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ABSTRACT
An appealing matrix algorithm for calculating the curvature and internal
stresses in isotropic multilayer strips subjected to a uniform temperature
change is presented. An explicit representation of the effective stiffness
matrix is constructed for any number of layers, which is of central import-
ance in the development of the algorithm. Detailed results are given for
bi-, tri-, quadra-, quinta-, and septalayers. Closed-form expressions are
deduced for multilayer strips with equal thicknesses and equal elastic mod-
uli of all layers. The algorithm is extended to piezoelectric multilayers sub-
jected to an electric field, and hygromorph multilayers subjected to a
uniform change of relative moisture. The presented analysis complements
an alternative and more general analysis within the well-known anisotropic
lamination theory.
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1. Introduction

The objective of this article is to provide an explicit matrix algorithm for the determination of
the curvature and internal stresses in a multilayer strip, which consists of n perfectly bonded iso-
tropic layers with different thermoelastic properties, due to a uniform temperature change
throughout the strip. With an appropriate change of physical variables, the derived algorithm can
also be used to determine the curvature and internal stresses in a piezoelectric multilayer strip
due to an electric field and electrostriction effects of the layers, and in a hygromorphic multilayer
strip due to the change of relative humidity. The presented analysis is based on an extension of
the original bending analysis of bimetalic thermostats by Timoshenko [1], and its subsequent gen-
eralization to thermally loaded trilayer and multilayer thermostats by Vasudevan and Johnson
[2, 3]. It is also an extension of the analysis of multilayer piezoelectric microactuators by DeVoe
and Pisano [4], and the analysis of natural and artificial hygromorphs by Reyssat and Mahadevan
[5], and Holstov et al. [6]. The developed matrix algorithm for the determination of curvature
and internal stresses is appealing due to its simplicity and its explicit form. As such, it comple-
ments the matrix algorithms of the more general analysis of the cross-ply and angle-ply laminates
subjected to in-plane and bending loads and/or temperature and moisture change, which are
based on the anisotropic elasticity and Kirchhoff assumptions for bending of thin plates [7–16].

There have been numerous publications devoted to various aspects of elastic and inelastic ana-
lysis of laminar composites under external mechanical loading, as well as thermal, electric, and
hydration effects. An analysis of a thin composite plate made of piezothermoelastic layers sub-
jected to stationary thermal and electric fields was presented by Tauchert [17]. Various aspects of
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the analysis of interfacial stresses in bimetal thermostats and multilayer thin films were addressed
by Suhir [18–20]. A composite plate containing piezoceramics on both the upper and bottom sur-
faces was considered by Shen and Weng [21]. Wong and Wong [22] studied a printed circuit
board assembly modeled as a trilayer structure subjected to combined temperature and mechan-
ical loadings, taking into account the axial, shear, and flexural deformation of the interconnects.
Tibi et al. [23] presented an analytical and experimental study of the trilayer electro-thermal
actuators for thin and soft robotics. Multilayer piezoelectric elements for energy harvesting appli-
cations have been discussed by Safaei et al. [24]. Thermally induced deformations and stresses,
with an accent on fatigue considerations in the context of electronic packaging design, have been
discussed by Dasgupta [25]; additional design aspects of electronic packaging were addressed in
the handbook edited by Pecht [26]. Thermo-elastic-viscoplastic study of laminate metal-matrix
composites was reported by Avila and Tamma [27], and thermo-elastic-plastic analysis of com-
posite laminated plates under uniform and linearly varying temperature by Sayman and Sayman
[28], and Sayman [29]. The extension of the analysis of small-strain electrostriction to elastic
dielectrics undergoing large deformation was given by Zhao and Suo [30]. The dynamic analysis
of piezothermoelastic laminated plates was presented by Tang and Xu [31]. The edge effects in
multilayered panels integrated with piezoelectric actuator and sensor layers under thermal gradi-
ent loading were studied by Dhanesh and Santosh Kapuria [32]; for the finite element modeling,
see Reddy [33], and for an asymptotic analysis, Cheng and Batra [34]. The hygrothermal analysis
of multilayered composite plates by using finite elements was given by Cinefra et al. [35]. The
study of the swelling induced bending a functionally graded layer in the range of large deform-
ation was recently reported by Shojaeifard, Bayat, and Baghani [36], where the reference to other
related work in this area can be found.

The main contribution of the analysis presented in this article is the matrix algorithm for cal-
culating the curvature and internal stresses in multilayer strips due to thermal loading, piezoelec-
tric effect, or hydration. The development of this algorithm is enabled by the construction of an
explicit representation of the effective stiffness matrix ½C� of a multilayer strip. The expressions
for the curvature, axial forces and bending moments in all layers are derived from ½C� by the
matrix products with appropriate row and column vectors which account for the geometric and
thermoelastic properties of individual layers. This is described in Section 5 of the article. In the
preceding Sections 2–4, the results are given for a bilayer, trilayer, and quadralayer strip, which
greatly helps the construction of the effective stiffness matrix for a multilayer strip with an arbi-
trary number of layers (n). The analysis of a multilayer strip with equal thicknesses of all layers,
and with the modulus of elasticity of each layer taken to be the average of the actual elastic mod-
uli of all layers, is presented in Section 6. The resulting effective stiffness matrix in this case is
dependent only on the number of layers n. The corresponding curvature and stress expressions
are derived. The derived results for thermally loaded strips are then extended to piezoelectric
multilayer strips subjected to electric field, and to hygromorphic multilayer strips subjected to the
change of moisture content.

2. Bilayer strip under uniform temperature change

Figure 1 shows a bilayer strip consisting of two perfectly bonded beams of rectangular cross sec-
tion with widths b1 and b2 and heights h1 and h2. The layers are made of isotropic elastic materi-
als with thermoelastic properties ðEi, �i, ai, i ¼ 1, 2Þ, where E denotes the modulus of elasticity, �
the Poisson ratio of lateral contraction, and a the coefficient of linear thermal expansion. If the
strip is uniformly heated from the initial temperature T0 to the final temperature T ¼ T0 þ DT,
the self-equilibrating state of stress sets up in the strip. For example, if a1 > a2, the layer (1) can-
not elongate as it would if it was by itself, because of the constraining effect from the bonded
layer (2) with a lower value of a. As a result, the layer (1) is under a compressive longitudinal
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force, N1 ¼ �N, while the layer (2) is under a tensile force of the same magnitude. The two
opposite forces in an arbitrary cross section of the strip (away from the ends of the strip
z ¼ 6L=2) constitute a couple of the magnitude Nðh1 þ h2Þ=2: Thus, in order to achieve a self-
equilibrating state of stress in the cross section of the strip, the two layers must also carry the
internal bending moments M1 and M2 (Figure 1a), so that the net bending moment in the cross
section of the strip is identically equal to zero. Because of the presence of moments M1 and M2,
the two layers of the strip bend in the vertical plane, remaining bonded at the interface, such that
M1 ¼ E1I1=q1 and M2 ¼ E2I2=q2, where q1 is the radius of curvature of the longitudinal centroi-
dal axis of the layer (1), and q2 ¼ q1 � ðh1 þ h2Þ=2 is the radius of curvature of the longitudinal
centroidal axis of the layer (2). The bending stiffnesses of the layers are E1I1 and E2I2, where Ii ¼
bih3i =12ði ¼ 1, 2Þ: The Euler–Bernoulli assumption is adopted that plane cross-sections of the strip
remain plane and are perpendicular to the curved axis of the strip. Since small deformations of
the strip are considered, the radii of curvature are much larger than the height of the strip h1 þ
h2, and we adopt the approximation q2 � q1 ¼ q (q being loosely referred to as the radius of
curvature of the strip), so that the moment-curvature relations are

