinder or sphere), the magnitude of the circumferential stress at the inner radius in-
creases for n1 > 0 (stress amplification), and decreases for n1 < 0 (stress shielding). Both
can be achieved by various combinations of the material parameters m, α, β, and γ . While
the stress amplification in the case of a pressurized external boundary occurs readily, it oc-
curs only exceptionally in the case of a pressurized internal boundary. The effects of material
parameters on the displacement response are also analyzed. The approximate character of
the plane stress solution of a pressurized thin disk is discussed and the results are compared
with those obtained by numerical solution of the exact three-dimensional disk model.
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1 Introduction

The effects of curvilinear anisotropy or radial nonuniformity of the material on the stress
response in thick-walled disks, cylinders and spheres under different loading conditions
have been studied extensively over number of years [3–13, 16–22, 25–27, 30–32]. Some
remarkable features of the stress and displacement response, absent in the case of elastic
isotropy and uniformity, but present in the case of even a slightest curvilinear anisotropy
or radial nonuniformity, have been observed and discussed. Specifically, the stress ampli-
fication caused by focusing of a curvilinear anisotropy, or by a strongly enhanced material
stiffness around a small hole in a nonuniform plate, as well as the stress shielding effects
arising for certain values of the material parameters, have been examined in detail. These
studies are of technological interest for manufacturing of fiber composites, processing of the
functionally graded materials (FGM), casting of metals, wood industry (tree trunks), etc. For
example, the microstructure of functionally graded materials is spatially varied (tailored) on
a macroscale to improve their oxidation properties, and wear and thermal resistance [8].
In a composite metal-ceramic layered material, a FGM is inserted as an interface layer to
reduce thermal stresses, improve bonding strength, and prevent delamination [14]. FGM
coatings are superior to conventional ceramic coatings, showing significantly less damage
under thermal shocks; see [19] and the references therein.

The objective of this paper is to present a unified analysis of the elastic response of a pres-
surized cylindrically anisotropic (locally orthotropic) hollow thin disk under plane stress ap-
proximation (the terminology “cylindrically orthotropic” is also often used [7]), or a hollow
cylinder under plane strain conditions, and a spherically anisotropic (locally transversely
isotropic) hollow sphere, all made of material which is nonuniform in the radial direction
according to the power law relationship. The solution for a cylinder under generalized plane
strain is also presented. Two parameters play a prominent role in the analysis: the material
nonuniformity parameter m, and the parameter ϕ which accounts for the combined effects
of material anisotropy, represented by the specified parameters (α, β , γ ), and nonuniformity
of the elastic moduli, represented by the parameter m. The coefficients of lateral contraction
are assumed to be independent of the position. The radial and circumferential stresses are
the linear combinations of two power functions of the radial coordinate, whose exponents
(n1 and n2) depend on the parameters m and ϕ. The analysis sheds new light to the stress
amplification and shielding under the combined effects of curvilinear anisotropy and radial
nonuniformity of the material. Different loading combinations are examined, such as the
equal pressure at both boundaries, or the uniform pressure at the inner or the outer bound-
ary. While the stress state for the equal pressure loading is uniform in the case of isotropic
uniform material (m = 0, ϕ = 1), and for one particular radially nonuniform anisotropic
material, it is strongly nonuniform for a general anisotropic or nonuniform material. If the
aspect ratio of the inner and outer radii decreases (small hole in a large disk/cylinder or
sphere), the magnitude of the circumferential stress at the inner radius increases for n1 > 0
(stress amplification), and decreases for n1 < 0 (stress shielding). Both can be achieved by
various combinations of the material parameters m, α, β , and γ . For example, if the material
is uniform (m = 0), the condition n1 < 0 implies that ϕ > 1, i.e., (α − γ ) > (j − 1)β , where
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j = 1 for a disk or cylinder, and j = 2 for a sphere. While the stress amplification in the
case of a pressurized external boundary occurs readily, it occurs only exceptionally in the
case of a pressurized internal boundary. The effects of material parameters on the displace-
ment response are also analyzed. The approximate character of the plane stress solution of
a pressurized thin disk is discussed and the results are compared with those obtained by
numerical solution of the full three-dimensional disk model. It is shown that for a mildly
nonuniform and isotropic thin disk the plane stress model yields accurate values for the ra-
dial and circumferential stress components, although it does not account for small values of
out-of-plane stress components present in the three-dimensional disk model. The solution
for other three types of boundary conditions, which correspond to prescribed displacements
at both boundaries, prescribed traction at one boundary and displacement at another, and
vice versa, will be reported elsewhere [24].

2 Cylindrical and Spherical Anisotropies

We consider a cylindrically anisotropic thin disk under the assumed conditions of plane
stress, or long cylinder under the plane strain conditions, made of the material which is lo-
cally orthotropic, with the principal axes of orthotropy in the (r, θ, z) directions, and a spher-
ically anisotropic sphere made of the material which is at any point transversely isotropic
around the radial direction. The corresponding stress-strain relations, in the range of in-
finitesimally small elastic deformations, are

εr = 1

Eθ

(ασr − jβσθ ), εθ = 1

Eθ

(γ σθ − βσr), (2.1)

where

j =
{

1, for a disk and cylinder,

2, for a sphere.
(2.2)

The material parameters (α,β, γ ) are defined by

α =
⎧⎨
⎩

k,

k(1 − νrzνzr ),

k,

β =
⎧⎨
⎩

νθr ,

νθr + νθzνzr ,

νθr ,

γ =
⎧⎨
⎩

1, for a disk,
1 − νzθνθz, for a cylinder,
1 − νφθ , for a sphere.

(2.3)
The coefficient

k = Eθ

Er

> 0 (2.4)

specifies the degree of anisotropy. If k < 1, the material is stiffer in the radial direction
than in the circumferential direction, the opposite being true for k > 1. The coefficient of
lateral contraction νθr stands for the coefficient of lateral contraction in the r-direction due to
stress in the θ -direction, and likewise for other coefficients of lateral contraction. In the case
of cylindrical anisotropy, the coefficients of lateral contraction are related by the symmetry
relations

Erνθr = Eθνrθ , Eθνzθ = Ezνθz, Ezνrz = Erνzr , (2.5)
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so that the ratios of elastic moduli can be expressed as

k = Eθ

Er

= νθr

νrθ

= νθzνzr

νzθ νrz

,
Eθ

Ez

= νθz

νzθ

= νθrνrz

νrθ νzr

. (2.6)

Furthermore, by the positive-definiteness of the strain energy function, the elastic moduli
are positive and the coefficients of lateral contraction are constrained by{

0 < νrθνθr < 1, 0 < νθzνzθ < 1, 0 < νzrνrz < 1,

νrθ νθr + νθzνzθ + νzrνrz + νrzνzθνθr + νzrνθzνrθ < 1.
(2.7)

In view of (2.6), the constraint 0 < νrθνθr < 1 sets the bounds on νθr and νrθ to be

−k1/2 < νθr < k1/2, −k−1/2 < νrθ < k−1/2, (2.8)

both coefficients being simultaneously either positive or negative. Since k > 0 can in prin-
ciple be any positive number, the coefficients νθr and νrθ could be either greater or smaller
than 1, albeit their product must be positive and less than 1. In view of (2.6), it is also noted
that νzrνθzνrθ = νrzνzθ νθr . For the elaboration on the bounds on the coefficients of lateral
contraction for orthotropic and transversely isotropic materials, see [28, 33]. In particular,
Poisson’s ratio for anisotropic materials can have no bounds [33].

In the case of spherical anisotropy considered in this work (Eφ = Eθ , νθφ = νφθ , νrθ =
νrφ , νθr = νφr ), the conditions (2.7) reduce to

−1 < νφθ < 1, νrθ νθr < 1, νφθ + 2νrθνθr < 1, (2.9)

with the bounds on νθr and νrθ as in (2.8).
If Eθ > Er (i.e., k > 1), the cylindrical anisotropy is referred to as the circumferentially

orthotropic; if Er > Eθ (i.e., k < 1), it is referred to as the radially orthotropic [13, 16]. If
the material is isotropic, k = 1 and the parameters α, β , and γ in (2.3) reduce to

α =
⎧⎨
⎩

1,

1 − ν2,

1,

β =
⎧⎨
⎩

ν,

ν(1 + ν),

ν,

γ =
⎧⎨
⎩

1, for a disk,
1 − ν2, for a cylinder,
1 − ν, for a sphere,

(2.10)

becoming only ν-dependent. In particular, α+β = 1+ν in all three cases, while β/γ equals
ν for a disk, and ν/(1 − ν) for a cylinder or a sphere.

