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ABSTRACT
Recursive formulas are derived for the determination of the curvature and
internal stresses in a uniformly heated multilayer strip made of n perfectly
bonded isotropic layers in terms of the curvature and stresses in the strip
with n� 1 bonded layers. This is accomplished by reducing the problem to
solving two linear algebraic equations for two unknowns, the curvature of
the strip and the axial force in the nth layer, from which all other forces,
moments, and stresses readily follow. The presented analysis complements
the authors’ previous analysis which is based on a developed matrix algo-
rithm for the simultaneous determination of the curvature and stresses in
all layers. The derived formulas are applied to trilayer and quadralayer
strips. Simple expressions are obtained in the case when all layers have
equal thicknesses and equal moduli of elasticity.
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1. Introduction

The determination of the curvature and internal stresses in a multilayer strip due to a uniform
change of its temperature has received considerable attention in the literature. The early work for
a bilayer metallic strip, with application to buckling analysis of bimetal termostats, was done in
[1]. The subsequent generalization to thermally loaded trilayer and multilayer thermostats was
given in [2, 3] and, with included analysis of interface stresses and edge effects in [5, 6].
Numerous other contributions to the analysis of multilayer strips subjected to uniform heating,
electric field, and hydration have followed, motivated to large extent by the design of piezoelectric
and hygromorphic actuators and other devices of MEMS and bioengineering technology [7–9];
representative references were listed and commented upon in our preceding paper [10]. A num-
ber of books and monographs on composite materials also address in great detail the determin-
ation of deformation and stresses in multilayer strips, particularly in structurally important cross-
ply and angle-ply laminates subjected to in-plane and bending loads and/or a temperature and
moisture change [11–17]. This general lamination theory is based on the anisotropic elasticity
and the Kirchhoff assumptions for stretching and bending of thin plates.

In our preceding paper, we presented a new matrix algorithm for determining the curvature
and internal stresses in isotropic multilayer strips, which complements the matrix algorithm from
the general lamination theory, and which is appealing due to its simplicity and fully explicit
form. In the present paper we present an alternative appealing approach to the determination of
curvature and internal stresses in uniformly heated multilayer strips, which is based on the recur-
sive formulas which express the curvature and internal stresses in the strip with n perfectly
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bonded layers in terms of the curvature and stresses in the strip with n� 1 layers. The use of the
recursive formulas is frequent in the analysis of various problems of engineering science and
applied physics, e.g., the multilayer reflectivity calculations [18], the calculation of absorptance,
reflectance, and transmittance of parallel surfaces [19], the modeling of the layered diffraction
gratings [20], the determination of multilayer magnetic structures by resonant x-ray magnetic
scattering [21], the kinematic and kinetic analysis of multibody systems such as robots [22], the
analysis of wave propagation in layered media [23], etc. In the approach adopted in our present
paper, it is assumed that the solution for the multilayer strip with n� 1 layers has already been
determined and that, based on that solution, the objective is to construct the solution for the
multilayer strip with n layers, obtained by attaching the nth layer to the top or bottom surface of
the pre-heated ðn� 1Þ-layer strip. Two equilibrium conditions and only one interface condition,
the strain continuity between the top surface of the ðn� 1Þ-layer strip and the bottom surface of
the added nth layer, are needed in this approach. The problem reduces to solving the system of
two linear algebraic equations for two unknowns, the curvature of the strip and the axial force in
the nth layer, from which all other forces and moments readily follow. The stresses in the first
n� 1 layers of the n-layer strip are expressed as the sum of the corresponding stresses in the
ðn� 1Þ-layer strip, and the additional stresses due to the attachment of the nth layer. This is con-
ceptually different approach from the matrix approach utilized in our previous paper, where the
multilayer strips were analyzed by considering simultaneously two equilibrium equations for the
entire strip and n� 1 interface conditions for the continuity of strain between all adjoining layers.
To illustrate the application of the derived recursive formulas, they are applied to the analysis of
trilayer and quadralayer strips. Particularly simple expressions are deduced for multilayers with
equal layer thicknesses and equal moduli of elasticity.

2. Bilayer strip under uniform temperature change

Figure 1 shows a bilayer strip made of two perfectly bonded layers of rectangular cross sections
having the same width b and the heights h1 and h2. The thermoelastic properties of isotropic
layers are ðEi, ai, i ¼ 1, 2Þ, where E denotes the modulus of elasticity and a the coefficient of lin-
ear thermal expansion. If the strip is uniformly heated from the initial temperature T0 to the final
temperature T ¼ T0 þ DT, the self-equilibrating state of stress develops in the strip. Away from
the ends of the strip these stresses give rise to an axial force and a bending moment in the cross
section of each layer, which equilibrate each other (in the absence of external mechanical load),
and which are such that the compatibility (no slip) condition of equal strain along the bonded
interface between two layers is satisfied. Because of the presence of moments M1 and M2, the
layers of the strip bend in the vertical plane, such that

M 2½ �
1 ¼ E1I1

q 2½ � , M 2½ �
2 ¼ E2I2

q 2½ � , (2.1)

where q½2� is the radius of curvature of the strip. The superscript ½2� designates that the strip is a
bilayer strip. The bending stiffnesses of the layers are E1I1 and E2I2, where Ii ¼ bh3i =12 (i¼ 1, 2).