M1 ¼ E1I1
1
q
, M2 ¼ E2I2

1
q
: (2.1)

The net longitudinal force in each cross section of the strip must vanish, N1 þ N2 ¼ 0, while
the condition for the vanishing net moment in the cross section of the strip is

M1 þM2 þ N1
h1 þ h2

2
¼ 0: (2.2)

To complete the set of equations for determining the unknown quantities ðq,N1,N2,M1,M2Þ,
one imposes the bonded interface condition which requires that the longitudinal strain along the
interface is the same for both layers, i.e.,

a1DT þ N1

E1A1
� h1
2q

¼ a2DT þ N2

E2A2
þ h2
2q

, (2.3)

where Ai ¼ bihiði ¼ 1, 2Þ are the cross-sectional areas of the layers. The curvature is assumed to
be concave upward (for the opposite, concave downward curvature, the radius q would be for-
mally negative). By substituting N2 ¼ �N1 into (2.3), we obtain

Figure 1. A bilayer strip of length L, made by two bonded layers of rectangular cross sections of dimensions b1 � h1 and b2 �
h2: The moduli of elasticity of two layers are E1 and E2, and their coefficients of thermal expansion are a1 and a2. The strip is sub-
jected to uniform change of temperature DT: (a) At a distance l away from the two ends of the strip (l being approximately
equal to the larger side of the cross section of the strip), the layers are under self-equilibrating set of axial forces (N1, N2) and
bending moments (M1, M2). (b) The end of the strip of length l. Its left end is under axial forces (N1, N2) and bending moments
(M1, M2), while its right end is traction free. A multidimensional distribution of stress exist between these two ends.
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N1 ¼ c1c2
c

ða2 � a1ÞDT þ ðh1 þ h2Þ 1
2q

� �
, (2.4)

where c1 ¼ E1A1, c2 ¼ E2A2, and c ¼ c1 þ c2: In an approximate strength-of-materials type of
analysis, we do not require the continuity of the lateral strain along the interface in the direction
within the cross section of the strip, which would require the consideration of Poisson’s ratio of
two layers and multidimensional stress analysis. For long strips, this omission is not significantly
affecting the accuracy of the longitudinal internal stresses, orthogonal to the cross section of the
strip, obtained from a simplified analysis. If the widths of the layers are much larger than their
thicknesses, the plane strain approximation in the direction of the width (away from its ends) has
been adopted in some work, in which case the same analysis applies with the replacement of Ei
with Ei=ð1� �2i Þ and ai with aið1þ �iÞ [4]. If the width is comparable to the length, a configur-
ation of a thin rectangular plate is obtained with equal biaxial state of stress at the points of each
layer, and two equal curvatures of the deformed (spherical) shape of the plate. In this case Ei is
replaced with Ei=ð1� �iÞ, while ai remains unchanged [1].

To determine the curvature 1=q, we substitute (2.1) and (2.4) into (2.2). This gives the expres-
sion originally derived (for b1 ¼ b2) by Timoshenko (op. cit.), which, for the latter comparison
with thermal loading of multilayer strips, we write as

1
q
¼ 2p

q
DT, (2.5)

where

p ¼ c1c2ðh1 þ h2Þða1 � a2Þ, q ¼ 4ckþ c1c2ðh1 þ h2Þ2, (2.6)

and

k1 ¼ E1I1, k2 ¼ E2I2, k ¼ k1 þ k2 ¼ ðc1h21 þ c2h
2
2Þ=12: (2.7)

An equivalent expression for b1 6¼ b2 was originally given by Chu, Mehregany, and Mullen [37].
The force N1 follows by substitution of (2.5) into (2.4),

N1 ¼ 4c1c2k
a2 � a1

4ckþ c1c2ðh1 þ h2Þ2
DT, N2 ¼ �N1, (2.8)

while the moments M1 and M2 follow from (2.1) and (2.5) as

M1 ¼ k1
1
q
¼ 2k1

p
q

DT ¼ 2k1c1c2ðh1 þ h2Þða1 � a2Þ
4ckþ c1c2ðh1 þ h2Þ2

DT,

M2 ¼ k2
1
q
¼ 2k2

p
q

DT ¼ 2k2c1c2ðh1 þ h2Þða1 � a2Þ
4ckþ c1c2ðh1 þ h2Þ2

DT:
(2.9)

Having determined (N1, N2) and (M1, M2), the longitudinal stresses in two layers are deter-
mined from simple beam formulas

ri ¼ Ni

Ai
þMi

Ii
yi, ði ¼ 1, 2Þ, (2.10)

where y1 and y2 are the vertical coordinates from the centroids of the cross sections of two layers,
measured positive downwards.

The stress state near the traction-free ends of the strip z ¼ 6L=2 (Figure 1a) is multidimen-
sional and cannot be determined in closed form, but away from these ends, by the Saint-Venant’s
principle, expressions (2.10) predict the stress state sufficiently accurately. Note that neither
curvature nor stresses depend on b in the case of a bilayer strip of uniform width (b1 ¼ b2 ¼ b).
The analytical and numerical analysis of stresses near the ends of thermally loaded strips, particu-
larly shorter strips, which includes the determination of the shear and normal stresses along the
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interface, is of great importance for the study of interface strength and prevention of interface
cracking. The references in this regard, mostly in the context of layered electronic structures,
include Chen and Nelson [38], Chen, Cheng and Gerhardt [39], Suhir [18–20], Suo and
Hutchinson [40], Jiang et al. [41], Xie and Sitaraman [42], and Wen and Basaran [43]. Lee and
Jasiuk [44] investigated the asymptotic behavior of stresses at the interface near the edge of two
semi-infinite bimaterial strips under constant temperature change.