3 Radial Nonuniformity

In addition to the described anisotropy properties, it will be assumed that a disk, cylinder
or sphere are made of the material which is nonuniform in the radial direction, such that its
elastic moduli vary in the radial direction according to the power-law relations

Er = Eb
r

(
r

b

)m

, Eθ = Eb
θ

(
r

b

)m

, Ez = Eb
z

(
r

b

)m

. (3.1)

The exponent m is a real number, reflecting the degree of nonuniformity of the material,
and (Eb

r ,E
b
θ ,E

b
z ) are the elastic moduli at the outer boundary r = b. If m > 0, the elastic

stiffness increases outward, from r = a to r = b. The opposite is true for m < 0. If m = 0,
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the material is uniform. The radial moduli at two boundaries are related by Ea
r = cmEb

r ,
where c = a/b is the aspect ratio, with the similar relations for the elastic moduli in other
two directions (Eθ and Ez). The same m is used for all three moduli, so that the ratios of
the moduli in different directions are constant, e.g., Eθ/Er = Eb

θ /E
b
r = k = const. For latter

use, it is also noted that the rate of the radial elastic modulus is dEr/dr = (m/r)Er , and
similarly for other moduli.

The material nonuniformity of power-law type (3.1) has been previously used in [11, 17,
22]. Other types of nonuniformity can be considered, if needed to better match a specific
functional grading of material. For example, the elastic moduli which vary exponentially
with the square of the radial coordinate were adopted in [25, 34]. The adoption of the power-
law spatial dependence (3.1) greatly affects the stress and deformation response through the
sign and the magnitude of the exponent m. Generally speaking, for m > 0 there is a tendency
for stress shielding, and for m < 0 for stress amplification. In a solid disk or sphere with
m > 0, (3.1) predicts that the elastic modulus vanishes at the center, which may result in the
displacement singularity at that point [11].

All coefficients of lateral contraction are assumed to be independent of r , which consider-
ably simplifies the mathematical aspects of the analysis and is in accord with an assumption
commonly used in the mechanics of functionally graded materials [8, 19], where it is known
that the spatial variation of the Poisson ratio is of much less practical significance than that
of the elastic moduli [17]. The spatial variation of both the elastic modulus and Poisson’s
ratio was considered in [12].

If the material is functionally graded so that the moduli ratios at r = a and r = b are
equal to a prescribed value, say ρ, i.e.,

Ea
r

Eb
r

= Ea
θ

Eb
θ

= Ea
z

Eb
z

= ρ, (3.2)

then the exponent m in (3.1) must be

m = lnρ

ln c
, c = a

b
. (3.3)

In order that the strain energy density is positive-definite, the elastic moduli (3.1) have to
be positive at any point. Thus, if m > 0, the outer radius b in the considered model must be
finite, for otherwise the elastic moduli would vanish at any internal point r < b. The outer
radius must also be finite in order that the elastic moduli (3.1) are finite for m < 0.

4 Governing Differential Equations

The uniform pressure loading at two boundaries is considered, which implies that the cir-
cumferential component of displacement is zero. It will also be assumed that the radial
component of displacement depends on the radial distance only, u = u(r). This assumption
is exact for the long cylinders under plane strain or generalized plane strain, as well as for
the pressurized sphere, but is only an approximation in the case of a radially nonuniform
cylindrically anisotropic disk (Appendix A). Correspondingly, the stress components σr are
σθ are also taken to be r-dependent only. In the absence of body force, the equilibrium
equation is

dσr

dr
+ j

σr − σθ

r
= 0, (4.1)
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where j is given by (2.2). The strain-displacement relations are

εr = du

dr
, εθ = u

r
, (4.2)

with the corresponding Saint-Venant compatibility condition

dεθ

dr
+ εθ − εr

r
= 0. (4.3)

It is noted from (4.1) and (4.3) that σr is an extremum when σr = σθ [30], while εθ is an
extremum when εr = εθ .

By substituting the stress-strain relations (2.1) into (4.3), and by using the equilibrium
equation (4.1) to eliminate dσr/dr , we obtain the Beltrami–Michell compatibility condi-
tion [23]

dσθ

dr
+ 1

r

[
(1 − m)σθ − ϕσr

] = 0, (4.4)

where

ϕ = 1

γ

[
α + β(1 − j)

] − m
β

γ
. (4.5)

The parameter ϕ accounts for the combined effects of the state of anisotropy, represented by
the parameters α, β and γ , and the degree of nonuniformity, represented by the parameter m.
Specifically,

ϕ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k − mνθr , for a disk,

k(1−νrzνzr )−m(νθr+νθzνzr )

1−νθzνzθ
, for a cylinder,

k−(1+m)νθr

1−νφθ
, for a sphere.

(4.6)

Upon differentiating (4.1) and incorporating (4.4), it follows that the radial stress is gov-
erned by the differential equation

r2 d2σr

dr2
+ (2 + j − m)r

dσr

dr
+ j (1 − m − ϕ)σr = 0. (4.7)

4.1 Radial Dependence of the Spherical Part of Stress

It is instructive to examine the radial dependence of the spherical part of stress tensor (σr +
jσθ )/3. To that goal, and with the help of (4.1), equation (4.4) can be rewritten as

d

dr

[
(1 − m)σr + jσθ

] + j (1 − m − ϕ)
σr

r
= 0. (4.8)

If the material is uniform (m = 0), this reduces to

d

dr
(σr + jσθ ) + j (1 − ϕ)

σr

r
= 0. (4.9)

If the material is both uniform and isotropic, ϕ = 1 and

d

dr
(σr + jσθ ) = 0, (4.10)
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confirming the well-known results that σr +σθ = const. for a disk or cylinder, and σr +2σθ =
const. for a sphere [29]. On the other hand, if the material is anisotropic or nonuniform, the
sum (σr + jσθ ) is not constant, but r-dependent. Indeed, from (4.8),

σr + jσθ = mσr − j (1 − m − ϕ)

∫
σr

r
dr. (4.11)

5 Stress and Displacement Expressions

The general solution of the second-order differential equation (4.7) is

σr = Ar−n1 + Br−n2 , (5.1)

where A and B are integration constants and

n1,2 = 1

2
(1 + j − m ∓ s), s = [

(1 + j − m)2 − 4j (1 − ϕ − m)
]1/2

, (5.2)

with n2 − n1 = s.
In order that s is positive real number, the condition must hold (1 + j − m)2 > 4j (1 −

ϕ − m), i.e., m2 + 4ϕ > 0 for a disk or cylinder, and (1 + m)2 + 8ϕ > 0 for a sphere. Since
ϕ is defined by (4.6), these conditions are

⎧⎪⎨
⎪⎩

m2 − 4mνθr + 4k > 0, for a disk,

m2(1 − νθzνzθ ) − 4m(νθr + νθzνzr ) + 4k(1 − νrzνzr ) > 0, for a cylinder,

(1 + m)2(1 − νφθ ) − 8(1 + m)νθr + 8k > 0, for a sphere.

(5.3)

By using the constraints (2.7)–(2.9), imposed on the coefficients of lateral contraction by
the positive-definiteness of the strain energy, it can be verified (Appendix C) that the condi-
tions (5.3) are always satisfied.

The exponents n1 and n2 in (5.1) account for the effects of the material nonuniformity
and elastic anisotropy, represented by the parameters m and ϕ, on the stress response. If the
material is isotropic and uniform (m = 0, ϕ = 1), then s = 1 + j , n1 = 0, and n2 = 1 + j .

