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RATE-TYPE ELASTICITY AND VISCOELASTICITY
OF AN ERYTHROCYTE MEMBRANE

VLADO A. LUBARDA

The rate-type constitutive theory of elastic and viscoelastic response of an erythrocyte membrane is
presented. The results are obtained for an arbitrary isotropic strain energy function, and for its particular
Evans–Skalak form. The explicit representations of the corresponding fourth-order tensors of elastic
moduli are derived, with respect to principal axes of stress, and an arbitrary set of orthogonal axes. The
objective rate-type viscoelastic constitutive equations of the cell membrane are then derived, based on
the Maxwell and Kelvin models of viscoelastic behavior.

1. Introduction

The study of the mechanical response of a red blood cell (erythrocyte) membrane has received a great
amount of attention from both classical mechanics and bio-chemo-mechanical points of view [Evans and
Skalak 1980; Fung 1993; Agre and Parker 1989; Boal 2002]. Recent studies have addressed the evolution
of mechanical properties of the cell membrane, associated with dynamic remodeling and reorganization
of the membrane structure during large deformations of the cell, in response to mechanical, thermal, and
chemical forces [Gov 2007; Li et al. 2007; Park et al. 2010]. Once the evolution equations for such
structural changes are constructed, their incorporation in the constitutive theory can be accomplished
through the rate-type constitutive equations, analogous to the existing theories of biological remodeling
or growth of soft tissues [Lubarda and Hoger 2002; Garikipati et al. 2006; Taber 2009]. Since the rate-
type constitutive theories relate the rates of stress and deformation, an essential ingredient of such theories
is the elastic constitutive expression in the rate-type (incremental) form. The objective of this paper is
to develop such rate-type constitutive expression, corresponding to an arbitrary isotropic strain energy
function, and its Evans–Skalak particular form. The explicit expressions are derived for the components
of the fourth-order tensor of elastic moduli, which relate the objective rates of the conjugate stress and
strain tensors. The derived rate-type elasticity equations are then used to construct the objective rate-
type viscoelastic constitutive equations for erythrocyte membrane, based on the Maxwell and Kelvin
viscoelastic models.

Since the red blood cell membrane is only about 100 Å thick, it is assumed that the model of continuum
mechanics applies only within the plane of the membrane. The applied forces are thus considered to be
distributed along the length, with the membrane stresses defined by the force/length ratios. The upper
bound on the in-plane Poisson ratio is equal to 1, rather than 1

2 , as in the three-dimensional isotropic
elasticity. When modeled as infinitesimally thin, the erythrocyte membrane has no buckling resistance,
and thus can support only noncompressive loadings, which give rise to nonnegative principal stresses
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[Lubarda and Marzani 2009; Lubarda 2010]. The incorporation of small, but finite bending stiffness (pro-
portional to the square of the membrane thickness) is needed to address other features of the membrane
response, such as the size and shape of membrane wrinkles which may form during large deformations
[Haughton 2001; Géminard et al. 2004], the membrane adhesive interactions [Agrawal and Steigmann
2009], or the resting shape of the cell and the skeleton/bilayer interactions in optical tweezer stretching
and micropipette aspiration tests [Peng et al. 2010].

The content of the paper is as follows. Section 2 contains the kinematics and kinetics of the membrane
in-plane deformation. The Evans–Skalak form of the elastic strain energy is adopted, as in most other
recent work on the mechanics of red blood cell, (e.g., [Mills et al. 2004; Zhu et al. 2007]). The rate-type
elasticity equations, which relate the Jaumann rate of the Kirchhoff stress to the rate of deformation tensor,
are derived in Section 3. The explicit representation of the elastic moduli tensor is given for an arbitrary
isotropic strain energy function, and for its special Evans–Skalak form. The results are given for the
coordinate axes parallel to the principal axes of stress, and for the arbitrary set of orthogonal axes. Since
the areal modulus of the erythrocyte cell is several orders of magnitude higher than the shear modulus, for
some applications it may be appropriate to model the membrane as infinitely stiff to its area change; in
Section 4 we accordingly present the rate-type elastic constitutive analysis for isoareal membranes. The
derived rate-type elasticity equations are used in Section 5 to derive the objective rate-type viscoelasticity
equations, corresponding to the Maxwell and Kelvin viscoelastic models. The results are given explicitly
for an arbitrary isotropic strain energy function and for its particular Evans–Skalak form. Concluding
remarks are given in Section 6. For completeness of the analysis, the appendices contain the results
of the rate-type elastic analysis based on the Lagrangian strain and its conjugate Piola–Kirchhoff stress
(Appendix A), and the deformation gradient and its conjugate nominal stress (Appendix B).