It may be of design interest to determine for which thickness ratio g ¼ h2=h1 the radius of
curvature is maximized in the case b1 ¼ b2, given the elastic moduli ratio e ¼ E2=E1 and thermal
expansion coefficients a1 and a2. Applying the stationary condition to (2.5) it readily follows that
this thickness ratio is the positive real root of the quintic polynomial

2e2g5 þ ð4þ 3eÞeg4 þ 8eg3 þ 2eg2 � 2g� 1 ¼ 0: (2.11)

For example, if E2 ¼ 2E1, the curvature is maximized if the second layer has the thickness
h2 ¼ 0:366h1; if E2 ¼ E1 the thickness is h2 ¼ 0:5h1, while h2 ¼ h1 for E2 ¼ 0:2E1: The normal-
ized curvature is plotted versus the thickness ratio h2=h1, for the three selected values of E2=E1,
in Figure 2a. Figure 2b shows the plot of the curvature maximizers ðh2=h1Þmax:curv: versus the elas-
tic moduli ratio E2=E1: For each pair of elastic moduli (E1, E2), the corresponding values of ther-
mal expansion ða1, a2Þ are assumed to be given. For bimetallic termostats, the copper/steel or
brass/steel layers are often used. The thermoelastic properties in this case are (ECu ¼ 117 GPa,
aCu ¼ 1:7� 10�5 K�1), (Ebrass ¼ 97 GPa, abrass ¼ 1:9� 10�5 K�1), (Esteel ¼ 180 GPa,
asteel ¼ 1:3� 10�5 K�1). In the case of copper/steel bimetallic strip (E2=E1 ¼ Esteel=ECu ¼ 1:5385)
it readily follows that maximum curvature is obtained for hsteel ¼ 0:412 hCu, while in the case of
brass/steel bimetallic strip (E2=E1 ¼ Esteel=Ebrass ¼ 1:8557) the maximum curvature is obtained for
hsteel ¼ 0:379 hbrass: If the temperature change is DT ¼ 100 K, the corresponding radii of curva-
ture are q ¼ 2, 607 hCu and q ¼ 1, 686 hbrass: If the length of a strip is L, the maximum deflection
in the middle of the strip, relative to the ends of the strip, is vmax ¼ L2=8q (ignoring the end
effects). One can also proceed to optimize the value of h2 by minimizing the maximum stress in
a bimetallic strip.

3. Trilayer strip

Figure 3 shows a strip made of three bonded layers. Away from their ends, the layers are under
internal forces and moments produced by a uniform temperature change DT throughout the
strip. The governing equations in each cross section of the strip are

Figure 2. (a) The normalized curvature q0=q vs. the thickness ratio h2=h1: The normalizing factor is 1=q0 ¼ ða1 � a2ÞDT=h1: (b)
The thickness ratio ðh2=h1Þmax:curv: which maximizes the curvature 1=q versus the elastic moduli ratio E2=E1:
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N1 þ N2 þ N3 ¼ 0, (3.1)

M1 þM2 þM3 þ N1
h1 þ 2h2 þ h3

2
þ N2

h2 þ h3
2

¼ 0: (3.2)

The interface conditions for equal longitudinal strains between the layers along two interfaces
are

a1DT þ N1

E1A1
� h1
2q

¼ a2DT þ N2

E2A2
þ h2
2q

,

a2DT þ N2

E2A2
� h2
2q

¼ a3DT � N1 þ N2

E3A3
þ h3
2q

,
(3.3)

where N3 ¼ �ðN1 þ N2Þ was used on the right-hand side of the second expression in (3.3). The
moment-curvature relations are

Mi ¼ ki
1
q
, ki ¼ EiIi, ði ¼ 1, 2, 3Þ: (3.4)

To proceed, it is convenient to cast the analysis in matrix form and, thus, we rewrite (3.3) as

1
c1

� 1
c2

1
c3

1
c2
þ 1
c3

2
6664

3
7775 � N1

N2

� �
¼ a2 � a1

a3 � a2

� �
DT þ h1 þ h2

h2 þ h3

� �
1
2q

, (3.5)

where ci ¼ EiAiði ¼ 1, 2, 3Þ are the axial stiffnesses of the layers. The matrix

D½ � ¼
1
c1

� 1
c2

1
c3

1
c2
þ 1
c3

2
6664

3
7775 (3.6)

can be viewed as an effective axial compliance matrix of the strip. Its inverse, the effective axial
stiffness matrix, is

C½ � ¼ D½ ��1 ¼ 1
c

c1ðc2 þ c3Þ c1c3

�c1c2 c2c3

2
4

3
5, c ¼ c1 þ c2 þ c3: (3.7)

Thus, from (3.5), it follows that

N1

N2

� �
¼ C½ � � a2 � a1

a3 � a2

� �
DT þ C½ � � h1 þ h2

h2 þ h3

� �
1
2q

: (3.8)

Figure 3. A trilayer strip made of three bonded layers of rectangular cross sections of dimensions b1 � h1, b2 � h2, and b3 �
h3: The moduli of elasticity of three layers are E1, E2, and E2, and their coefficients of thermal expansion are a1, a2, and a3. The
strip is subjected to uniform change of temperature DT: Away from the ends of the strip, the layers are under axial forces
ðN1,N2,N3Þ and bending moments ðM1,M2,M3Þ, which are self-equilibrating in each cross section of the strip.
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On the other hand, by substituting (3.4) into (3.2), we obtain

k
1
q
þ 1
2

h1 þ 2h2 þ h3 h2 þ h3
� � � N1

N2

� �
¼ 0, (3.9)

where k ¼ k1 þ k2 þ k3: After using (3.8) in (3.9), this becomes

kþ 1
4

h1 þ 2h2 þ h3 h2 þ h3
� � � C½ � � h1 þ h2

h2 þ h3

( ) !
1
q

¼ 1
2

h1 þ 2h2 þ h3 h2 þ h3
� � � C½ � � a1 � a2

a2 � a3

( )
DT:

(3.10)

Upon using (3.7) for the matrix ½C� and performing the needed matrix products, the following
expression for the curvature is obtained,

1
q
¼ 2p

q
DT, (3.11)

where

p ¼ c1 ðc2 þ c3Þðh1 þ h2Þ þ c3ðh2 þ h3Þ½ �ða1 � a2Þ þ c3 c1ðh1 þ h2Þ þ ðc1 þ c2Þðh2 þ h3Þ½ �ða2 � a3Þ,
(3.12)

q ¼ 4ckþ c1ðc2 þ c3Þðh1 þ h2Þ2 þ c3ðc1 þ c2Þðh2 þ h3Þ2 þ 2c1c3ðh1 þ h2Þðh2 þ h3Þ: (3.13)

Expression (3.11), with p and q defined by (3.12) and (3.13), represents an explicit trilayer strip
generalization of Timoshenko’s expression (2.5) for a thermally loaded bilayer strip. An equiva-
lent expression, in terms of the ratio of two four-by-four determinants, was obtained by
Vasudevan and Johnson [2] by applying the Cramer’s rule to the system of four linear algebraic
equations for four unknowns ðP1, P2, P3, 1=qÞ:

The forces N1 and N2 follow by substituting (3.11) into (3.8). This gives

N1

N2

8<
:

9=
; ¼ C½ � �

a2 � a1 þ p
q

ðh1 þ h2Þ

a3 � a2 þ p
q

ðh2 þ h3Þ

8>><
>>:

9>>=
>>;DT, (3.14)

i.e., after using (3.7) for the matrix ½C�,

N1 ¼ c1
c

�
ðc2 þ c3Þ a2 � a1 þ p

q
ðh1 þ h2Þ

� �
þ c3 a3 � a2 þ p

q
ðh2 þ h3Þ

� ��
DT, (3.15)

N2 ¼ c2
c

�
� c1 a2 � a1 þ p

q
ðh1 þ h2Þ

� �
þ c3 a3 � a2 þ p

q
ðh2 þ h3Þ

� ��
DT: (3.16)

The moments follow from (3.4) by using (3.11) and are given by

Mi ¼ 2ki
p
q

DT, ki ¼ EiIi, ði ¼ 1, 2, 3Þ: (3.17)

The stresses in the layers are

ri ¼ Ni

Ai
þMi

Ii
yi, ði ¼ 1, 2, 3Þ, (3.18)

where y1, y2, and y3 are the vertical coordinates from the centroids of the cross sections of the
three layers, measured positive downwards.
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If a trilayer is symmetric (E1 ¼ E3, a1 ¼ a3, h1 ¼ h3), it readily follows from (3.12) that p¼ 0,
i.e., there is no curvature and bending stresses in a symmetric strip loaded by uniform tempera-
ture change (1=q ¼ 0, Mi ¼ 0 for i¼ 1, 2, 3). The normal stress is entirely due to normal forces,
which are, from (3.15) and (3.16),

N1 ¼ N3 ¼ � c1c2
c

ða1 � a2Þ, N2 ¼ 2c1c2
c

ða1 � a2Þ, c ¼ 2c1 þ c2: (3.19)

4. Quadralayer strip

For the strip of four bonded layers, the governing equilibrium equations are

N1 þ N2 þ N3 þ N4 ¼ 0, (4.1)

M1 þM2 þM3 þM4 þ N1
h1 þ 2ðh2 þ h3Þ þ h4

2
þ N2

h2 þ 2h3 þ h4
2

þ N3
h3 þ h4

2
¼ 0: (4.2)

Since the moment-curvature relations are

Mi ¼ ki
1
q
, ki ¼ EiIi, ði ¼ 1, 2, 3, 4Þ, (4.3)

Equation (4.2) can be written in the matrix form as

k
1
q
¼ � 1

2
h1 þ 2ðh2 þ h3Þ þ h4 h2 þ 2h3 þ h4 h3 þ h4
� � � N1

N2

N3

8<
:

9=
;, k ¼

X4
i¼1

ki: (4.4)

The interface conditions for equal longitudinal strains between the layers along three interfa-
ces, expressed in the matrix form and incorporating the relationship N4 ¼ �ðN1 þ N2 þ N3Þ, are

1
c1

� 1
c2

0

0
1
c2

� 1
c3

1
c4

1
c4

1
c3
þ 1
c4

2
66666664

3
77777775
�

N1

N2

N3

8<
:

9=
; ¼

a2 � a1
a3 � a2
a4 � a3

8<
:

9=
;DT þ

h1 þ h2
h2 þ h3
h3 þ h4

8<
:

9=
; 1

2q
, (4.5)

where ci ¼ EiAiði ¼ 1, 2, 3, 4Þ: It can be readily shown that the inverse of the axial compliance matrix

D½ � ¼

1
c1

� 1
c2

0

0
1
c2

� 1
c3

1
c4

1
c4

1
c3
þ 1
c4

2
66666664

3
77777775

(4.6)

is

C½ � ¼ D½ ��1 ¼ 1
c

c1ðc2 þ c3 þ c4Þ c1ðc3 þ c4Þ c1c4

�c1c2 c2ðc3 þ c4Þ c2c4

�c1c3 �c3ðc1 þ c2Þ c3c4

2
66664

3
77775, c ¼

X4
i¼1

ci: (4.7)

Thus, from (4.5), it follows that
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N1

N2

N3

8<
:

9=
; ¼ C½ � �

a2 � a1
a3 � a2
a4 � a3

8<
:

9=
;DT þ C½ � �

h1 þ h2
h2 þ h3
h3 þ h4

8<
:

9=
; 1

2q
: (4.8)

By substituting this into the curvature expression (4.4), we obtain

kþ 1
4

h1 þ 2ðh2 þ h3Þ þ h4 h2 þ 2h3 þ h4 h3 þ h4
� � � C½ � �

h1 þ h2
h2 þ h3
h3 þ h4

8><
>:

9>=
>;

0
B@

1
CA 1

q

¼ 1
2

h1 þ 2ðh2 þ h3Þ þ h4 h2 þ 2h3 þ h4 h3 þ h4
� � � C½ � �

a1 � a2
a2 � a3
a3 � a4

8><
>:

9>=
>;DT:

(4.9)

Consequently, the curvature of a quadralayer strip under uniform temperature change DT is

1
q
¼ 2p

q
DT, (4.10)

where

p ¼ c h1 þ 2ðh2 þ h3Þ þ h4 h2 þ 2h3 þ h4 h3 þ h4
� � � C½ � �

a1 � a2
a2 � a3
a3 � a4

8<
:

9=
;, (4.11)

q ¼ 4kcþ c h1 þ 2ðh2 þ h3Þ þ h4 h2 þ 2h3 þ h4 h3 þ h4
� � � C½ � �

h1 þ h2
h2 þ h3
h3 þ h4

8<
:

9=
;: (4.12)

The forces N1 and N2 follow by substituting (4.10) into (4.8), which gives

N1

N2

N3

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼ C½ � �

a2 � a1 þ p
q

ðh1 þ h2Þ

a3 � a2 þ p
q

ðh2 þ h3Þ

a4 � a3 þ p
q

ðh3 þ h4Þ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

DT: (4.13)

The moments and stresses are then obtained from expressions (3.17) and (3.18),
with i ¼ 1, 2, 3, 4:

5. Multilayer strip

The governing equations for a multilayer strip with n bonded layers are straightforward general-
izations of Eqs. (4.1)–(4.5). By the same analysis as used for bi-, tri-, and quadralyer strips in
Sections 2–4, it follows that the curvature of the strip under uniform temperature change DT is

1
q
¼ 2p

q
DT, (5.1)

where
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p ¼ c h1 þ 2
Xn�1

i¼2

hi þ hn h2 þ 2
Xn�1

i¼3

hi þ hn ::: hn�2 þ 2hn�1 þ hn hn�1 þ hn

" #
� C½ � �

a1 � a2

a2 � a3

..