If the material is isotropic but nonuniform (m �= 0), then ϕ = 1 − (β/γ )m, where
(β/γ ) = ν for a disk, and (β/γ ) = ν/(1 − ν) for a cylinder or a sphere. In this case
s = [(1 + j − m)2 + 4jm(1 − β/γ )]1/2, so that

n1,2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 (2 − m ∓ s), s = (4 − 4νm + m2)1/2, for a disk,

1
2 (2 − m ∓ s), s = (4 − 4νm

1−ν
+ m2)1/2, for a cylinder,

1
2 (3 − m ∓ s), s = [(3 − m)2 + 8m 1−2ν

1−ν
]1/2, for a sphere.

(5.4)

If the material is uniform (m = 0) but anisotropic, then

s =
{

2ϕ1/2, for a disk and cylinder,

(1 + 8ϕ)1/2, for a sphere,
(5.5)
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where

ϕ =

⎧⎪⎨
⎪⎩

k, for a disk,

k
1−νrzνzr

1−νθzνzθ
, for a cylinder,

k−νθr

1−νφθ
, for a sphere.

(5.6)

Consequently,

n1,2 =
{

1 ∓ ϕ1/2, for a disk and cylinder,
1
2 [3 ∓ (1 + 8ϕ)1/2], for a sphere.

(5.7)

In particular, for a uniform anisotropic disk, n1,2 = 1 ∓ k1/2. It is noted that the expressions
(5.7)2 are the correct expressions for the exponents n1 and n2 in the case of a sphere, and
not those obtained from the expressions (52) and (53) of [16], which do not include the
dependence on νφθ .

Having established the expression (5.1) for the radial stress, the circumferential stress
follows from (4.1) as

σθ =
(

1 − n1

j

)
Ar−n1 +

(
1 − n2

j

)
Br−n2 . (5.8)

The displacement is conveniently deduced from the circumferential strain as u = rεθ . By
substituting (5.1) and (5.8) into the second of (2.1), the circumferential strain is found to be

εθ = 1

Eb
θ

(
b

r

)m(
η1Ar−n1 + η2Br−n2

)
, (5.9)

with the parameters

η1 = γ

(
1 − n1

j

)
− β, η2 = γ

(
1 − n2

j

)
− β . (5.10)

Therefore, the radial displacement is

u = bm

Eb
θ

(
η1Ar1−m−n1 + η2Br1−m−n2

)
. (5.11)

For isotropic homogeneous material, η1 = γ − β and η2 = −(β + γ /j), where β and γ are
specified by (2.10). In general, η1 − η2 = γ s/j .

In the case of a thin disk under plane stress conditions (σz = 0), the strain in the direction
orthogonal to the plane of the disk is εz = −(νzrσr + νzθσθ )/Ez, i.e., in view of the stress
expressions (5.1) and (5.8),

−Ezεz = [νzr + (1 − n1)νzθ ]Ar−n1 + [νzr + (1 − n2)νzθ ]Br−n2 . (5.12)

This is in general r-dependent, giving rise to the r-dependent out-of-plane displacement
w = zεz(r), and thus the nonvanishing shear strain εzr = (z/2)dεz/dr , contrary to the initial
plane stress assumption σzr = 0. This will be further discussed in Appendix A. The strain
εz is r-independent if n1 = 0 and n2 = 1 + νzr/νzθ > 0, or n2 = 0 and n1 = 1 + νzr/νzθ <

0, provided that m = 1 − (νzr/νzθ ) = (1 − k)/(1 − νθr ). For example, this is the case for
isotropic homogeneous material (m = 0, k = 1, n1 = 0, n2 = 2).
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In the case of a long cylinder under plane strain conditions (εz = 0), the longitudinal
stress is σz = νzrσr + νzθσθ . The generalized plane strain in which the longitudinal stress
σz = σz(r) is adjusted so that εz = const. �= 0 is considered in Appendix B.

5.1 Elaboration on the Exponents n1 and n2

The power-law radial dependence of stress components, embedded in (5.1) and (5.8), is
specified by the exponents n1 and n2, which thus deserve a special attention. If m > (1−ϕ),
it can be readily verified from (5.2) that

(n1 < 0, n2 > 0). (5.13)

If m < (1 − ϕ), then {
(n1 > 0, n2 > 0), for m < (1 + j),

(n1 < 0, n2 < 0), for m > (1 + j).
(5.14)

The second combination (n1 < 0, n2 < 0), although possible in theory, may be difficult to
achieve in practice. For example, for a disk with m = 3, k = 1.25, and νθr = 1.1, we have that
n1 < 0 and n2 < 0 without violating any of the required conditions, i.e., k +m(1 − νθr ) < 1,
m2 − 4mνθr + 4k > 0, νθr < k1/2, k > 0, and m > 2. In this case, Er(b) = 15.625Er(a),
with a similar relation for Eθ . Such rapid stiffening of material with the distance is rather
extreme. The case (n1 > 0, n2 < 0) cannot occur, because n2 = n1 + s and s > 0.

The explicit form of the condition m > (1 − ϕ) is⎧⎪⎨
⎪⎩

k + m(1 − νθr ) > 1, for a disk,

k(1 − νrzνzr ) + m[1 − νθr − νθz(νzr + νzθ )] + νθzνzθ > 1, for a cylinder,

k + m(1 − νθr − νφθ ) + νφθ − νθr > 1, for a sphere.

(5.15)

The opposite inequalities hold in the case m < (1 − ϕ).
If m = 1 − ϕ, then{

n1 = 0, n2 = 1 + j − m > 0, for m < (1 + j),

n2 = 0, n1 = 1 + j − m < 0, for m > (1 + j).
(5.16)

The condition m = 1 − ϕ implies that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k = 1 − m(1 − νθr ), for a disk,

k = 1
1−νrzνzr

[(1 − m)(1 − νθzνzθ ) + m(νθr + νθzνzr )], for a cylinder,

k = (1 + m)νθr + (1 − m)(1 − νφθ ), for a sphere,

(5.17)

provided that the right-hand side in each case is positive, and that (2.7)–(2.9) are obeyed.
The power-law dependence of the radial displacement (5.11) is specified by the expo-

nents (1 − m − n1) and (1 − m − n2), so that the analysis of their physically possible values
deserves a careful consideration. For example, for a particular combination of material pa-
rameters, the displacement at the center of a solid disk or sphere (without a hole) becomes
singular. For a functionally graded disk this was examined in [11], where the displacement
singularity was found at the center of the disk whose core is sufficiently soft.
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6 Boundary Conditions

In this paper, only traction boundary conditions are considered. The solutions for the dis-
placement or mixed-boundary conditions is presented in [24]. When the uniform pressures
p and q are applied at the inner and outer boundary,

σr(a) = −p, σr(b) = −q, (6.1)

the integration constants in (5.1) become

A = pcn2 − q

1 − cs
bn1 , B = pcn1 − q

1 − c−s
bn2 , (6.2)

where c = a/b. Consequently, the radial and hoop stresses are

σr(r) = pcn2 − q

1 − cs

(
b

r

)n1

+ pcn1 − q

1 − c−s

(
b

r

)n2

, (6.3)

σθ (r) =
(

1 − n1

j

)
pcn2 − q

1 − cs

(
b

r

)n1

+
(

1 − n2

j

)
pcn1 − q

1 − c−s

(
b

r

)n2

. (6.4)

The corresponding radial displacement is

u(r) = b

Eb
θ

[
η1

pcn2 − q

1 − cs

(
b

r

)m+n1−1

+ η2
pcn1 − q

1 − c−s

(
b

r

)m+n2−1]
. (6.5)

Figure 1 shows the plots of the normalized stress components and the displacement ver-
sus the normalized radius in a hollow cylinder under plane strain (j = 1) with the radii ratio
c = a/b = 0.4 and the loading ratio q/p = 2. It is assumed, for these and most subsequent
plots in the paper, that the state of elastic anisotropy is such that α = 0.52, β = 0.304, and
γ = 0.985. These values correspond to the reported data for red oak (hardwood), for which
Ez = 9.8 GPa, Er = 0.154Ez, Eθ = 0.082Ez (thus k = 0.532), νzr = 0.35, νrz = 0.064,
νθr = 0.292, νrθ = 0.56, νzθ = 0.448, and νθz = 0.033 [15]. The three curves shown in plots
correspond to three indicated values of the nonuniformity parameter m. If m = −0.25, then
ϕ = 0.6051, n1 = 0.3372, and n2 = 1.9128. The displacement parameters are η1 = 0.3489
and η2 = −1.2032. If m = 0.25, then ϕ = 0.4508, n1 = 0.1921, and n2 = 1.5579, while
η1 = 0.4918 and η2 = −0.8536. If m = 0, then ϕ = 0.5279, n1 = 0.2734, and n2 = 1.7266,
while η1 = 0.4117 and η2 = −1.0197. Part (a) of Fig. 1 shows the radial stress, part (b)
the circumferential stress, and part (c) the radial displacement. The magnitude of the maxi-
mum circumferential stress σθ (a) for m = −0.25 is increased, and for m = 0.25 decreased
relative to case of uniform material (m = 0). Different values of m could be related to the
age of wood, although no such correspondence is pursued in this paper, so that the se-
lected values of m are only chosen to illustrate the effect of material nonuniformity on the
stress and displacement response. Recall that for the isotropic homogeneous disk or cylinder
σθ (b) − σθ (a) = q − p.