Figure 1. A segment of long bilayer strip away from its ends. The strip consists of two bonded layers with rectangular cross sec-
tions of width b and heights h1 and h2. The moduli of elasticity of two layers are E1 and E2, and their coefficients of thermal
expansion a1 and a2. The strip is subjected to uniform change of temperature DT: Because of their thermal expansion mismatch,
the layers stretch and bend. The corresponding axial forces (N1, N2) and bending moments (M1, M2) are self-equilibrating in each
cross section of the strip. The coordinates y1 and y2 are measured from the centroids of the cross sections of two layers.
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The Euler–Bernoulli assumption is adopted according to which the plane cross-sections of the
strip remain plane and become perpendicular to the curved axis of the strip. Denoting the axial
forces in the layers by N½2�

1 and N½2�
2 , the condition for the vanishing of the total longitudinal force

in the cross section of the strip is

N 2½ �
1 þ N 2½ �

2 ¼ 0: (2.2)

The condition for the vanishing total moment in the cross section of the strip is

M 2½ �
1 þM 2½ �

2 þ N 2½ �
1

h1 þ h2
2

¼ 0: (2.3)

The remaining equation for determining the five unknown quantities ðq½2�,N½2�
1 ,N½2�

2 ,M½2�
1 ,M½2�

2 Þ is
obtained from the interface condition which requires that the longitudinal strain along the inter-
face is equal for both layers. This gives

a1DT þ N 2½ �
1

E1A1
� h1
2q 2½ � ¼ a2DT þ N 2½ �

2

E2A2
þ h2
2q 2½ � , (2.4)

where A1 ¼ bh1 and A2 ¼ bh2 are the cross-sectional areas of two layers. The curvature is
assumed to be concave upward, which is the case if a1 > a2: If not, the calculated value of q½2� is
negative, which means that the curvature is concave downward.

By substituting N½2�
1 ¼ �N½2�

2 from (2.2) into (2.4), we obtain

N 2½ �
2 ¼ bE1E2h1h2

E1h1 þ E2h2
ða1 � a2ÞDT � ðh1 þ h2Þ 1

2q 2½ �

� �
: (2.5)

The curvature 1=q½2� is obtained by substitution of (2.1) and (2.5) into (2.3),

1

q 2½ � ¼
6E1E2h1h2ðh1 þ h2Þða1 � a2ÞDT

ðE1h1 þ E2h2ÞðE1h31 þ E2h32Þ þ 3E1E2h1h2ðh1 þ h2Þ2
, (2.6)

which was originally derived in [1]. The forces N½2�
1 and N ½2�

2 follow from (2.6) and (2.5), while
the moments M½2�

1 and M½2�
2 follow from (2.6) into (2.1). The longitudinal stresses in two layers

are determined from the beam formulas

r 2½ �
i ¼ N 2½ �

i

Ai
þM 2½ �

i

Ii
yi, � hi

2
� yi � hi

2
, ði ¼ 1, 2Þ, (2.7)

where y1 and y2 are the vertical coordinates from the centroids of the cross sections of two layers,
measured positive downwards. The curvature (2.6) and the stresses (2.7) are independent of the
width b.

Figure 2 shows the stress distribution across the thickness of the strip in the case when two
layers are from mild steel and copper (Figure 2a), or mild steel and brass (Figure 2b),

Figure 2. Stress distribution (in MPa) in a bilayer strip made of (a) mild steel and copper, and (b) mild steel and brass, due to
uniform rise of temperature DT ¼ 50

�
C: Thermoelastic properties used are: for mild steel, E¼ 180 GPa, a ¼ 1:25� 10�5 �

C�1;
for copper, E¼ 117 GPa, a ¼ 1:7� 10�5 �

C�1; and for brass, E¼ 105 GPa, a ¼ 1:9� 10�5 �
C�1:
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corresponding to the temperature rise of 50
�
C: The thicknesses of two layers are as shown, and

their thermoelastic properties are listed in the figure caption. Since brass has a higher value of
the coefficient of thermal expansion than copper, the magnitude of the radius of curvature in the
steel/brass bilayer is smaller than in the steel/copper bilayer (5.754m vs. 8.381m). The curvature
is negative in both cases because the steel layer, with a lower value of a, is placed below the cop-
per and brass layers. The thicknesses of the copper and brass layers in cases (a) and (b) are taken
to be the same for the sake of comparison. If one layer had a much smaller thickness than the
other layer, a thin layer (say, layer [1]) would be approximately under the state of uniform ten-
sion or compression, r1 ¼ �E1ða1 � a2ÞDT, the curvature of the strip would be very small, and
the stress in a thick layer would be much smaller than the stress in a thin layer. For example, if
h1 ¼ 0:01 mm and h2 ¼ 1:75 mm, with thermoelastic properties as in the caption of Figure 2, the
stresses are r1 � 39:1 MPa, r2ðh2=2Þ ¼ �0:9 MPa, r2ð�h2=2Þ ¼ 0:45 MPa, while the radius of
curvature is q½2� ¼ �151:8 m (the negative sign indicating the concave downward curvature).

For the derivation in section 3, the expression for the longitudinal strain at the top of the layer
½2� is

� 2½ �
þ ¼ a2DT þ N 2½ �

2

E2A2
� h2
2q 2½ � : (2.8)

2.1. Bilayer with equal layer thickness and modulus of elasticity

If E1 ¼ E2 ¼ E and h1 ¼ h2 ¼ H½2�=2, where H½2� is the total height of a bilayer strip, it readily
follows from (2.5) and (2.6) that

N 2½ �
2 ¼ EbH 2½ �

16
ða1 � a2ÞDT, 1

q 2½ � ¼
3

2H 2½ �
ða1 � a2ÞDT, (2.9)

while, from (2.8),

� 2½ �
þ ¼ 1

2
ða1 þ a2ÞDT � H 2½ �

2q 2½ � ¼
1
4
ð5a2 � a1ÞDT: (2.10)

The bending moments are

M 2½ �
1 ¼ M 2½ �

2 ¼
EbH2

2½ �
64

ða1 � a2ÞDT: (2.11)

The stresses at the top and bottom of each layer readily follow from (2.7), and are given by

r 2½ �top
1 ¼ �E

2
ða1 � a2ÞDT, r 2½ �bott

1 ¼ E
4
ða1 � a2ÞDT,

r 2½ �top
2 ¼ �E

4
ða1 � a2ÞDT, r 2½ �bott

2 ¼ E
2
ða1 � a2ÞDT:

(2.12)

These results will be used in the sequel.