.

an�2 � an�1

an�1 � an

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

,

(5.2)

q ¼ 4kcþ c h1 þ 2
Xn�1

i¼2

hi þ hn h2 þ 2
Xn�1

i¼3

hi þ hn ::: hn�2 þ 2hn�1 þ hn hn�1 þ hn

" #
� C½ � �

h1 þ h2

h2 þ h3

..

.

hn�2 þ hn�1

hn�1 þ hn

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

, (5.3)

with ci ¼ EiAiði ¼ 1, 2, :::nÞ and c ¼Pn
i¼1 ci:

The axial forces in the first ðn� 1Þ layers are

N1

N2

..

.

Nn�2

Nn�1

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

¼ C½ � �

a2 � a1 þ p
q

ðh1 þ h2Þ

a3 � a2 þ p
q

ðh2 þ h3Þ

..

.

an�1 � an�2 þ p
q

ðhn�2 þ hn�1Þ

an � an�1 þ p
q

ðhn�1 þ hnÞ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

DT: (5.4)

The axial force in the remaining nth layer is Nn ¼ �Pn�1
i¼1 Ni: Finally, the moments in the

layers are

Mi ¼ 2ki
p
q

DT, ki ¼ EiIi, ði ¼ 1, 2, :::, nÞ, (5.5)

while the stresses are

ri ¼ Ni

Ai
þMi

Ii
yi, ði ¼ 1, 2, :::, nÞ, (5.6)

where yiði ¼ 1, 2, :::, nÞ are the vertical coordinates from the centroids of the cross sections of the
layers, measured positive downwards. If all layers are of the same width b, the curvature and
stresses are independent of b, while the forces Ni and moments Mi scale with b. An alternative
but computationally less appealing expression for the curvature was given in terms of the ratio
of two determinants of the dimension ðnþ 1Þ � ðnþ 1Þ by Vasudevan and Johnson [3], which
was derived by applying the Cramer’s rule to the system of ðnþ 1Þ linear algebraic equations for
ðnþ 1Þ unknowns ðN1,N2, :::,Nn, 1=qÞ:

The effective stiffness matrix ½C� appearing in (5.2)–(5.4) is the inverse of the effective compli-
ance matrix
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D½ � ¼

1
c1

� 1
c2

0 0 ::: 0 0 0

0
1
c2

� 1
c3

0 ::: 0 0 0

0 0
1
c3

� 1
c4

::: 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 :::
1

cn�3
� 1
cn�2

0

0 0 0 0 ::: 0
1

cn�2
� 1
cn�1

1
cn

1
cn

1
cn

1
cn

:::
1
cn

1
cn

1
cn�1

þ 1
cn

2
66666666666666666666666664

3
77777777777777777777777775

: (5.7)

This form of the matrix ½D� is similar, but not identical, to the matrix ½A� used in the analysis
of piezoelectric cantilever microactuators by DeVoe and Pisano [4].

5.1. Effective stiffness matrix

Based on the derived results for trilayer and quadralayer strips, it can be recognized by inspection that
the diagonal elements of the effective stiffness matrix ½C� ¼ ½D��1 for an arbitrary n are defined by

ckk ¼ ck
c

Xn
i¼kþ1

ci, k ¼ 1, 2, :::, n� 1: (5.8)

The off-diagonal elements above the main diagonal of the matrix are

ckl ¼ ck
c

Xn
i¼lþ1

ci, k ¼ 1, 2, :::, n� 2, l ¼ kþ 1, kþ 2, :::, n� 1 ðk < lÞ, (5.9)

while the off-diagonal elements below the main diagonal are

ckl ¼ � ck
c

Xl
i¼1

ci, k ¼ 2, 3, :::, n� 1, l ¼ 1, 2, :::, k� 1 ðl < kÞ: (5.10)

To gain more insight about the structure of the effective stiffness matrix ½C� for a multilayer
strip, we list below its explicit form for a quinta-, sexta-, and septalayer strip.

Quintalayer strip:

C½ � ¼ 1
c

c1
X5
i¼2

ci c1
X5
i¼3

ci c1ðc4 þ c5Þ c1c5

�c2c1 c2
X5
i¼3

ci c2ðc4 þ c5Þ c2c5

�c3c1 �c3ðc1 þ c2Þ c3ðc4 þ c5Þ c3c5

�c4c1 �c4ðc1 þ c2Þ �c4
X3
i¼1

ci c4c5

2
66666666666664

3
77777777777775
, c ¼

X5
i¼1

ci: (5.11)

Sextalayer strip:
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C½ � ¼ 1
c

c1
X6
i¼2

ci c1
X6
i¼3

ci c1
X6
i¼4

ci c1ðc5 þ c6Þ c1c6

�c2c1 c2
X6
i¼3

ci c2
X6
i¼4

ci c2ðc5 þ c6Þ c2c6

�c3c1 �c3ðc1 þ c2Þ c3
X6
i¼4

ci c3ðc5 þ c6Þ c3c6

�c4c1 �c4ðc1 þ c2Þ �c4
X3
i¼1

ci c4ðc5 þ c6Þ c4c6

�c5c1 �c5ðc1 þ c2Þ �c5
X3
i¼1

ci �c5
X4
i¼1

ci c5c6

2
6666666666666666666666664

3
7777777777777777777777775

, c ¼
X6
i¼1

ci: (5.12)

Septalayer strip:

C½ � ¼ 1
c

c1
X7
i¼2

ci c1
X7
i¼3

ci c1
X7
i¼4

ci c1
X7
i¼5

ci c1ðc6 þ c7Þ c1c7

�c2c1 c2
X7
i¼3

ci c2
X7
i¼4

ci c2
X7
i¼5

ci c2ðc6 þ c7Þ c2c7

�c3c1 �c3ðc1 þ c2Þ c3
X7
i¼4

ci c3
X7
i¼5

ci c3ðc6 þ c7Þ c3c7

�c4c1 �c4ðc1 þ c2Þ �c4
X3
i¼1

ci c4
X7
i¼5

ci c4ðc6 þ c7Þ c4c7

�c5c1 �c5ðc1 þ c2Þ �c5
X3
i¼1

ci �c5
X4
i¼1

ci c5ðc6 þ c7Þ c5c7

�c6c1 �c6ðc1 þ c2Þ �c6
X3
i¼1

ci �c6
X4
i¼1

ci �c6
X5
i¼1

ci c6c7

2
6666666666666666666666666666664

3
7777777777777777777777777777775

, c ¼
X7
i¼1

ci: (5.13)