Figure 2 shows the results for the pressure/tension loading q = −p. In the subsequent
three sections a detailed analysis of the response is given in three important special cases,
corresponding to the applied equal pressure at both boundaries, and the applied pressure at
the inner or the outer boundary only. The appropriate superposition of the latter two cases
can be used to obtain the solution for any loading combination.
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Fig. 1 The variation of: (a) radial stress, (b) circumferential stress, and (c) radial displacement in the three
cases described in the text. The aspect ratio is c = a/b = 0.4 and the loading is q = 2p

Fig. 2 (a) The variation of the radial stress (lower three curves), and the circumferential stress (upper three
curves) in the three considered cases for the pressure/tension loading q = −p. (b) The corresponding dis-
placement variation
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7 Response Under Equal Pressure at Both Boundaries

If the applied pressure is the same at both boundaries (q = p), the expressions for the radial
and circumferential stresses (6.3) and (6.4) become

σr(r) =
[

cn2 − 1

1 − cs

(
b

r

)n1

+ cn1 − 1

1 − c−s

(
b

r

)n2
]
p, (7.1)

σθ (r) =
[(

1 − n1

j

)
cn2 − 1

1 − cs

(
b

r

)n1

+
(

1 − n2

j

)
cn1 − 1

1 − c−s

(
b

r

)n2
]
p, (7.2)

while the radial displacement (6.5) is

u(r) =
[
η1

cn2 − 1

1 − cs

(
b

r

)m+n1−1

+ η2
cn1 − 1

1 − c−s

(
b

r

)m+n2−1]
pb

Eb
θ

. (7.3)

In particular, if n1 = 0 then n2 = s; if n2 = 0 then n1 = −s. In both of these cases the state
of anisotropy is such that ϕ = 1 − m, which requires that m = 1 − (α − jβ)/(γ − β); see
Sect. 5.1. The stress state throughout the disk/cylinder or sphere is then uniform and equal to
σr = σθ = −p. Furthermore, in both cases η1 = η2 = γ − β , so that the radial displacement
is a nonlinear function of the radial coordinate r , given by

u(r) = ub

(
b

r

)m−1

, ub = (β − γ )
pb

Eb
θ

. (7.4)

If material is isotropic,

γ − β =

⎧⎪⎨
⎪⎩

1 − ν, for a disk,

(1 + ν)(1 − 2ν), for a cylinder,

1 − 2ν, for a sphere,

(7.5)

equation (7.4) reproduces the well-known displacement expression from the isotropic elas-
ticity [29].

In neither n1 nor n2 vanish, the stress distribution is nonuniform. Figure 3 shows the stress
and displacement variations for the same three cases of elastic anisotropy and nonuniformity
as considered earlier in conjunction with Fig. 1. While the stress components are uniform in
the case of isotropic uniform material, there is a strong nonuniformity of stress in cases of
anisotropic or nonuniform material, which is particularly pronounced in magnitude for the
circumferential stress.

If a � b, equation (7.2) gives

σθ (a)

p
≈ −

(
1 − n2

j

)
−

(
1 − n1

j

)
c−n1 , c = a

b
� 1. (7.6)

Consequently, if n1 < 0 the circumferential stress σθ (a) approaches the value −(1−n2/j)p.
The magnitude of the circumferential stress σθ (a) is then less than p (stress shielding) if
n2 > 0, and greater than p if n2 < 0. If n1 > 0, the magnitude of σθ (a) increases in pro-
portion to (b/a)n1 (stress amplification). In view of the analysis from Sect. 5.1, the combi-
nation (n1 < 0, n2 > 0) occurs if m > (1 − ϕ). The combination (n1 < 0, n2 < 0) occurs if
m < (1 − ϕ) and m > (1 + j). The case n1 > 0 occurs for m < (1 − ϕ) and m < (1 + j),
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Fig. 3 The variation of: (a) radial stress, (b) circumferential stress, and (c) radial displacement. The aspect
ratio is c = a/b = 0.4 and the loading is q = p

and in this case n2 is positive, as well. These cases can be achieved by various combinations
of material nonuniformity and anisotropy parameters (m, α, β , and γ ), which is of interest
for the optimization study [12].

As an illustration, for the uniform material (m = 0), the combination (n1 < 0, n2 > 0)

occurs if ⎧⎪⎨
⎪⎩

k > 1, for a disk,

k >
1−νθzνzθ

1−νrzνzr
, for a cylinder,

k > 1 + νθr − νφθ , for a sphere.

(7.7)

The combination (n1 < 0, n2 < 0) cannot occur for m = 0, while the case n1 > 0 occurs if
the direction of the inequalities in (7.7) is reversed.

Figure 4 shows the plots in the case c = a/b = 0.01, assuming the same state of elastic
anisotropy and nonuniformity as in Fig. 2. For m = −0.25, the magnitude of the circumfer-
ential stress σθ (a) is equal to 6.5348p (stress amplification), for m = 0 it is 4.3966p, and for
m = 0.25 it is 2.7536p. The magnitude of the maximum radial stress is everywhere greater
than p, with the maximum of 2.8257p (for m = −0.25), 2.2337p (for m = 0), and 1.7065p

(for m = 0.25).
It should be noted, however, that the results in Fig. 4, with the aspect ratio a/b = 0.01,

give rise to Er(a) = 3.162Er(b) in case m = −0.25, and Er(a) = 0.316Er(b) in case m =
0.25. Such large difference in the elastic moduli at two boundaries may be rarely needed
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Fig. 4 The variation of: (a) radial stress, (b) circumferential stress, and (c) radial displacement. The aspect
ratio is c = a/b = 0.01 and the loading is q = p

or technologically produced by functional grading of the material. Furthermore, the state
of elastic anisotropy at the inner boundary becomes profoundly concentrated (focussed) if
a = 0.01b, which also gives rise to large stress amplification [16]. Since there is no material
length scale in the problem, a minimum value of a could be specified, below which the
assumption of curvilinear anisotropy does not adequately apply.

In the case of a pressurized solid cylinder or sphere (without a central hole), there is a
stress singularity at the origin caused by focusing of elastic anisotropy [21]. This has been
addressed in great detail in [9], where it was observed that, near the center of a curvilinearly
orthotropic cylinder with k < 1, there is an annular part (kr∗ < r < r∗) in which the deter-
minant of the deformation gradient ceases to be positive, implying a non one-to-one defor-
mation mapping. In fact, in the small central core r < r∗ (the expression for r∗ can be found
in [9]), the solution predicts −u(r) > r , which is physically impossible because it implies
material interpenetration. The inequality −u(r) > r means that the compressive circumfer-
ential strain is greater than 1, which is far beyond the range of infinitesimal strains assumed
in classical linear elasticity. To remedy this situation, Fosdick and Royer-Carfagni [9] intro-
duced the constraint of local injectivity, assuring local invertibility of the deformation map-
ping. The related analysis of a pressurized curvilinearly anisotropic solid sphere is reported
in [1]. Furthermore, for a particular combination of material parameters, the displacement at
the center of a solid disk can become singular. For a functionally graded disk obeying (3.1)
with m > 0, this was examined in [11]. The problem was also considered in [27], where the
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cylindrically orthotropic material of the inner core was replaced with a transversely isotropic
material. The limitations of classical linear elasticity in problems which involve singularities
around which the strains exceed the infinitesimal levels of linear theory have been discussed
in a more general context by [2, 3, 10].