3. Trilayer strip

Figure 3 shows a trilayer strip made of three bonded layers with rectangular cross sections whose
width is b and heights h1, h2, and h3. The moduli of elasticity of the layers are E1, E2, and E2,
and their coefficients of thermal expansion are a1, a2, and a3. The strip is subjected to uniform
change of temperature DT: Away from the ends of the strip, the layers are under axial forces
ðN1,N2,N3Þ and bending moments ðM1,M2,M3Þ, which are self-equilibrating in each cross sec-
tion of the strip. The direct determination of these forces and moments by imposing the
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equilibrium conditions of zero resulting axial force and zero resulting bending moment in the
cross section of the strip, and two interface conditions of equal longitudinal strain between the
layers ½1� and ½2�, and the layers ½2� and ½3�, has been reviewed and elaborated upon in our previ-
ous paper [10]. In this paper, we follow an alternative approach and consider a trilayer strip to
be made by attaching the layer ½3� to a bonded bilayer strip, consisting of layers ½1� and ½2�
(shown shaded in Figure 4a), which has already been subjected to the temperature change DT
and which is thus under the state of internal stress r½2�i (i¼ 1, 2), determined in Section 2 of this
paper. Upon bonding of the layer ½3� to preheated bilayer strip, the temperature of the layer ½3� is
imagined to be changed by DT: Due to thermal mismatch, this produces stresses in the layer ½3�
and the additional stresses in the bilayer strip. The stresses in the layer ½3� are statically equivalent
to axial force N½3�

3 and bending moment M½3�
3 , while the additional stresses in the bonded bilayer

are statically equivalent to axial force N½3�
� and bending moment M½3�

� : The axial force N½3�
� acts at

the centroid of the transformed cross section of the bilayer, shown in Figure 4c. The transform-
ation is made by changing the width of the layer ½2� from b to e2b, where e2 ¼ E2=E1, and by
taking its modulus of elasticity to be equal to E1, thus preserving the bending stiffness of the layer
½2�: This homogenization of the bilayer simplifies the subsequent analysis, and is a well-known
procedure from bending analysis of composite beams [24]. The forces ðN½3�

3 ,N ½3�
� Þ and moments

ðM½3�
3 ,M½3�

� Þ are determined by imposing the equilibrium conditions and the interface condition.
The equilibrium conditions require that the forces and moments in each cross section of the strip
must be self-equilibrating, i.e.,

N 3½ �
3 þ N 3½ �

� ¼ 0, (3.1)

M 3½ �
3 þM 3½ �

� � N 3½ �
3 g3 � g 3½ �

�
� �

¼ 0: (3.2)

In (3.2), g3 specifies the centroid of the cross section of the layer ½3�,

g3 ¼ h1 þ h2 þ h3
2
, (3.3)

Figure 4. (a) A trilayer strip is made by attaching a layer ½3� to the bonded bilayer, consisting of layers ½1� and ½2�, which have
already experienced the temperature change DT and are under the corresponding states of internal stress. The temperature of
the layer ½3� is then changed by DT: To fulfill the bonded interface condition, the layer ½3� experiences the axial force N½3�

3 and
the bending moment M½3�

3 , while the bonded bilayer experiences the axial force N½3�
� and the bending moment M½3�

� : (b) The cross
section of the trilayer strip. (c) The transformed cross section of the bilayer portion of the strip is obtained by changing the width
of the layer ½2� from b to e2b, where e2 ¼ E2=E1: The coordinate g� specifies the centroid of the transformed cross section.

Figure 3. A trilayer strip made of three bonded layers of rectangular cross sections of width b and heights h1, h2, and h3. The
moduli of elasticity of three layers are E1, E2, and E3, and their coefficients of thermal expansion a1, a2, and a3. The strip is sub-
jected to uniform change of temperature DT: Away from the ends of the strip, the layers are under axial forces ðN1,N2,N3Þ and
bending moments ðM1,M2,M3Þ, which are self-equilibrating in each cross section of the strip.
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and g½3�� the centroid of the transformed cross section of the bilayer. The latter is determined
from

g 3½ �
� ¼ g1h1 þ g2e2h2

h1 þ e2h2
, (3.4)

where g1 and g2 specify the centroids of the cross sections of layers [1] and ½2�:
The moment in the layer ½3� is related to the curvature of the trilayer strip q½3� by

M 3½ �
3 ¼ E3I3

q 3½ � , I3 ¼ bh33
12

: (3.5)

On the other hand, the moment M½3�
� is related to q½3� by

M 3½ �
� ¼ E1I

3½ �
�

1

q 3½ � �
1

q 2½ �

� �
, (3.6)

because the pre-heated bilayer had a pre-curvature 1=q½2�, determined in section 2. The second
areal moment of the transformed cross section of the bilayer is

I 3½ �
� ¼ b

X2
i¼1

1
12

eih
3
i þ gi � g 3½ �

�
� �2

eihi

� �
, (3.7)

where e1 ¼ 1 and e2 ¼ E2=E1: By substituting (3.5) and (3.6) into (3.2), we obtain the first equa-
tion for q½3� and N ½3�

3 ,

E1I
3½ �
� þ E3I3

� � 1

q 3½ � � g3 � g 3½ �
�

� �
N 3½ �

3 ¼ E1I 3½ �
�

q 2½ � : (3.8)

The second equation for determining ðq½3�,N½3�
3 Þ is obtained from the bonded interface condi-

tion which requires that the longitudinal strain in the layer ½3� along the interface with the bilayer
is equal to that of the bilayer itself,

a3DT þ N 3½ �
3

E3A3
þ h3
2q 3½ � ¼ � 2½ �

þ þ N 3½ �
�

E1A
3½ �
�
�
M 3½ �

� h1 þ h2 � g 3½ �
�

� �
E1I

3½ �
�

, A3 ¼ bh3: (3.9)