6. Multilayers with uniform thickness and modulus of elasticity

An appealing special case for which the results simplify considerably is the case when all layers
have the same width b and the same thickness h1 ¼ h2 ¼ � � � ¼ hn ¼ h=n, where h is the total
height of the strip, and when the moduli of elasticity of individual layers are not very different
from each other (for example, aluminum has E¼ 69GPa and a1 ¼ 2:4� 10�5 �

C�1, while silver
has E¼ 72GPa and a1 ¼ 1:8� 10�5 �

C�1), so that a homogenization assumption can be adopted
by which all layers have the same modulus of elasticity, which is equal to the average modulus of
elasticity E ¼ ðE1 þ E2 þ � � � þ EnÞ=n: This is a good simplifying assumption because the differen-
ces in the coefficient of thermal expansion are in this case a dominant driving force for the strip
curvature and the corresponding bending stresses. From (5.8) to (5.10) it then readily follows that
the effective stiffness matrix is
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C½ � ¼ Ebh
n2

C0½ �, C0½ � ¼

n� 1 n� 2 n� 3 n� 4 ::: 4 3 2 1

�1 n� 2 n� 3 n� 4 ::: 4 3 2 1

�1 �2 n� 3 n� 4 ::: 4 3 2 1

�1 �2 �3 n� 4 ::: 4 3 2 1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

�1 �2 �3 �4 ::: �ðn� 4Þ 3 2 1

�1 �2 �3 �4 ::: �ðn� 4Þ �ðn� 3Þ 2 1

�1 �2 �3 �4 ::: �ðn� 4Þ �ðn� 3Þ �ðn� 2Þ 1

2
666666666666666666666666666666664

3
777777777777777777777777777777775

, (6.1)

where ci ¼ Ebh=nði ¼ 1, 2, :::, n) and c ¼ Ebh, Furthermore, ki ¼ ðEb=12Þðh=nÞ3 (i ¼ 1, 2, :::, n),
k ¼ ðEb=12Þh3=n2, and, from (5.2)–(5.3), we obtain

p ¼ E2b2h3

n2
N½ � �

a1 � a2
a2 � a3

..

.

an�2 � an�1

an�1 � an

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
, (6.2)

q ¼ E2b2h4

3n2
þ 2E2b2h4

n3
N½ � �

1
1
..
.

1
1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: (6.3)

A row vector ½N� is obtained from

N½ � ¼ 2
n

n� 1 n� 2 ::: 2 1
� � � C0½ �: (6.4)

It turns out that the value of q in (6.3) is independent of n, because, for any value of n, (6.3)
reduces to

q ¼ 1
3

E2b2h4: (6.5)

Thus, by substituting (6.2) and (6.5) into the curvature expression (5.1) it follows that

1
q
¼ 6DT

n2h
N½ � �

a1 � a2
a2 � a3

..

.

an�2 � an�1

an�1 � an

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: (6.6)

After performing the matrix product in (6.4), the row vector ½N� for even number of layers n
takes the form
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N½ � ¼ n� 1 2ðn� 2Þ 3ðn� 3Þ :::
n2

4
� 1

n2

4
n2

4
� 1 ::: 3ðn� 3Þ 2ðn� 2Þ n� 1

� �
, (6.7)

while, for odd n,

N½ � ¼ n� 1 2ðn� 2Þ 3ðn� 3Þ :::
n2 � 9

4
n2 � 1

4
n2 � 1

4
n2 � 9

4
::: 3ðn� 3Þ 2ðn� 2Þ n� 1

� �
:

(6.8)

The terms appearing in the middle part of ½N� in (6.7) and (6.8) are obtained from

n2

4
� 1 ¼ n

2
� 1

� 	
n� n

2
� 1

� 	� �
,

n2

4
¼ n

2
n� n

2

� 	
,

n2 � 9
4

¼ n� 1
2

� 1

� 	
n� n� 1

2
� 1

� 	� �
,

n2 � 1
4

¼ n� 1
2

n� n� 1
2

� 	
:

For example, for the values of n ¼ 2, :::, 10, the row vector ½N� is

N½ � ¼

1½ �, n ¼ 2,
2 2½ �, n ¼ 3,
3 4 3½ �, n ¼ 4,
4 6 6 4½ �, n ¼ 5,
5 8 9 8 5½ �, n ¼ 6,
6 10 12 12 10 6½ �, n ¼ 7,
7 12 15 16 15 12 7½ �, n ¼ 8,
8 14 18 20 20 18 14 8½ �, n ¼ 9,
9 16 21 24 25 24 21 16 9½ �, n ¼ 10:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(6.9)

Consequently, for a bilayer strip (n¼ 2), the curvature is

1
q
¼ 3DT

2h
ða1 � a2Þ, (6.10)

as in Timoshenko [1], while for trilayer and quadralyer strips

1
q
¼ DT

h

4
3

ða1 � a3Þ, n ¼ 3,

3
8

3ða1 � a4Þ þ ða2 � a3Þ½ �, n ¼ 4,

8>><
>>: (6.11)

as in Vasudevan and Johnson [3]. For quinta, sexta, septa and octalayers, the curvature is

1
q
¼ DT

h

12
25

2ða1 � a5Þ þ ða2 � a4Þ½ �, n ¼ 5,

1
6

5ða1 � a6Þ þ 3ða2 � a5Þ þ ða3 � a4Þ½ �, n ¼ 6,

12
49

3ða1 � a7Þ þ 2ða2 � a6Þ þ ða3 � a5Þ½ �, n ¼ 7,

3
32

7ða1 � a8Þ þ 5ða2 � a7Þ þ 3ða3 � a6Þ þ ða4 � a5Þ½ �, n ¼ 8:

8>>>>>>>>>>><
>>>>>>>>>>>:

(6.12)

It can be recognized from these expressions that in order to produce the largest (positive)
curvature of the strip, the layers should be sequenced with the values of their thermal expansion
coefficients in the descending order from the bottom to the top of the multilayer strip.

258 V. A. LUBARDA AND M. V. LUBARDA



6.1. Stress expressions

Since bending stiffnesses of all layers are equal to each other, ki ¼ EiIi ¼ ð1=12ÞEbðh=nÞ3, the
bending moments in all layers are also equal to each other, and given by

Mi ¼ ki
q
¼ Ebh3

12n3q
, ði ¼ 1, 2, :::, nÞ, (6.13)

with q determined from (6.6). The axial forces follow from (5.4),

N1

N2

..

.

Nn�2

Nn�1

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼ Ebh
n2

C0½ � �

ða2 � a1ÞDT þ h
nq

ða3 � a2ÞDT þ h
nq

..

.