8 Response Under Internal Pressure

By substituting q = 0 in the general expressions (6.3)–(6.5), the stresses are found to be

σr(r) =
[

cs

1 − cs

(
a

r

)n1

− 1

1 − cs

(
a

r

)n2
]
p, (8.1)

σθ (r) =
[(

1 − n1

j

)
cs

1 − cs

(
a

r

)n1

−
(

1 − n2

j

)
1

1 − cs

(
a

r

)n2
]
p. (8.2)

The radial displacement is

u(r) =
[
η1

cs

1 − cs

(
a

r

)m+n1−1

− η2
1

1 − cs

(
a

r

)m+n2−1]
pa

Ea
θ

. (8.3)

Figure 5 shows the plots in the case c = 0.4, assuming the same states of elastic anisotropy
and nonuniformity as in previous figures.

If n1 = 0 then n2 = s, and the stress and displacement fields become

σr(r) = cs

1 − cs

[
1 −

(
b

r

)s]
p, (8.4)

σθ (r) = cs

1 − cs

[
1 −

(
1 − s

j

)(
b

r

)s]
p, (8.5)

u(r) = (γ − β)
cs

1 − cs

[
1 −

(
b

r

)s](
b

r

)m−1
pb

Eb
θ

. (8.6)

On the other hand, if n2 = 0 then n1 = −s, and

σr(r) = 1

cs − 1

[
1 −

(
r

b

)s]
p, (8.7)

σθ (r) = 1

cs − 1

[
1 −

(
1 + s

j

)(
r

b

)s]
p, (8.8)

u(r) = (γ − β)
1

cs − 1

[
1 −

(
r

b

)s](
b

r

)m−1
pb

Eb
θ

. (8.9)

If a � b, (8.1)–(8.3) reduce to

σr(r) ≈
(

a

r

)n2
[(

r

b

)s

− 1

]
p, (8.10)

σθ (r) ≈
(

a

r

)n2
[(

1 − n1

j

)(
r

b

)s

−
(

1 − n2

j

)]
p, (8.11)
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Fig. 5 The variation of: (a) radial stress, (b) circumferential stress, and (c) radial displacement under internal
pressure alone (q = 0). The aspect ratio is c = a/b = 0.4

u(r) ≈
(

a

r

)m+n2−1[
η1

(
r

b

)s

− η2

]
pa

Ea
θ

. (8.12)

The circumferential stress at two boundaries is then

σθ (a) ≈ −
(

1 − n2

j

)
p, σθ (b) = s

j

(
a

b

)n2

p. (8.13)

Thus, if n2 > 0, the magnitude of σθ (a) is less than p, while σθ (b) � p. Dually, if n2 < 0,
the magnitude of σθ (a) is greater than p, while σθ (b) � p (stress amplification). Fig-
ure 6 shows the results for a = 0.01b, demonstrating a rapid decrease of both radial and
circumferential stress away from the inner radius r = a. Adding more material beyond
a sufficiently large radius, in the case of the considered material parameters, barely af-
fects the stress state near the pressurized hole. The displacement at the inner radius is
u(a) ≈ −η2c

1−m(p/Eb
θ ), with −η2 = (1.2032,1.0197,0.8536) for m = (−0.25,0,0.25),

respectively.
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Fig. 6 The variation of: (a) radial stress, (b) circumferential stress, and (c) radial displacement under internal
pressure alone (q = 0). The aspect ratio is c = a/b = 0.01

9 Response Under External Pressure

If p = 0 is substituted in (6.3)–(6.5), the stresses become

σr(r) =
[

1

cs − 1

(
b

r

)n1

+ cs

1 − cs

(
b

r

)n2
]
q, (9.1)

σθ (r) =
[(

1 − n1

j

)
1

cs − 1

(
b

r

)n1

+
(

1 − n2

j

)
cs

1 − cs

(
b

r

)n2
]
q. (9.2)

The radial displacement is

u(r) =
[
η1

1

cs − 1

(
b

r

)m+n1−1

+ η2
cs

1 − cs

(
b

r

)m+n2−1]
qb

Eb
θ

. (9.3)

Figure 7 shows the stress and displacement variations for a = 0.4b, in the same three cases
of material anisotropy and nonuniformity as before.

If n1 = 0 then n2 = s, and the stress and displacement fields are

σr(r) = 1

cs − 1

[
1 −

(
a

r

)s]
q, (9.4)
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Fig. 7 The variation of: (a) radial stress, (b) circumferential stress, and (c) radial displacement under external
pressure alone (p = 0). The aspect ratio is c = a/b = 0.4

σθ (r) = 1

cs − 1

[
1 −

(
1 − s

j

)(
a

r

)s]
q, (9.5)

u(r) = (γ − β)
1

cs − 1

[
1 −

(
a

r

)s](
a

r

)m−1
qa

Ea
θ

. (9.6)

Thus,

σθ (a)

σr(b)
= s/j

1 − (a/b)s
, (9.7)

so that, in the limit as b � a, the stress concentration factor becomes equal to s/j . Since
n1 = 0, one has s = 1 + j − m, so that the stress concentration factor can also be expressed
as 1 + (1 − m)/j . For a uniform and isotropic material, the stress concentration factor is
(1 + 1/j), which is equal to 2 for a disk or cylinder, and 1.5 for a sphere.

On the other hand, if n2 = 0 then n1 = −s, and the stress and displacement fields are

σr(r) = cs

1 − cs

[
1 −

(
r

a

)s]
q, (9.8)

σθ (r) = cs

1 − cs

[
1 −

(
1 + s

j

)(
r

a

)s]
q, (9.9)
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ur(r) = (γ − β)
cs

1 − cs

[
1 −

(
r

a

)s](
a

r

)m−1
qa

Ea
θ

. (9.10)

In this case,

σθ (a)

σr(b)
= s/j

(b/a)s − 1
, (9.11)

which decreases with the increase of the ratio b/a. If b � a, the stress concentration fac-
tor approaches 0, which has been referred to as the stress shielding effect by curvilinear
anisotropy of radial nonuniformity of the material [13, 17]. It is noted that the derived ex-
pressions in [13] for m = 0 correspond to anisotropic thin disks under plane stress, rather
than thick cylinders under plane strain conditions, as stated in that paper. The stresses are
fundamentally different in two cases: for a thin disk they depend on the ratio Eθ/Er , but
not on the coefficients of lateral contraction, while for a thick cylinder they depend on both;
see (5.6). For isotropic material they are, of course, independent of material properties.

The stress shielding, or the stress amplification, can occur for various combinations of
the anisotropy and nonuniformity parameters, as represented by the parameter n1. In fact,
from (9.2),

σθ (a)

q
= s

j

c−n1

cs − 1
. (9.12)

Furthermore, from (9.3), the normalized inward displacement of the points at the surface of
the inner hole is

−u(a)

a
= γ s/j

1 − cs
c−(n1+m) q

Eb
θ

, n1 + m = 1

2
(1 + j + m − s). (9.13)

Since s > 0, for c � 1, (9.12) and (9.13) become

σθ (a)

q
≈ − s

j
c−n1 , −u(a)

a
= γ s

j
c−(n1+m) q

Eb
θ

. (9.14)

Consequently, if n1 < 0 the stress concentration factor diminishes to zero (stress shielding);
if n1 > 0, the stress concentration factor increases to infinity (stress amplification). If n1 = 0,
the stress concentration factor approaches the value s/j , as discussed earlier. Furthermore,
the material interpenetration, in the sense of [9, 11], does not occur if n1 + m < 0, i.e., m <

s − (1 + j). For example, the interpenetration cannot occur in isotropic radially nonuniform
cylinder if m < 0, for then −u(a)/a → 0 as c → 0.