This can be rewritten as

g3 � g 3½ �
�

� � 1

q 3½ � þ
1

E1A
3½ �
�
þ 1
E3A3

 !
N 3½ �

3 ¼ �a3DT þ � 2½ �
þ þ h1 þ h2 � g 3½ �

�
q 2½ � , (3.10)

which is the desired form of the second equation for the unknown quantities ðq½3�,N½3�
3 Þ:

To proceed, we conveniently introduce the parameters

d 3½ �
11 ¼ E1I

3½ �
� þ E3I3, d 3½ �

22 ¼ 1

E1A
3½ �
�
þ 1
E3A3

, d 3½ �
12 ¼ g3 � g 3½ �

� , (3.11)

g 3½ �
1 ¼ E1I 3½ �

�
q 2½ � , g 3½ �

2 ¼ �a3DT þ � 2½ �
þ þ h1 þ h2 � g 3½ �

�
q 2½ � , (3.12)

and rewrite Eqs. (3.8) and (3.10) as

d 3½ �
11

1

q 3½ � � d 3½ �
12N

3½ �
3 ¼ g 3½ �

1 ,

d 3½ �
12

1

q 3½ � þ d 3½ �
22N

3½ �
3 ¼ g 3½ �

2 :
(3.13)
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The solution to this system of two linear algebraic equations for 1=q½3� and N½3�
3 is

1

q 3½ � ¼
g 3½ �
1 d 3½ �

22 þ g 3½ �
2 d 3½ �

12

d 3½ �
11d

3½ �
22 þ d 3½ �2

12

, N 3½ �
3 ¼ g 3½ �

2 d 3½ �
11 � g 3½ �

1 d 3½ �
12

d 3½ �
11d

3½ �
22 þ d 3½ �2

12

: (3.14)

The strain at the top of the layer ½3� is

� 3½ �
þ ¼ a3DT þ N 3½ �

3

E3A3
� h3
2q 3½ � : (3.15)

The stresses in all three layers can now be determined from

r 3½ �
i ¼ r 2½ �

i þ Ei
E1

N 3½ �
�

A 3½ �
�

þM 3½ �
�

I 3½ �
�

y 3½ �
 !

, ði ¼ 1, 2Þ,

r 3½ �
3 ¼ N 3½ �

3

A3
þM 3½ �

3

I3
y3,

(3.16)

where, from (3.5) and (3.6),

N 3½ �
� ¼ �N 3½ �

3 ,
M 3½ �

�
I 3½ �
�

¼ E1
1

q 3½ � �
1

q 2½ �

� �
,

M 3½ �
3

I3
¼ E3

q 3½ � : (3.17)

The coordinates yi shown in Figure 4b are related to the coordinate y½3� (denoted in Figure 4c
simply as y), emanating from the centroid of the transformed cross section, by

yi ¼ y 3½ � þ gi � g 3½ �
� , ði ¼ 1, 2Þ: (3.18)

Thus, the stress expressions (3.16) can be rewritten as

r 3½ �
i ¼ r 2½ �

i þ Ei
E1

N 3½ �
�

A 3½ �
�

þM 3½ �
�

I 3½ �
�

yi � gi þ g 3½ �
�

� �" #
, � hi

2
� yi � hi

2
, ði ¼ 1, 2Þ,

r 3½ �
3 ¼ N 3½ �

3

A3
þM 3½ �

3

I3
y3, � h3

2
� y3 � h3

2
,

(3.19)

3.1. Expressions for ðN½3�
i , M½3�

i Þ
One can easily determine ðN½3�

i ,M½3�
i Þ for i¼ 1, 2 by the integration from stresses (3.19). It follows

that

N 3½ �
i ¼ ÐAi

r 3½ �
i dAi ¼ N 2½ �

i þ EiAi

E1

N 3½ �
�

A 3½ �
�

þM 3½ �
�

I 3½ �
�

g 3½ �
� � gi

� �" #
,

M 3½ �
i ¼ ÐAi

r 3½ �
i yi dAi ¼ M 2½ �

i þ EiIi

E1I
3½ �
�

M 3½ �
� , ði ¼ 1, 2Þ:

(3.20)

The difference g½3�� � gi specifies the distance between the centroid of the transformed cross
section and the centroid of the ith layer.

Note that, once q½3� has been determined, the moments in all three layers can be also deter-
mined directly from

M 3½ �
i ¼ EiIi

q 3½ � , ði ¼ 1, 2, 3Þ: (3.21)
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Furthermore, once N½3�
3 and ðM½3�

1 ,M½3�
2 ,M½3�

3 Þ have been determined, the expressions for the
forces N½3�

1 and N½3�
2 can be obtained from the equilibrium conditions applied to the original tri-

layer configuration shown in Figure 3, i.e.,

N 3½ �
1 þ N 3½ �

2 þ N 3½ �
3 ¼ 0,

N 3½ �
1

h1 þ h2
2

� N 3½ �
3

h2 þ h3
2

þM 3½ �
1 þM 3½ �

2 þM 3½ �
3 ¼ 0:

(3.22)

This gives

N 3½ �
1 ¼ h2 þ h3

h1 þ h2
N 3½ �

3 � 2
h1 þ h2

M 3½ �
1 þM 3½ �

2 þM 3½ �
3

� �
,

N 3½ �
2 ¼ � h1 þ 2h2 þ h3

h1 þ h2
N 3½ �

3 þ 2
h1 þ h2

M 3½ �
1 þM 3½ �

2 þM 3½ �
3

� �
:

(3.23)

The corresponding stress expressions, alternative to (3.19), are

r 3½ �
i ¼ N 3½ �

i

Ai
þM 3½ �

i

Ii
yi, ði ¼ 1, 2, 3Þ: (3.24)