2. Kinematic and kinetic preliminaries

The deformation gradient associated with in-plane deformation of a thin plane membrane is

F = λ1 n1⊗ N1+ λ2 n2⊗ N2, (1)

where λ1 and λ2 are the principal stretches, Ni are the unit vectors along the principal directions of the
right stretch tensor U in the undeformed configuration, and ni = R ·Ni are the unit vectors in the deformed
configuration, along the principal directions of the left stretch tensor V . The polar decomposition of the
deformation gradient is F = V · R = R ·U , where R = n1⊗ N1+ n2⊗ N2 is the rotation tensor. The
dyadic product of two vectors is denoted by ⊗.

The strain energy (per unit initial area) of an isotropic membrane is a function of the principal stretches,
φ= φ(λ1, λ2). An infinitesimal change of the strain energy is equal to the work done by the true (Cauchy)
stress components σ1 and σ2 on the incremental stretches dλ1 and dλ2, which gives

dφ = σ1λ2 dλ1+ σ2λ1 dλ2. (2)

By taking the differential of φ = φ(λ1, λ2), the comparison with (2) establishes the constitutive expres-
sions

σ1 =
1
λ2

∂φ

∂λ1
, σ2 =

1
λ1

∂φ

∂λ2
. (3)
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The corresponding Kirchhoff stress components, τi = (det F) σi = (λ1λ2) σi , are

τ1 = λ1
∂φ

∂λ1
, τ2 = λ2

∂φ

∂λ2
. (4)

2.1. Evans–Skalak form of the strain energy. The strain energy of an isotropic membrane must be
a symmetric function of λ1 and λ2. Evans and Skalak [1980] proposed that φ = φ(α, β), where the
deformation measures

α = λ1λ2− 1, β =
1
2

(
λ1
λ2
+
λ2
λ1

)
− 1 (5)

are constructed so that α = β = 0 in the undeformed configuration. The parameter α is the area change
per unit undeformed area, while β is a measure of the distortional deformation. The Evans–Skalak model
of a nonlinear elastic membrane corresponds to φ = 1

2κα
2
+µβ, i.e.,

φ = 1
2 κ(λ1λ2− 1)2+µ

[
1
2

(
λ1
λ2
+
λ2
λ1

)
− 1

]
, (6)

where κ and µ are the areal (bulk) modulus and the shear modulus of the membrane, respectively. From
(3), the stress components are

σ1,2 = κ(λ1λ2− 1)± 1
2 µ(λ

−2
2 − λ

−2
1 ), (7)

σ1+ σ2 = 2κ(λ1λ2− 1), σ1− σ2 = µ(λ
−2
2 − λ

−2
1 ). (8)

Numerous experiments have been conducted in the past to measure the elastic and viscous properties
of the human erythrocyte membrane. For example, from the micropipette aspiration tests of red blood
cells, it has been estimated that the shear modulus (µ) of the erythrocyte membrane is in the range 4−10
µN/m, while the areal modulus (κ) is on the order 103

− 104 higher than that [Evans and Skalak 1980;
Boal 2002]. Such a large difference in two stiffnesses is because the areal modulus of the cell membrane
is controlled mostly by the phospholipidic bilayer, while the shear modulus is determined by the elastic
properties of the cytoskeleton, a two-dimensional network of spectrin strands bound to the bilayer. The
viscous properties of the cell are due to glycoproteins, lipid integral and peripheral membrane proteins,
lipid rafts, and transmembrane cholesterol. Based on the measurements of the characteristic time for
relaxation, the shear viscosity has been estimated to be in the range 0.6–2.7µN·s/m [Hochmuth 1987].

If the Kirchhoff stress components are used, the expressions (7)–(8) can be rewritten as

τ1+ τ2 = 2κλ1λ2(λ1λ2− 1), τ1− τ2 = µ

(
λ1
λ2
−
λ2
λ1

)
. (9)

For the later purposes of the rate-type theory of viscoelasticity and the incremental solution of the bound-
ary value problems, it is important to invert (9), and express λ1λ2 and λ1/λ2 in terms of stress components.
The resulting expressions are

λ1λ2 =
1
2

[
1+

(
1+ 2 τ1+τ2

κ

)1/2
]
,

λ1

λ2
=
τ1− τ2

2µ
+

[
1+

(τ1− τ2

2µ

)2
]1/2

,
λ2

λ1
=−

τ1− τ2

2µ
+

[
1+

(τ1− τ2

2µ

)2
]1/2

.

(10)
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The sum and difference of the Kirchhoff stress components can be expressed in terms of the Cauchy
stress components as

τ1± τ2 =

(
1+

σ1+ σ2

2κ

)
(σ1± σ2), (11)

because, from (9), λ1λ2 = 1+ (σ1+ σ2)/2κ , and τi = (λ1λ2)σi , for i = 1, 2.