ðan�1 � an�2ÞDT þ h
nq

ðan � an�1ÞDT þ h
nq

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

, (6.14)

with ½C0� given in (6.1).
For example, in the case n¼ 3 we obtain

N1

N2

N3

8>>>><
>>>>:

9>>>>=
>>>>;

¼ Ebh
27

�2a1 þ 3a2 � a3

3a1 � 6a2 þ 3a3

�a1 þ 3a2 � 2a3

8>>>><
>>>>:

9>>>>=
>>>>;
DT, M1 ¼ M2 ¼ M3 ¼ Ebh2

243
ða1 � a3ÞDT: (6.15)

The corresponding stresses at the bottom (yi ¼ �h=6) and the top (yi ¼ h=6) of each layer fol-
low from (5.6),

r1

r2

r3

8>>>><
>>>>:

9>>>>=
>>>>;

bott

¼ EDT
9

3a2 � 3a3

5a1 � 6a2 þ a3

a1 þ 3a2 � 4a3

8>>>><
>>>>:

9>>>>=
>>>>;
,

r1

r2

r3

8>>>><
>>>>:

9>>>>=
>>>>;

top

¼ EDT
9

�4a1 þ 3a2 þ a3

a1 � 6a2 þ 5a3

�3a1 þ 3a2

8>>>><
>>>>:

9>>>>=
>>>>;
: (6.16)

The stress discontinuities at two interfaces are

rbott2 � rtop1 ¼ EDTða1 � a2Þ, rbott3 � rtop2 ¼ EDTða2 � a3Þ: (6.17)

Recalling that in the case of a bilayer strip the stress discontinuity at the interface is rbott2 �
rtop1 ¼ EDTða1 � a2Þ, we recognize that the stress discontinuities at ðn� 1Þ interfaces of a multi-
layer strip with n layers are

rbottiþ1 � rtopi ¼ EDTðai � aiþ1Þ, ði ¼ 1, 2, :::n� 1Þ: (6.18)

Thus, the stress discontinuity at the interface between two layers depends only on the differ-
ence of the thermal expansion coefficients of the two neighboring layers (and EDT), independ-
ently of the values of the thermal expansion coefficients of other layers. Physically, this could
have been recognized from the outset, because, in the case of uniform modulus of elasticity, there
cannot be any stress discontinuity across the interface between two layers of equal thermal expan-
sion coefficient, regardless of the values of thermal expansion coefficients in other layers.
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7. Piezoelectric multilayers subjected to electric field

The analysis presented for thermally loaded multilayer strips and the derived results can be read-
ily extended to piezoelectric multilayers subjected to electric field. In this case, the longitudinal
thermal strain in the ith layer �i, thermal

zz ¼ aiDT is replaced with piezoelectric strain �
i, piezo
zz ¼ diEi,

where di stands for the transverse piezoelectric coupling coefficient for the strain in the z direc-
tion due to the electric field Ei applied across the thickness of the layer i in the y direction (com-
monly denoted in the literature as diyz or di31). The negative value of di indicates contraction. If a
layer is not piezoelectric, the coefficient di for that layer is equal to zero. Also, if some layers in
the strip are conductors, their static electric field is zero. The electric field in the ith layer can be
expressed in terms of the applied voltage (voltage drop across the entire multilayer strip, DV) as

Ei ¼ DVi

hi
¼ DV=jiPn

j¼1 hj=jj
, DVi ¼ hi=jiPn

j¼1 hj=jj
DV, (7.1)

where ji is the dielectric constant of the ith layer. Thus, the piezoelectric strain becomes

�i, piezozz ¼ diEi ¼ biDV, bi ¼
di=jiPn
j¼1 hj=jj

: (7.2)

Consequently, the curvature of a piezoelectric multilayer strip can be determined from an
expression analogous to (5.1),

1
q
¼ 2p

q
DV, (7.3)

i.e., by replacing DT in (5.1) by DV, and the column vector of the differences of thermal expan-
sion coefficients ai in the expression (5.2) for p by the column vector of the differences of piezo-
electric parameters bi, as shown below

a1 � a2
a2 � a3

..

.

an�2 � an�1

an�1 � an

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

7!

b1 � b2
b2 � b3

..

.

bn�2 � bn�1
bn�1 � bn

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: (7.4)

The stiffness matrix ½C� remains the same as given in Section 5 for a thermally loaded multi-
layer strip, as well as the row vector containing the heights of the layers. Furthermore, the param-
eter q appearing in (7.1) is the same for both the thermally loaded multilayer strip and the
piezoelectric multilayer strip under electric field. This analysis of curvature and resulting stresses
in a piezoelectric multilayer strip due to applied voltage generalizes the analysis of DeVoe and
Pisano [4], who assumed that d31 is the same for all piezoelectric layers, which may be of interest
for the design of piezoactuators and energy harvesting devices, and for other MEMS applications.

For example, for a bilayer strip with piezoelectric layer (1) and metallic layer (2), the curvature
is

1
q
¼ 2c1c2ðh1 þ h2Þd1

4ckþ c1c2ðh1 þ h2Þ2
DV
h1

, (7.5)

as in DeVoe and Pisano [4], and, for b1 ¼ b2, Smits and Choi [45]. For a quadralayer strip with
its second layer being piezoelectric (d1 ¼ d3 ¼ d4 ¼ 0), from (5.2) the parameter p becomes

p ¼ b2c2 c2ðh2 þ 2h3 þ h4Þ þ c3ðh2 þ h3Þ � c1ðh1 þ h2Þ½ �: (7.6)

If the average modulus of elasticity (E) is used for all layers of the same width b, (7.6) simpli-
fies to
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p ¼ b2E
2b2h2ðh22 þ h23 � h21 þ h2h4 þ 3h2h3 � h1h2Þ: (7.7)

Furthermore, if all layers are of the same thickness, equal to h=4, (7.7) reduces to p ¼
b2E

2b2h3=16: Thus, since in this case, from (6.5), the parameter q ¼ E2b2h3=3, the curvature
(7.3) becomes

1
q
¼ 3b2

8h
DV , b2 ¼

d2=j2P4
j¼1 hj=jj

(7.8)

This result also follows directly from the piezoelectric analogue of the second expression in
(6.11) by replacing there DT with DV, a2 with b2, and a1, a3 and a4 with zero. If the layers 1, 3,
and 4 are conductors, then their dielectric constants are infinite, the parameter b2 ¼ d2=h2, and
(7.8) reduces to

1
q
¼ 3d2

2h2
DV: (7.9)

For a piezoelectric layer with d2 ¼ �5 pC/N (for ZnO film, the reported value in the literature
for d31 is �4.7 pC/N), from (7.9) it follows that in order to produce the radius of curvature q �
5� 105 h the applied voltage needs to be DV ¼ 1 V for the strip of thickness h ¼ 4 l m, and
DV ¼ 1 kV for the strip of thickness h¼ 4mm. If d2 ¼ �100 pC/N (for PZT film, the reported
value of d31 is �105 pC/N), the applied voltage DV ¼ 1 V would produce the radius of curvature
q � 2:5� 104 h for the strip of thickness h ¼ 4 l m, while DV ¼ 1 kV would be needed to pro-
duce the curvature q � 2:5� 104 h for the strip of thickness h¼ 4mm. The negative values of q
indicate that the curvature is concave downward, as expected because the piezoelectric layer is
placed in the lower part of the strip and the utilized values of d31 are negative.