Figure 8 shows the plots for c = 0.01. The magnitude of σr in case m = −0.25 is in-
creased and in case m = 0.25 decreased, relative to case m = 0. The circumferential stress
at the inner radius in case m = −0.25 is σθ (a) = −7.4488q (stress amplification), while in
case m = 0.25 it is σθ (a) = −3.3141q (stress shielding), as compared to σθ (a) = −5.125q

in the case of uniform material (m = 0).
Physically, the stress amplification can be explained by considering separately the cases

of isotropic nonuniform material, and anisotropic uniform material. In the case of isotropic
nonuniform disk/cylinder or sphere, the condition n1 > 0 implies m < 0 (i.e., material stiff-
ening inwards). Thus, if Eb

r is finite, the elastic modulus Ea
r increases indefinitely as the

inner radius a decreases. Such infinite stiffness is physically unrealistic, which implies that
the radial nonuniformity model (5.2) is physically meaningful only for r ≥ a0, where a0 is
a cut-off, minimal permissible radius of the inner hole, specified by the production process
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Fig. 8 The variation of: (a) radial stress, (b) circumferential stress, and (c) radial displacement under external
pressure alone (p = 0). The aspect ratio is c = a/b = 0.01

of the disk/cylinder or the sphere. Even then, depending on the value of m, linear elasticity
may predict the stress and displacement near the core that are beyond the range of linear the-
ory. Alternatively, if a and Ea

r are specified, the elastic modulus Eb
r decreases indefinitely

as the outer radius b increases. Such infinitesimally small stiffness at the outer boundary is
also physically unrealistic, giving rise to unrealistic infinite stress amplification at the inner
radius.

In the case of anisotropic uniform disk, the condition n1 > 0 implies k < 1, i.e., Er > Eθ .
Thus, the unbounded stress amplification occurs at the inner radius a � b due to physically
unrealistic concentration (focusing) of anisotropy near the inner radius, in which the radial
stiffness is greater than the circumferential stiffness. One cannot produce the material that so
rapidly changes the properties in the same direction, i.e., for sufficiently small a, the mod-
ulus Er(a) at θ = 0 should be nearly equal to Eθ(a) at θ = π/2. In the case of anisotropic
uniform cylinder, the condition n1 > 0 implies k < (1 − νθzνzθ )/(1 − νrzνzr ), and in the case
of a sphere, k < (1 + νθr − νθφ).

The comment should also be made regarding the lack of asymptotic value of the stress
concentration factor σθ (a)/q in the limit a � b, previously discussed in [13, 16]. While in
the uniform isotropic case this stress concentration factor is 1 + (1/j), it clearly does not
have an asymptotic limit in the case of either nonuniform or anisotropic material, because
the sequence of disks/cylinders or spheres with the increasing ratio b/a constitute different
structural problems: material with different elastic properties is added to obtain a new mem-
ber of the sequence (with different magnitude of the isotropic moduli in the case of isotropic
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nonuniform material, or different magnitude of the concentration of anisotropy in the case
of uniform anisotropic material).

10 Conclusion

An analysis of the elastic response of a pressurized cylindrically anisotropic hollow disk
or hollow cylinder, and a spherically anisotropic hollow sphere, made of material which is
nonuniform in the radial direction according to the power law relationship, is presented.
Two parameters play a prominent role in the analysis: the material nonuniformity parameter
m, and the parameter ϕ which accounts for the combined effects of material anisotropy and
material nonuniformity. The radial and circumferential stresses are shown to be the linear
combinations of two power functions of the radial coordinate, whose exponents depend on
the material parameters m and ϕ. The stress amplification or shielding effects are quantita-
tively and qualitatively examined in the presence of both, curvilinear anisotropy and radial
nonuniformity. The effects of the material parameters on the displacement response are also
analyzed. The approximate character of the plane stress solution of a pressurized thin disk
is discussed in the Appendix A. It is shown that for a mildly nonuniform and isotropic thin
disk the plane stress model delivers accurate values for the radial and circumferential stress
components, although it does not account for small out-of-plane stress components present
in the three-dimensional disk model. Appendix B offers an analysis of a pressurized long
cylinder under conditions of generalized plane strain. The obtained results may be of interest
for the tailoring of material properties, optimization studies and processing of curvilinearly
anisotropic and functionally graded materials.
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Appendix A: Evaluation of the Plane Stress Approximation

In general, the solution of plane stress problems in linear isotropic elasticity are only ap-
proximate. The assumption that the in-plane stresses do not depend on the z-coordinate,
while the out-of-plane stresses identically vanish, cannot be satisfied exactly, because some
of the compatibility conditions remain unsatisfied. The full solution in the framework of
three-dimensional isotropic elasticity [29] allows the in-plane stresses to depend on the z-
coordinate, while the out-of-plane stresses all vanish. The correction terms in this exact
theory are proportional to z2, where z is measured from the midsurface of the disk, and are
thus negligibly small for very thin disks. In the case of the Lamé problem of a pressurized
isotropic disk, the plane stress solution is the exact solution, because the sum σr + σθ turns
out to be constant throughout the disk, so that εz (= ε0

z ) is also constant (the disk having uni-
form thickness in the deformed configuration, as well). As a consequence, all Saint-Venant
compatibility conditions are identically satisfied by the displacement field u = Ar + B/r ,
v = 0, and w = ε0

z z.
The situation is quite different with the Lamé problem of a radially nonuniform and/or

cylindrically anisotropic disk. The assumption u = u(r), together with the vanishing out-of-
plane stresses (σzz = σzr = 0), gives rise to in-plane stresses (σr, σθ ) dependent on r only,
and thus, from Hooke’s law, the strain εz = εz(r), so that the out-of-plane displacement
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w = zεz(r) is linear in z, but, in general, nonlinear in r . For example, from (5.12) it follows
that for a uniform cylindrically orthotropic disk,

w = − 1

Ez

[
(νzr + √

kνzθ )Ar−1+√
k + (νzr − √

kνzθ )Br−1−√
k
]
z. (A.1)

This, in turn, implies that the shear strain

εzr = 1

2

(
∂u

∂z
+ ∂w

∂r

)
= z

2

dεz

dr
�= 0, (A.2)

contrary to the initial assumption that the shear stress component σzr = 2Gzrεzr = 0. This
is reminiscent to the nature of approximation involved in the Euler-Bernoulli beam theory,
or the Kirchhoff thin plate theory [35]. We thus present bellow an exact elasticity formula-
tion for a pressurized radially nonuniform and cylindrically anisotropic disk. In Sect. A.1
we numerically solve the governing partial differential equations in the case of a radially
nonuniform isotropic disk and discuss the accuracy of the plane stress disk modeling.

The displacement components in the full three-dimensional axisymmetric analysis of a
pressurized disk are

u = u(r, z), v = 0, w = w(r, z). (A.3)

The associated non-vanishing strain components are

εr = ∂u

∂r
, εθ = u

r
, εz = ∂w

∂z
, εzr = 1

2

(
∂u

∂z
+ ∂w

∂r

)
. (A.4)

The two independent Saint-Venant’s compatibility equations are

r
∂εθ

∂r
+ εθ − εr = 0,

r
∂2εθ

∂z2
+ ∂εz

∂r
− 2

∂εzr

∂z
= 0.

(A.5)

The remaining Saint-Venant’s compatibility equation is identically satisfied if equations
in (A.5) are satisfied, because

∂2εr

∂z2
+ ∂2εz

∂r2
− 2

∂2εzr

∂r∂z
= ∂Lr

∂r
− ∂2Lz

∂z2
= 0. (A.6)

where Lz and Lr stand for the left-hand sides of expressions in (A.5).
The non-vanishing stresses are σr = σr(r, z), σθ = σθ (r, z), σz = σz(r, z), and σzr =

σzr(r, z). In particular, by symmetry across the mid-plane z = 0 of the disk, the normal
stress σz must be an even, while the shear stress σzr must be an odd function of z (its aver-
age value over the height h of the disk thus being equal to zero). The equilibrium equations
in the r and z direction are

∂σr

∂r
+ 1

r
(σr − σθ ) + ∂σzr

∂z
= 0,

∂σzr

∂r
+ 1

r
σzr + ∂σz

∂z
= 0.