2.2. Stress response on arbitrary axes. The strain energy of an isotropic membrane can be expressed
as a function of two independent invariants of the left Cauchy–Green deformation tensor B = V 2, i.e.,

φ = φ(IB, IIB), IB = tr B = λ2
1+ λ

2
2, IIB = det B = λ2

1λ
2
2. (12)

where IB is the trace, and IIB the determinant of B. Since İB = Ḃkk = 2Bi j Di j , İI B = 2IIB Dkk , and
φ̇ = τi j Di j , by taking the time-rate of (12), if follows that

τi j = 2
(
∂φ

∂ IB
Bi j + IIB

∂φ

∂ IIB
δi j

)
, (13)

where δi j is the Kronecker delta. The invariants IB and IIB are related to the invariants α and β by

α = II 1/2
B − 1, β =

IB

2II 1/2
B

− 1; IB = 2(1+α)(1+β), IIB = (1+α)2. (14)

Consequently,

∂φ

∂ IB
=

1
2

II−1/2
B

∂φ

∂β
,

∂φ

∂ IIB
=

1
4

II−1/2
B

(
2
∂φ

∂β
− IB II−1

B
∂φ

∂β

)
, (15)

and the substitution into (13) gives an alternative representation of the stress response

σi j =
∂φ

∂α
δi j +

1
det B

∂φ

∂β
B ′i j , (16)

where B ′i j = Bi j − Bkkδi j/2 is the deviatoric part of Bi j .
If φ is given by the Evans–Skalak form φ = 1

2κα
2
+µβ, (16) reduces to

σi j = κα δi j +
µ

det B
B ′i j . (17)

The first term on the right-hand side of (16) and (17) is the spherical part, σkkδi j/2, and the second term
is the deviatoric part of the stress, σ ′i j . If the coordinate axes are parallel to the principal axes of B, (17)
reduces to (7).

3. Rate-type constitutive analysis

In this section we derive the rate-type form of the elastic constitutive equations, expressed with respect to
the principal axes of stress and the constitutive structure (4), and with respect to arbitrary set of orthogonal
axes and the constitutive structure (13) or (16).
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3.1. Rate of deformation and spin tensors. For the rate-type constitutive analysis, the rates of deforma-
tion need to be considered. To that goal, we first introduce the spin tensors

�=�(N1⊗ N2− N2⊗ N1), ω = ω(n1⊗ n2− n2⊗ n1), (18)

such that Ṅi =� · Ni and ṅi = ω · ni (i = 1, 2). In particular,

Ṅ1 =−� N2, Ṅ2 =�N1, ṅ1 =−ω n2, ṅ2 = ωn1, (19)

where −� is the rate of the counterclockwise rotation of the dyad (N1, N2), while −ω is the rate of the
counterclockwise rotation of the dyad (n1, n2). Consequently, by differentiating (1), and by using (19),
the rate of the deformation gradient becomes

Ḟ = λ̇1 n1⊗ N1+ λ̇2 n2⊗ N2+ (λ2ω− λ1�)n1⊗ N2− (λ1ω− λ2�)n2⊗ N1. (20)

Since the inverse of the deformation gradient is

F−1
=

1
λ1

N1⊗ n1+
1
λ2

N2⊗ n2, (21)

the substitution of (20) and (21) into the expression for the velocity gradient L = Ḟ · F−1 gives

L =
λ̇1

λ1
n1⊗ n1+

λ̇2

λ2
n2⊗ n2+ω(n1⊗ n2− n2⊗ n1)−�

(
λ1

λ2
n1⊗ n2−

λ2

λ1
n2⊗ n1

)
. (22)

Its symmetric and antisymmetric parts are the rate of deformation tensor

D =
λ̇1

λ1
n1⊗ n1+

λ̇2

λ2
n2⊗ n2+�

λ2
2− λ

2
1

2λ1λ2
(n1⊗ n2+ n2⊗ n1), (23)

and the spin tensor

W =
(
ω−�

λ2
1+ λ

2
2

2λ1λ2

)
(n1⊗ n2− n2⊗ n1). (24)

The components of the rate of deformation and spin tensors, on the current axes ni , are

D11 =
λ̇1

λ1
, D22 =

λ̇2

λ2
, D12 =�

λ2
2− λ

2
1

2λ1λ2
(25)

and
W = ω−�

λ2
1+ λ

2
2

2λ1λ2
, (26)

so that

D =
2∑

i, j=1

=Di j ni ⊗ n j , W =W (n1⊗ n2− n2⊗ n1). (27)