3.2. Numerical example

Stress distribution across the thickness of a trilayer strip, determined from expressions (3.19), is
shown in Figure 5. In part (a) of this figure, a trilayer strip is made by bonding an aluminum
layer of thickness h1 ¼ 2 mm to a brass layer of thickness h2 ¼ 1:75 mm, and a brass layer to a
copper layer of thickness h3 ¼ 1:5 mm. The width of the strip is b¼ 25mm. The uniform tem-
perature rise is DT ¼ 50

�
C: Thermoelastic properties used for aluminum are: E¼ 69GPa, a ¼

2:4� 10�5 �
C�1; for brass: E¼ 105GPa, a ¼ 1:9� 10�5 �

C�1; and for copper: E¼ 117GPa, a ¼
1:7� 10�5 �

C�1: The geometric properties of the transformed cross section of the aluminum/
brass bilayer are g½3�� ¼ 2:1 mm, I½3�� ¼ 134 mm4, and A½3�

� ¼ 116:6 mm2, while q½2� ¼ 10:02 m
and �

½2�
þ ¼ 8:9� 10�4: The solution to the system of equations (3.13) is N½3�

3 ¼ �16:55 N and
q½3�3 ¼ 11:4 m, while the moments are M½3�

3 ¼ 72:2 Nmm and M½3�
� ¼ �112:4 Nmm. The forces

and moments in other layers were calculated by using (3.20), and they are N½3�
1 ¼ �161:46 N,

N½3�
2 ¼ 178:01 N, M½3�

1 ¼ 100:9 Nmm, and M½3�
2 ¼ 102:8 Nmm. The longitudinal strain at the top

of the trilayer is �½3�þ ¼ 7:81� 10�4, as determined from (3.15).

Figure 5. (a) Stress distribution across the thickness of a trilayer strip made of an aluminum layer of thickness h1 ¼ 2 mm, a
brass layer of thickness h2 ¼ 1:75 mm, and a copper layer of thickness h3 ¼ 1:5 mm, corresponding to uniform temperature rise
DT ¼ 50

�
C: (b) Stress distribution for a trilayer in which the copper layer is placed below the aluminum/brass bilayer, rather

than above it, as in part (a).
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In Figure 5b the stress distribution is shown for a trilayer in which the copper layer is placed
below the aluminum/brass bilayer, rather than above it, as in Figure 5a. Because the aluminum
layer, which has the greatest value of the coefficient of thermal expansion, is now in the middle
of the strip, and the outer copper and brass layers have their coefficients of thermal expansion
not very different from each other, the self-equilibrating stress distribution is much closer to a
symmetric stress distribution, and the resulting curvature is consequently much smaller. Indeed,
in this case q½3�3 ¼ �44:38 m, corresponding to negative (concave downward) curvature, because
the bottom layer is copper with smaller value of a ¼ 1:7� 10�5 �

C�1 than a ¼ 1:9� 10�5�C�1 of
the brass layer at the top of the strip. The values of N½3�

� and M½3�
� are �342.9N and 1,005 Nmm,

respectively.

3.3. Trilayer with equal layer thickness and modulus of elasticity

If E1 ¼ E2 ¼ E3 ¼ E and h1 ¼ h2 ¼ h3 ¼ H½3�=3, where H½3� is the total height of a trilayer strip,
from (3.4) and (3.7) we obtain

g 3½ �
� ¼ H 3½ �

3
, I 3½ �

� ¼
2bH3

3½ �
81

, (3.25)

while, from (3.11),

d 3½ �
11 ¼

EbH3
3½ �

36
, d 3½ �

22 ¼ 9
2EbH 3½ �

, d 3½ �
12 ¼ H 3½ �

2
: (3.26)

Furthermore, from (2.9) and (2.10) with H½2� ¼ 2H½3�=3, we have

N 2½ �
2 ¼ EbH 3½ �

24
ða1 � a2ÞDT, 1

q 2½ � ¼
9

4H 3½ �
ða1 � a2ÞDT, (3.27)

and

� 2½ �
þ ¼ 1

4
ð5a2 � a1ÞDT: (3.28)

Consequently, from (3.12),

g 3½ �
1 ¼

EbH2
3½ �

18
ða1 � a2ÞDT, g 3½ �

2 ¼ 1
2
ða1 þ a2 � 2a3ÞDT: (3.29)

By substitution of (3.26) and (3.29) into (3.14), we then obtain

1

q 3½ � ¼
4

3H 3½ �
ða1 � a3ÞDT, N 3½ �

3 ¼ �EbH 3½ �
27

ða1 � 3a2 þ 2a3ÞDT: (3.30)

The strain at the top of the layer ½3� is, from (3.15) and (3.30),

� 3½ �
þ ¼ 1

3
ð�a1 þ a2 þ 3a3ÞDT: (3.31)

It is also noted that

1

q 3½ � �
1

q 2½ � ¼ � 1
12H 3½ �

ð11a1 � 27a2 þ 16a3ÞDT: (3.32)
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The stresses at the top and bottom of layers ½1� and ½2� are, from (3.19),

r 3½ �top
1 ¼ r 2½ �top

1 þ E
18

ða1 � 3a2 þ 2a3ÞDT ¼ � E
9
ð4a1 � 3a2 � a3ÞDT,

r 3½ �bott
1 ¼ r 2½ �bott

1 � E
12

ð3a1 � 7a2 þ 4a3ÞDT ¼ E
3
ða2 � a3ÞDT,

r 3½ �top
2 ¼ r 2½ �top

2 þ E
36

ð13a1 � 33a2 þ 20a3ÞDT ¼ E
9
ða1 � 6a2 þ 5a3ÞDT,

r 3½ �bott
2 ¼ r 2½ �bott

2 þ E
18

ða1 � 3a2 þ 2a3ÞDT ¼ E
9
ð5a1 � 6a2 þ a3ÞDT:

(3.33)

The stresses in the layer ½3� are

r 3½ �top
3 ¼ �E

3
ða1 � a2ÞDT, r 3½ �bott

3 ¼ E
9
ða1 þ 3a2 � 4a3ÞDT: (3.34)

The obtained stress expressions are identical to those in section 6.1 of [10], which were derived
in that paper by using the matrix algorithm developed by the consideration of all
layers separately.