(A.7)
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In particular, the second equilibrium equation in (A.7) yields an expression for the normal
stress

σz = −1

r

∂

∂r

(
r

∫ h/2

z

σzr dz

)
. (A.8)

Since σzr(r,±h/2) = 0 and σzr(r,0) = 0, from the second of (A.7) it follows that ∂σz/∂z =
0 over the planes z = 0 and z = ±h/2. Thus, since σz = ∂σz/∂z = 0 at z = ±h/2, it may
be expected that σz does not significantly build over the small thickness of the disk, as
confirmed by the numerical analysis in Sect. A.1. The boundary conditions of the problem
are

σz(r,±h/2) = 0, σzr (r,±h/2) = 0,

σr(a, z) = −p, σzr (a, z) = 0,

σr(b, z) = −q, σzr (b, z) = 0.

(A.9)

A.1 Numerical Solution

To quantify the approximation involved in the plane stress modeling of the disk, we present
in this section a numerical solution of the formulated three-dimensional disk problem in
the case of a radially nonuniform isotropic disk. The governing differential equations for
the displacement components (u,w) are obtained by substituting the strain-displacement
relations (A.4) and the stress-strain relations

σr = E(r)

(1 + ν)(1 − 2ν)

[
(1 − ν)εr + ν(εθ + εz)

]
, σzr = E(r)

1 + ν
εzr , (A.10)

with the similar relations for σθ and σz, into the equilibrium equations (A.7). This gives a
coupled system of two second-order partial differential equations

1

2
r

[
2(1 − ν)

∂2u

∂r2
+ (1 − 2ν)

∂2u

∂z2
+ ∂2w

∂r∂z

]

+ (1 − ν)(1 + m)
∂u

∂r
+ νm

∂w

∂z
− [

1 − ν(1 + m)
]u

r
= 0, (A.11)

r

[
∂2u

∂r∂z
+ (1 − 2ν)

∂2w

∂r2
+ 2(1 − ν)

∂2w

∂z2

]

+ [
1 + (1 − 2ν)m

]∂u

∂z
+ (1 − 2ν)(1 + m)

∂w

∂r
= 0. (A.12)

Equations (A.11) and (A.12) are solved numerically by using the finite difference
method. Due to symmetry, the finite difference mesh was applied to rectangular region
a ≤ r ≤ b, 0 ≤ z ≤ h/2, where h is the thickness of the disk. The boundary conditions
w = ∂u/∂z = 0 are imposed along the side z = 0, and the boundary conditions associated
with the prescribed traction are imposed along the other three sides. Figure 9 shows the
variation of the displacement components along the vertical section r = (b − a)/2 and the
horizontal section z = h/4 in a disk of thickness h = a/10 and external radius b = 2.5a,
under applied tension q at the outer boundary r = b. The nonuniformity parameter is taken
to be m = 0.5, so that E(b) ≈ 1.58E(a). The solid curves show the results obtained by using
the central finite differences to solve the differential equations (A.11) and (A.12), while the
dashed curves correspond to calculations based on the plane stress modeling. The numerical
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Fig. 9 The variation of the (a) radial, and (b) vertical displacement along the horizontal section z = h/4
of a thin disk with b = 2.5a = 25h and m = 0.5. Parts (c) and (d) show the same along the vertical section
r = (b − a)/2. The normalizing displacement is uo = wo = qh/Eb , where q is the applied tension at r = b,
and Eb = E(b)

accuracy was verified by choosing a sufficiently fine mesh density (900 × 30), and by the
agreement of the results with the exact analytical solution available in the case of a uniform
disk. The vertical displacement in the exact formulation is almost linear across the height of
the disk, albeit with a slightly different slope from that predicted by the plane stress approx-
imation. The radial displacement is only mildly dependent on z, and on the scale of Fig. 9c
it can hardly be observed. The corresponding variations of the radial and hoop stress com-
ponents with the radius r are shown in Fig. 10. Their variation with z, based on the finite
difference calculation, is not shown, because it is exceedingly small, so that σr and σθ are in
this case nearly constant across the height of the disk. The out-of-plane normal stress (σz)
and the shear stress (σzr ) are much smaller than the applied stress q , particularly away from
the ends of the disk, with the maximum values of the order of 10−4q .

For a given geometry of the disk (thickness to radii ratios), the agreement between the
three-dimensional and the plane stress calculations depends on the value of the nonunifor-
mity parameter m (its magnitude and the sign), as well as the loading combination. For
example, Fig. 11 shows the plots for the radial and circumferential stresses in the disk
(b = 2.5a = 25h) under external pressure when m = 2, so that E(b) = 6.25E(a). Note
that in this case the maximum hoop stress occurs at r = b, rather than r = a, because of sig-
nificantly increased material stiffness of the outer portion of the disk. The stress components
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Fig. 10 The variation of the (a) radial, and (b) circumferential stress under external pressure q in the case
b = 2.5a = 25h and m = 0.5

Fig. 11 The variation of the (a) radial displacement, and (b) circumferential stress under external pressure q

in the case b = 2.5a = 25h and m = 2

σz and σzr remain orders of magnitude smaller than the applied stress q and the maximum
hoop stress.

The numerical study also reveals that for a fixed ratio b/a and a fixed nonuniformity pa-
rameter m, the discrepancy between the three-dimensional and the plane stress calculations,
as well as the magnitude of σz and σzr stresses, is smaller for the thinner disks (smaller h/a

ratio). The same trend is observed for disks with different ratio b/a and different param-
eter m, but the same ratio E(b)/E(a) = (b/a)m: the plane stress approximation is better
for a disk with smaller ratio h/(b − a). Figures 12 and 13 show the results for a thick disk
with b = 2.5a = 5h and m = −2. The adopted finite difference mesh was 360 × 60. The
radial and circumferential stresses are observably non-constant across the height of the disk,
although still only mildly different from the constant values predicted by the plane stress
model (Fig. 13). The r-variation of the radial and circumferential stress is close to that pre-
dicted by the plane stress model. The finite difference solution yields the maximum shear
stress σ max

zr = 0.287q to be almost 30% of the applied stress q , but less than 6% of the
maximum hoop stress σ max

θ = 4.986q (Fig. 12).



V.A. Lubarda

Fig. 12 The variation of all four stress components along the horizontal section z = h/4 in a thick disk with
b = 2.5a = 5h and m = −2, due to external tension q

Fig. 13 The variation of (a) radial, and (b) circumferential stress along the vertical section r = (b − a)/2 in
a thick disk with b = 2.5a = 5h and m = −2, due to external tension q

A.2 Generalized Plane Stress

The average shear stress over the height of the disk vanishes (σ̄zr = 0), because σzr(r, z)

must be an odd function of z, by the symmetry considerations. Since σz(r, z) must be an
even function of z, the average normal stress σ̄z does not vanish. Nonetheless, by taking the



On Pressurized Curvilinearly Orthotropic Circular Disk, Cylinder

averages in (A.7), the second equation is identically satisfied, while the first becomes

∂σ̄r

∂r
+ 1

r
(σ̄r − σ̄θ ) = 0. (A.13)

Similarly, by taking the averages in (A.5), the first equation gives

r
∂ε̄θ

∂r
+ ε̄θ − ε̄r = 0, (A.14)

where ε̄r = ∂ū/∂r and ε̄θ = ū/r . It is noted that u is an even, while w is an odd function of
z, so that w̄ = 0 and ε̄z = 2w(r,h/2)/h. By integrating the second equation in (A.5) over
the height h of the disk, we obtain

r

∫ h/2

−h/2

∂2εθ

∂z2
dz =

∫ h/2

−h/2

∂2u

∂z2
dz =

[
∂u(r, z)

∂z

]
z=h/2

−
[

∂u(r, z)

∂z

]
z=−h/2

, (A.15)

∂

∂r

∫ h/2

−h/2
εz dz = ∂

∂r

∫ h/2

−h/2

∂w

∂z
dz = ∂w(r,h/2)

∂r
− ∂w(r,−h/2)

∂r
, (A.16)

so that their sum is

r

∫ h/2

−h/2

∂2εθ

∂z2
dz + ∂

∂r

∫ h/2

−h/2
εz dz = 2

[
εzr (r, h/2) − εzr (r,−h/2)

]
. (A.17)

The integration of the remaining term on the right-hand side of (A.5)2 gives

−2
∫ h/2

−h/2

∂εzr

∂z
dz = −2

[
εzr (r, h/2) − εzr (r,−h/2)

]
. (A.18)

The last two expressions add to zero. Therefore, although the compatibility condition (A.5)2

is not satisfied locally, at every point (r, z), the average of the incompatibility component Lr

over the height of the disk vanishes at every r , i.e.,

L̄r = 1

h

∫ h/2

−h/2
Lr dz = 0, Lr = r

∂2εθ

∂z2
+ ∂εz

∂r
− 2

∂εzr

∂z
, (A.19)

supporting the plane stress modeling of sufficiently thin disks.