8. Hygromorphic multilayers under uniform change of hydration

The theory of hygrothermoelasticity is discussed by Sih et al. [46]. A comprehensive hygrothermal
laminate analysis can be found in Herakovich [8], Tsai and Hahn [14], and Vasiliev and
Morozov [15]. For a hygromorphic multilayer strip with different coefficients of hygroexpansion
(ci) in different layers, subjected to uniform change of the moisture content (hydration change,
DH) in the entire strip, the hygromorphic strain in the ith layer is �i, hygrozz ¼ ciDH: For a dry state,
the parameter H¼ 0, while for a fully hydrated state H¼ 1. Consequently, all results derived for a
thermally loaded multilayer strip from Sections 2 to 6 apply in this case by replacing DT with
DH, and ai with ci. For example, the curvature of a trilayer strip, with equal widths of all layers,
is, from (3.11) to (3.13),

1
q
¼ 2p

q
DH, (8.1)

where

p ¼ E1h1 ðE2h2 þ E3h3Þðh1 þ h2Þ þ E3h3ðh2 þ h3Þ½ �ðc1 � c2Þ
þ E3h3 E1h1ðh1 þ h2Þ þ ðE1h1 þ E2h2Þðh2 þ h3Þ½ �ðc2 � c3Þ,

(8.2)

q ¼ 1
3

ðE1h1 þ E2h2 þ E3h3ÞðE1h31 þ E2h
3
2 þ E3h

3
3Þ þ E1h1ðE2h2 þ E3h3Þðh1 þ h2Þ2

þ E3h3ðE1h1 þ E2h2Þðh2 þ h3Þ2 þ 2E1h1E3h3ðh1 þ h2Þðh2 þ h3Þ:
(8.3)

The forces, moments, and stresses in the layers follow from the analogues of (5.4)–(5.6).
If the outer layers are of the same material (E1 ¼ E3 6¼ E2, c1 ¼ c3 6¼ c2), and h1 ¼ h2, the

objective may be to determine the thickness ratio h3=h2 which maximizes the curvature 1=q, for
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given values of (E1, E2), (c1, c2), and h1 ¼ h2. From (8.1) to (8.3), it follows that in this case the
expression for the normalized curvature is

q0
q

¼ 6eðg2 þ g� 2Þ
1þ 2eð2g3 þ 3g2 þ 2gþ 7Þ þ e2ðg4 þ 4g3 þ 18g2 þ 28gþ 1Þ ,

1
q0

¼ ðc2 � c3ÞDH
h2

(8.4)

where e ¼ E3=E2 and g ¼ h3=h2: Applying the stationary condition to (8.4), it follows that the
thickness ratio e ¼ h3=h2 which maximizes the curvature is the positive real root of the quintic
polynomial

2e2g5 þ ð4þ 7eÞeg4 þ 8eg3 � 2eð11þ 17eÞg2 � 2ð1þ 26gþ 37e2Þ � ð1þ 22eþ 57e2Þ ¼ 0: (8.5)

The normalized curvature is plotted versus the thickness ratio h3=h2, for the three selected val-
ues of E3=E2, in Figure 4a. If h3 ¼ h2, the trilayer strip is symmetric and the curvature is equal
to zero. Figure 4b shows the plot of the curvature maximizers ðh3=h2Þmax:curv: versus the elastic
moduli ratio E3=E2:

Other design considerations may be of interest. For example, in the study of the hydration-
induced deformation of the pine cone by Quan et al. [47], the material and geometric parameters
are such that h1 ¼ h3 and c1 ¼ c2, while E2 � ðE1, E3Þ: In this case, the curvature expressions
become approximately, but very accurately,

1
q
¼ 12ðc1 � c3ÞDH

h1

1þ h2=h1
12ð1þ h2=h1Þ2 þ ð1þ eÞ2=e , e ¼ E3

E1
: (8.6)

Using the numerical values from the cited reference (ibid.), h1 ¼ h3 ¼ 1:5 mm, h2 ¼ 0:8 mm,
E1 ¼ 0:86 GPa, E2 ¼ 0:09 GPa, E3 ¼ 4:53 GPa, c1 ¼ c2 ¼ 0:2, c3 ¼ 0:06, expression (8.6) gives
1=q ¼ 48:14 DH (m�1). If the hydration change from the reference state is DH ¼ 0:2, the radius
of curvature is q ¼ 103:85 mm. The expressions (8.1)–(8.3) give q ¼ 102:6 mm. The correspond-
ing normal forces and bending moments, per common width b of the layers, from expressions of
the form (3.15)–(3.17), are fN1,N2,N3g=b ¼ f�5:87, � 1:13, 7:00g (N/mm), and
fM1,M2,M3g=b ¼ f2:36, 0:037, 12:42g (N).

9. Conclusions

An explicit matrix algorithm for calculating the curvature and internal stresses in isotropic multi-
layer strips subjected to a uniform temperature change is developed and presented. Of central
importance in the development of this algorithm is the explicit representation of the effective

Figure 4 (a) The normalized curvature q0=q vs. the thickness ratio h3=h2: The normalizing factor is 1=q0 ¼ ðc2 � c3ÞDH=h2: (b)
The thickness ratio ðh3=h2Þmax:curv: which maximizes the curvature 1=q versus the elastic moduli ratio E3=E2:
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stiffness matrix ½C�, for any number of layers n. Detailed results are given for bi-, tri-, quadra-,
quinta-, and septalayers. Closed-form expressions for curvature and stresses are deduced for the
multilayer strips with equal thicknesses and equal elastic moduli of all layers. The derived results,
of interest for structural mechanics applications including the study of thermally-induced buck-
ling, complements the more general and well-known analysis of anisotropic lamination theory.
The obtained results for thermally loaded multilayer strips are extended to piezoelectric multi-
layers under applied voltage, and hygromorphic multilayers subjected to a uniform change of
moisture content, which are of interest for the design of piezoelectric and hygromorphic actuators
and other devices of MEMS and bioengineering technology, and they may also be of interest for
the analysis of magnetostrictive thin films exhibiting large magnetostriction [48–56].

An alternative appealing approach to the analysis of isotropic multilayer strips, in the spirit of
the present work, is to develop recursive formulas by which the curvature and stresses in a multi-
layer strip with n layers are expressed in terms of the curvature and stresses in a multilayer strip
with n� 1 layers. The development of such formulas is presented in our accompanying art-
icle [57].
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