4. Recursive formula for n 	 3

In this section we generalize the analysis from section 3 and derive recursive formulas for the
curvature and internal stresses in the multilayer strip with n layers in terms of the corresponding
quantities for the multilayer strip with n� 1 layers, without the nth layer. Figure 6 is the general-
ization of Figure 4. The nth layer is imagined to be attached to the multilayer strip with n� 1
layers (shown shaded in Figure 6a), which have already been subjected to the temperature change
DT and which are, thus, already under the states of internal stress r½n�1�

i (i ¼ 1, 2, :::, n� 1),
assumed to be determined previously. Upon bonding of the nth layer, the temperature of the layer
½n� is changed by DT, which produces stresses in the layer ½n� and the additional stresses in the
bonded ðn� 1Þ layers. The stresses in the layer ½n� are statically equivalent to axial force N ½n�

n and
bending moment M½n�

n , while the additional stresses in the ðn� 1Þ-multilayer strip are statically
equivalent to axial force N½n�

� and bending moment M½n�
� : The axial force N½n�

� acts at the centroid
of the transformed cross section of the ðn� 1Þ-multilayer strip, as sketched in Figure 6c. The
transformation is made by changing the width of the layer ½i� from b to eib, where ei ¼ Ei=E1,
and by taking its modulus of elasticity to be equal to E1, thus preserving the bending stiffness of
the layer ½i�, for each i ¼ 1, 2, :::, n� 1: The forces ðN½n�

n ,N½n�
� Þ and moments ðM½n�

n ,M½n�
� Þ are deter-

mined by imposing the equilibrium conditions and the interface condition. The equilibrium

Figure 6. (a) A multilayer strip is made by attaching the layer ½n� to a bonded strip consisting of n – 1 layers, which have already
experienced the temperature change DT and are under the corresponding state of internal stress. The temperature of the layer
½n� is subsequently changed by DT: To fulfill the bonded interface condition, the layer ½n� experiences the axial force N½n�

n and
the bending moment M½n�

n , while the bonded ðn� 1Þ-layer strip experiences the axial force N½n�
� and the bending moment M½n�

� :
(b) The cross section of the multilayer strip. (c) The transformed cross section of the ðn� 1Þ-layer strip is made by changing the
width of the layer ½i� from b to eib, where ei ¼ Ei=E1 (i ¼ 1, 2, :::, n� 1).
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conditions require that the forces and moments in each cross section of the entire n-layer strip
must be self-equilibrating, i.e.,

N n½ �
n þ N n½ �

� ¼ 0, (4.1)

while the condition for the vanishing total moment in the cross section of the strip is

M n½ �
n þM n½ �

� � N n½ �
n gn � g n½ �

�
� �

¼ 0: (4.2)

The coordinate gn specifies the centroid of the cross section of the nth layer,

gn ¼
Xn�1

i¼1

hi þ hn
2
, (4.3)

while g½n�� specifies the centroid of the transformed cross section, which is determined from

g n½ �
� ¼

Pn�1
i¼1 gieihiPn�1
i¼1 eihi

: (4.4)

The coordinates gi (i ¼ 1, 2, :::, n) specify the centroids of the cross sections of each layer.
The moment in the layer ½n� is related to the curvature of the n-layer strip q½n� by

M n½ �
n ¼ EnIn

q n½ � , In ¼ bh3n
12

: (4.5)

On the other hand, the moment M½n�
� is related to q½n� by

M n½ �
� ¼ E1I

n½ �
�

1
q n½ � �

1

q n�1½ �

� �
, (4.6)

in analogy to (3.6). The second areal moment of the transformed cross section of the
ðn� 1Þ-layer strip is

I n½ �
� ¼ b

Xn�1

i¼1

1
12

eih
3
i þ gi � g n½ �

�
� �2

eihi

� �
: (4.7)

By substituting (4.5) and (4.6) into (4.2), we obtain the first equation for q½n� and N½n�
n ,

E1I
n½ �
� þ EnIn

� � 1
q n½ � � gn � g n½ �

�
� �

N n½ �
n ¼ E1I

n½ �
�

q n�1½ � : (4.8)

The second equation for determining the unknown quantities ðq½n�,N½n�
n Þ is obtained from the

bonded interface condition which requires that the longitudinal strain in the layer ½n� along the
interface with the ðn� 1Þ-layer strip is equal to that of the ðn� 1Þ-layer strip itself, i.e.,

anDT þ N n½ �
n

EnAn
þ hn
2q n½ � ¼ � n�1½ �

þ þ N n½ �
�

E1A
n½ �
�

�
M n½ �

�
Pn�1

i¼1 hi � g n½ �
�

� �
E1I

n½ �
�

, An ¼ bhn, (4.9)

where

A n½ �
� ¼ b

Xn�1

i¼1

eihi, ei ¼ Ei
E1

, ði ¼ 1, 2, :::, n� 1Þ (4.10)

is the area of the transformed cross section. Expression (4.9) can be rewritten as

276 M. V. LUBARDA AND V. A. LUBARDA



gn � g n½ �
�

� � 1
q n½ � þ

1

E1A
n½ �
�

þ 1
EnAn

 !
N n½ �

n ¼ �anDT þ � n�1½ �
þ þ

Pn�1
i¼1 hi � g n½ �

�

q n�1½ � , (4.11)

which is the second equation for determining the unknown quantities ðq½n�,N½n�
n Þ:

As in section 3, we introduce the parameters

d n½ �
11 ¼ E1I

n½ �
� þ EnIn, d n½ �

22 ¼ 1

E1A
n½ �
�

þ 1
EnAn

, d n½ �
12 ¼ gn � g n½ �

� , (4.12)

g n½ �
1 ¼ E1I

n½ �
�

q n�1½ � , g n½ �
2 ¼ �anDT þ � n�1½ �

þ þ
Pn�1

i¼1 hi � g n½ �
�

q n�1½ � , (4.13)

and rewrite Eqs. (4.8) and (4.11) compactly as

d n½ �
11

1
q n½ � � d n½ �

12N
n½ �
n ¼ g n½ �

1 ,

d n½ �
12

1
q n½ � þ d n½ �

22N
n½ �
n ¼ g n½ �

2 :
(4.14)

The solution to this system of two linear algebraic equations for 1=q½n� and N½n�
n is

1
q n½ � ¼

g n½ �
1 d n½ �

22 þ g n½ �
2 d n½ �

12

d n½ �
11d

n½ �
22 þ d n½ �2

12

, N n½ �
n ¼ g n½ �

2 d n½ �
11 � g n½ �

1 d n½ �
12

d n½ �
11d

n½ �
22 þ d n½ �2

12

, (4.15)

The stresses in all layers can then be determined from

r n½ �
i ¼ r n�1½ �

i þ Ei
E1

N n½ �
�

A n½ �
�

þM n½ �
�

I n½ �
�

y n½ �
 !

, ði ¼ 1, 2, :::, n� 1Þ,

r n½ �
n ¼ N n½ �

n

An
þM n½ �

n

In
yn,

(4.16)

where, from (4.5) and (4.6),

N n½ �
� ¼ �N n½ �

n ,
M n½ �

�
I n½ �
�

¼ E1
1
q n½ � �

1

q n�1½ �

� �
,

M n½ �
n

In
¼ En

q n½ � : (4.17)

Furthermore, since by geometric considerations, the coordinates yi shown in Figure 6b are
related to the coordinate y½n� (denoted in Figure 6c simply as y), emanating from the centroid of
the transformed cross section, by

yi ¼ y n½ � þ gi � g n½ �
� , i ¼ 1, 2, :::, n� 1, (4.18)

the stress expressions (4.16) can be rewritten as

r n½ �
i ¼ r n�1½ �

i þ Ei
E1

N n½ �
�

A n½ �
�

þM n½ �
�

I n½ �
�

yi � gi þ g n½ �
�

� �" #
, � hi

2
� yi � hi

2
, ði ¼ 1, 2, :::, n� 1Þ,

r n½ �
n ¼ N n½ �

n

An
þM n½ �

n

In
yn, � hn

2
� yn � hn

2
:

(4.19)
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4.1. Expressions for ðN½n�
i , M½n�

i Þ
Similarly as in section 3, the axial forces and moments ðN ½n�

i ,M½n�
i Þ for i ¼ 1, 2, :::, n� 1 can be

determined by integration from stresses (4.19). The resulting expressions are

N n½ �
i ¼ ÐAi

r n½ �
i dAi ¼ N n�1½ �

i þ EiAi

E1

N n½ �
�

A n½ �
�

þM n½ �
�

I n½ �
�

g n½ �
� � gi

� �" #
,

M n½ �
i ¼ ÐAi

r n½ �
i yi dAi ¼ M n�1½ �

i þ EiIi

E1I
n½ �
�

M n½ �
� , ði ¼ 1, 2, :::, n� 1Þ:

(4.20)

Geometrically, g½n�� � gi is the distance between the centroid of the transformed cross section
and the centroid of the ith layer whose cross-sectional area is Ai.

Alternatively, once q½n� has been determined, the moments in all n layers can be determined
from

M n½ �
i ¼ EiIi

q n½ � , ði ¼ 1, 2, :::, nÞ: (4.21)

4.2. Numerical example

The formulas derived in this section are applied to determine the curvature and stresses in the
quadralayer strip obtained by attaching to the trilayer aluminum/brass/copper strip shown in
Figure 5a from section 3 the fourth layer, the 1mm-thick layer from mild steel, bonded to copper
layer, as shown in Figure 7. The thicknesses of other layers are hAl ¼ 2 mm, hbrass ¼ 1:75 mm,
and hCu ¼ 1:5 mm, and the width of all layers is b¼ 25mm. The thermoelastic properties of alu-
minum, brass, and copper are specified in the caption of Figure 5, while the thermoelastic proper-
ties of mild steel are E¼ 180GPa and a ¼ 1:25� 10�5 �

C�1: The uniform temperature rise in the
entire strip is DT ¼ 50

�
C: The curvature of the trilayer aluminum/brass/copper strip q½3� ¼ 11:4

m and the strain �
½3�
þ ¼ 7:8� 10�4 were determined in the example of section 3 corresponding to

Figure 5a. Geometric properties of the transformed cross section of the aluminum/brass/copper
trilayer (Figure 7c) are g½4�� ¼ 2:9 mm, I½4�� ¼ 389 mm4, and A½4�

� ¼ 180:2 mm2: From (4.13) we
then find N½4�

4 ¼ �N ½4�
� ¼ 193:2 N and q½4� ¼ 9:39 m, while the moments are M½4�

4 ¼ 40 Nmm and
M½4�

� ¼ 505 Nmm. The forces and moments in other individual layers are calculated by using
(4.18), and are N½4�

1 ¼ �89:8 N, N½4�
2 ¼ 111:2 N, N ½4�

3 ¼ �214:6 N, M½4�
1 ¼ 122:5 Nmm, M½4�

2 ¼
124:9 Nmm, and M½4�

3 ¼ 87:6 Nmm. The stress distribution along the hight of the quadralayer
strip is shown in Figure 8. By comparing the stress distributions in Figures 5a and 8 it is
observed that by adding the steel layer the maximum stresses in aluminum, brass, and copper

Figure 7. (a) A quadralayer strip is made by attaching the layer ½4� to a bonded trilayer, consisting of layers ½1�, ½2�, and ½3�,
which have already experienced the temperature change DT and are under the corresponding state of internal stress. The tem-
perature of the layer ½4� is subsequently changed by DT: The layer ½4� experiences the axial force N½4�

4 and the bending moment
M½4�

4 , while the bonded trilayer experiences the axial force N½4�
� and the bending moment M½4�

� : (b) The cross section of the quad-
ralayer strip. (c) The transformed cross section of the trilayer portion of the strip is made by changing the width of the layer ½i�
from b to eib, where ei ¼ Ei=E1 (i¼ 1, 2, 3).
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layers have increased, as expected because the curvature of the quadralayer strip 1=q½4� ¼
0:1065 m�1 has increased relative to the curvature of the trilayer strip 1=q½3� ¼ 0:0877 m�1 by
the addition of the 1mm-thick steel layer. Similar analysis can be performed by adding the steel
layer to the bottom of the trilayer aluminum/brass/copper strip. The details of this calculations
are similar to those from the example corresponding to Figure 5b in section 3 and are omitted
here. Other geometric aspects of the analysis can be addressed, such as the effects of the heights
of the layers on the curvature and stress. For example, if one layer is much thinner than the other
layers, the stress in that layer is approximately uniform (tension or compression). Indeed, if, in
the above example, the copper layer has the thickness h3 ¼ 0:1 mm, the radius of curvature of
the strip is q½4� ¼ 6:423 m, while r½4�3 ð�h3=2Þ ¼ �10:34 MPa and r½4�3 ðh3=2Þ ¼ �10:16 MPa. The
stresses in other three layers redistribute such that r½4�1 ð�h1=2Þ ¼ �11:34 MPa, r½4�1 ðh1=2Þ ¼ 10:15
MPa, r½4�2 ð�h2=2Þ ¼ �19:61 MPa, r½4�2 ðh2=2Þ ¼ 9 MPa, and r½4�4 ð�h4=2Þ ¼ �3:43 MPa,
r½4�4 ðh4=2Þ ¼ 24:6 MPa. The dominant effect on the response of a heated multilayer is still the
mismatch of thermal expansion coefficients between the layers, and by tuning them through
material selection and sequencing of the layers one can achieve the desired curvature and the
range of stresses produced by the given temperature change.

4.3. Multilayer with equal layer thickness and modulus of elasticity

If Ei ¼ E and hi ¼ H½n�=n for all i ¼ 1, 2, :::, n, where H½n� is the total height of the strip with n
layers, from (4.4) and (4.7) we obtain

g n½ �
� ¼ n� 1

2n
H n½ �, I n½ �

� ¼ ðn� 1Þ3
n3

bH3
n½ �

12
, A n½ �

� ¼ n� 1
n

bH n½ �, (4.22)

while, from (4.12) and (4.13), the parameters which appear in the system of linear algebraic equa-
tions (4.14) for 1=q½n� and N ½n�

n are

d n½ �
11 ¼ n2 � 3nþ 3

n2
EbH3

n½ �
12

, d n½ �
22 ¼ n2

n� 1
1

EbH n½ �
, d n½ �

12 ¼ H n½ �
2

, (4.23)

and

g n½ �
1 ¼ ðn� 1Þ3

n3
EbH3

n½ �
12

1

q n�1½ � , g n½ �
2 ¼ �anDT þ � n�1½ �

þ þ n� 1
2n

H n½ �
q n�1½ � , (4.24)

Figure 8. Stress distribution (in MPa) in a quadralayer strip made of aluminum, brass, copper, and mild steel due to uniform rise
of temperature DT ¼ 50

�
C: The thicknesses of the layers are as shown, while their thermoelastic properties are given in

the text.
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where �
½n�1�
þ and q½n�1� are known from the analysis of the ðn� 1Þ-layer strip.

For example, by using expressions for �½3�þ and q½3� from Section 3.3, we obtain for the quadra-
layer strip of height H½4�,

1

q 4½ � ¼
3

8H 4½ �
ð3a1 þ a2 � a3 � 3a4ÞDT, N 4½ �

4 ¼ �EbH 4½ �
64

ð5a1 � a2 � 7a3 þ 3a4Þ: (4.25)

Similarly, for a quintalayer strip of height H½5�, we have

1

q 5½ � ¼
12

25H 5½ �
ð2a1 þ a2 � a4 � 2a5ÞDT, N 5½ �

5 ¼ � EbH 5½ �
125

ð7a1 þ a2 � 5a3 � 6a4 þ 3a5Þ: (4.26)

5. Conclusions

We have derived in this paper the recursive formulas for the determination of the curvature and
internal stresses in thermally loaded multilayer strips which are made of isotropic perfectly
bonded layers with different coefficients of thermal expansion and different moduli of elasticity.
The width of all layers is assumed to be the same but their heights are different. The formulas
express the curvature and internal stresses in the strip with n perfectly bonded layers in terms of
the curvature and internal stresses in the strip with n� 1 layers. The latter are assumed to be
known. This is accomplished by performing the thermoelastic analysis of the process of heating
the nth layer attached to the top or bottom of the pre-heated ðn� 1Þ-layer strip. Two equilibrium
conditions and only one interface condition, the continuity of strain between the top surface of
the ðn� 1Þ-layer strip and the bottom surface of the added nth layer, are needed in this approach.
The problem is reduced to solving two linear algebraic equations for two unknowns, the curva-
ture of the strip and the axial force in the nth layer, from which all other forces and moments, as
well as stresses, readily follow. The stresses in the first n� 1 layers of the n-layer strip are
expressed as the sum of the stresses in the pre-heated ðn� 1Þ-layer strip and additional terms
due to the attached and heated nth layer. The derived formulas are applied to trilayer and quadra-
layer strips. Particularly simple expressions are deduced in the case when all layers have the same
thicknesses and the same moduli of elasticity. The presented analysis can be extended to piezo-
electric multilayers subjected to electric field and hygromorphic multilayers subjected to uniform
change of relative moisture, along similar lines to those used in our previous paper [10].
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