Appendix B: Generalized Plane Strain

A long pressurized hollow cylinder is considered with the longitudinal stress σz at two ends
adjusted so that εz = ε0

z = const. �= 0, giving rise to longitudinal displacement w = ε0
z z. The

radial component of displacement depends on the radial distance only, u = u(r), and by
symmetry v = 0. These assumptions lead to the exact solution, with the stress components
σr , σθ , and σz dependent on r only, while the other stress components vanish (σzr = σrθ =
σθz). In the case of a cylindrically anisotropic but uniform material, the solution can be found
in [30] and [3].
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The stress-strain relations of the orthotropic, radially nonuniform generalized plane strain
problem are

εr = 1

Eθ

(ασr − βσθ) − νzrε
0
z ,

εθ = 1

Eθ

(γ σθ − βσr) − νzθ ε
0
z ,

(B.1)

where εr = du/dr and εθ = u/r . The longitudinal stress is

σz = Ezε
0
z + νzrσr + νzθσθ . (B.2)

The inverted form of (B.1) is

σr = Eθ

αγ − β2

[
γ εr + βεθ + (γ νzr + βνzθ )ε

0
z

]
,

σθ = Eθ

αγ − β2

[
βεr + αεθ + (βνzr + ανzθ )ε

0
z

]
.

(B.3)

The equilibrium equation and the Saint-Venant compatibility condition are

dσr

dr
+ σr − σθ

r
= 0,

dεθ

dr
+ εθ − εr

r
= 0. (B.4)

The corresponding Beltrami–Michell compatibility condition is

dσθ

dr
+ 1

r

[
(1 − m)σθ − ϕσr

] = νzθ − νzr

γ
Eθ

ε0
z

r
, (B.5)

where

ϕ = α − mβ

γ
= k(1 − νrzνzr ) − m(νθr + νθzνzr )

1 − νθzνzθ

. (B.6)

Together, (B.4) with (B.5), give the differential equation for the radial stress,

r2 d2σr

dr2
+ (3 − m)r

dσr

dr
+ (1 − m − ϕ)σr = νzθ − νzr

γ
Eθε

0
z . (B.7)

The general solution of this nonhomogeneous second-order differential equation is

σr = Ar−n1 + Br−n2 + η0Eθε
0
z , η0 = νzθ − νzr

γ (1 − m − ϕ)
, (B.8)

where A and B are integration constants, and

n1,2 = 1

2
(2 − m ∓ s), s = (

m2 + 4ϕ
)1/2

. (B.9)

The accompanying circumferential stress is

σθ = (1 − n1)Ar−n1 + (1 − n2)Br−n2 + η0Eθε
0
z . (B.10)
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Having established the expression (B.8) and (B.10) for the radial and hoop stress, the
longitudinal stress can be determined from (B.2). The result is

σz = G0ε
0
z + g1Ar−n1 + g2Br−n2 , (B.11)

where

g1 = νzr +νzθ (1−n1), g2 = νzr +νzθ (1−n2), G0 = Ez +η0Eθ(νzr +νzθ ). (B.12)

Finally, the displacement is deduced from the circumferential strain as u = rεθ , where the
hoop strain εθ is determined from the second of (B.3), and the expressions (B.8) and (B.10).
This gives

u = b

Eb
θ

(
b

r

)m−1(
η1Ar−n1 + η2Br−n2

) + [
(γ − β)η0 − νzθ

]
ε0
z r, (B.13)

with the parameters η1 = γ (1 − n1) − β and η2 = γ (1 − n2) − β .
The total force at the end of the cylinder (or any cross section z = const.) is calculated

from

Fz = 2π

∫ b

a

σzr dr, (B.14)

which gives

Fz = π
(
b2 − a2

)
G0ε

0
z + 2πg1A

2 − n1

(
b2−n1 − a2−n1

) + 2πg2B

2 − n2

(
b2−n2 − a2−n2

)
. (B.15)

If it is required that this force is equal to zero, the longitudinal strain must be such that

G0ε
0
z = − 2

b2 − a2

[
g1A

2 − n1

(
b2−n1 − a2−n1

) + g2B

2 − n2

(
b2−n2 − a2−n2

)]
. (B.16)

Appendix C: Positive-definiteness of (5.3)

In this appendix we prove the positive-definiteness of the left-hand sides in (5.3). For a disk,
the inequality to prove is

m2 − 4mνθr + 4k > 0, (C.1)

subject to the condition that |νθr | < k1/2. If m > 0, it is sufficient to prove that (C.1) holds
for νθr = k1/2. This is obviously the case, because

m2 − 4mk1/2 + 4k = (
m − 2k1/2

)2
> 0. (C.2)

If m < 0, it is sufficient to prove that (C.1) holds for νθr = −k1/2. This is so, because

m2 + 4mk1/2 + 4k = (
m + 2k1/2

)2
> 0. (C.3)

For a sphere, the inequality to prove is

(1 + m)2(1 − νφθ ) − 8(1 + m)νθr + 8k > 0, (C.4)
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subject to the conditions imposed by the positive-definiteness of the strain energy,

−k1/2 < νθr < k1/2, 1 − νφθ > 2
ν2

θr

k
. (C.5)

In view of (C.5), it is sufficient to prove that (C.4) holds for 1 − νφθ = 2ν2
θr/k. This is so,

because in this case (C.4) can be recast as[
(1 + m)νθr − 2k

]2
> 0. (C.6)

A general proof of the third inequality in (5.3), corresponding to a nonuniform cylindri-
cally anisotropic cylinder,

m2(1 − νθzνzθ ) − 4m(νθr + νθzνzr ) + 4k(1 − νrzνzr ) > 0, (C.7)

is more difficult, but the proves in three important special cases can be readily constructed.
For a uniform anisotropic cylinder (m = 0), the inequality (C.7) reduces to

4k(1 − νrzνzr ) > 0, (C.8)

which holds because 0 < νrzνzr < 1. For a nonuniform (m �= 0), but isotropic (k = 1) cylin-
der, the inequality (C.7) reduces to

m2 − 4m
ν

1 − ν
+ 4 > 0, (C.9)

subject to the condition

0 <
ν

1 − ν
< 1, (C.10)

because 0 < ν < 1/2. If m > 0, it is sufficient to prove that (C.9) holds for ν = 1. This is
the case because (m − 2)2 > 0. If m < 0, it is sufficient to prove that (C.9) holds for ν = 0,
which is the case because m2 + 4 > 0.

Finally, if the cylinder is locally transversely isotropic, with the axis of local isotropy
parallel to the z-axis, then k = 1, νrθ = νθr , νθz = νrz, and νzθ = νzr . The inequality to prove
is then

m2(1 − νθzνzθ ) − 4m(νθr + νθzνzθ ) + 4k(1 − νθzνzθ ) > 0. (C.11)

The positive-definiteness of the strain energy in this case requires that −1 < νθr < 1,
0 < νθzνzθ < 1, and (1 − νθr ) > 2νθzνzθ . The latest inequality can be rewritten in a more
convenient form as

1 − νθzνzθ > νθr + νθzνzθ . (C.12)

If m > 0, it is sufficient to prove that (C.11) holds for 1 − νθzνzθ = νθr + νθzνzθ . This is the
case, because (C.11) can then be recast as

(1 − νθzνzθ )(m − 2)2 > 0, (C.13)

which is positive because νθzνzθ < 1. If m < 0, (C.11) holds because it can be rewritten as

(1 − νθzνzθ )(m − 2)2 − 4m(1 + νθr ) > 0, (C.14)

which is positive, because νθr > −1 and νθzνzθ < 1.
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