3.2. Rate-type constitutive equations. A comprehensive treatment of the three-dimensional rate-type
(incremental) elasticity can be found in Haughton and Ogden [1978] and Ogden [1984]. Some of the
results in this section can be deduced from this theory directly, but some require a separate analysis. The
rate of the Kirchhoff stress τ = τ1n1⊗ n1+ τ2 n2⊗ n2 is

τ̇ = τ̇1 n1⊗ n1+ τ̇2 n2⊗ n2−ω(τ1− τ2)(n1⊗ n2+ n2⊗ n1), (28)
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from which we conclude that

τ̇12 = τ̇21 =−ω(τ1− τ2). (29)

Observing, from (25) and (26), that

ω =W −
λ2

1+ λ
2
2

λ2
1− λ

2
2

D12, (30)

the expression (29) can be rewritten as

τ̊12 = (τ1− τ2)
λ2

1+ λ
2
2

λ2
1− λ

2
2

D12. (31)

The Jaumann rate τ̊ is defined by τ̊ = τ̇ −W ·τ +τ ·W . Since, instantaneously, on the axes ni , the shear
stress τ12 = 0, the components of the Jaumann rate of the Kirchhoff stress are

τ̊11 = τ̇11, τ̊22 = τ̇22, τ̊12 = τ̇12+W (τ1− τ2), (32)

which was used in the transition from (29) to (31).
Having regard to constitutive expressions (4), the rates of the Kirchhoff stress components are

τ̇1 =

(
∂φ

∂λ1
+ λ1

∂2φ

∂λ2
1

)
λ̇1+

(
λ1

∂2φ

∂λ1∂λ2

)
λ̇2, τ̇2 =

(
λ2

∂2φ

∂λ1∂λ2

)
λ̇1+

(
∂φ

∂λ2
+ λ2

∂2φ

∂λ2
2

)
λ̇2. (33)

Consequently, by using (25), the objective rate-type constitutive expressions for elastic deformations of
a thin membrane are

τ̊11 = λ1

(
∂φ

∂λ1
+ λ1

∂2φ

∂λ2
1

)
D11+

(
λ1λ2

∂2φ

∂λ1∂λ2

)
D22,

τ̊22 =

(
λ1λ2

∂2φ

∂λ1∂λ2

)
D11+ λ2

(
∂φ

∂λ2
+ λ2

∂2φ

∂λ2
2

)
D22, (34)

τ̊12 =

(
λ1
∂φ

∂λ1
− λ2

∂φ

∂λ2

)
λ2

1+ λ
2
2

λ2
1− λ

2
2

D12.

3.3. Elastic moduli tensor. The tensor representation of the constitutive expressions (34) is

τ̊ =L : D, τ̊i j = Li jkl Dkl, (35)

where the components of the fourth-order tensor of the elastic moduli

L= L1111 n1⊗ n1⊗ n1⊗ n1+L2222 n2⊗ n2⊗ n2⊗ n2

+L1122 (n1⊗ n1⊗ n2⊗ n2+ n2⊗ n2⊗ n1⊗ n1)

+L1212 (n1⊗ n2+ n2⊗ n1)⊗ (n1⊗ n2+ n2⊗ n1) (36)
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are

L1111 = λ1

(
∂φ

∂λ1
+ λ1

∂2φ

∂λ2
1

)
, L2222 = λ2

(
∂φ

∂λ2
+ λ2

∂2φ

∂λ2
2

)
,

L1122 = λ1λ2
∂2φ

∂λ1∂λ2
, L1212 =

1
2

(
λ1
∂φ

∂λ1
− λ2

∂φ

∂λ2

)
λ2

1+ λ
2
2

λ2
1− λ

2
2
,

(37)

with the obvious symmetry properties

L1122 = L2211, L1212 = L2121 = L1221 = L2112. (38)

The components of the tensor LLL, as well as the components of the tensors τ̊ and D, relative to the fixed
base vectors, can be easily obtained by the tensor transformation rules. An alternative, direct derivation
is presented in section 3.4.

If the strain energy is given by (6), the elastic moduli become

L1111 = L2222 = κλ1λ2(2λ1λ2− 1)+µ
λ2

1+ λ
2
2

2λ1λ2
,

L1122 = κλ1λ2(2λ1λ2− 1)−µ
λ2

1+ λ
2
2

2λ1λ2
, L1212 = µ

λ2
1+ λ

2
2

2λ1λ2
.

(39)

3.4. Elastic compliances tensor. The inverted form of (35), giving the rate of deformation tensor in
terms of the Jaumann rate of the Kirchhoff stress, is

Di j =Mi jkl τ̊kl . (40)

The nonvanishing components of the elastic compliances tensor are

M1111 =
L2222

1
, M2222 =

L1111

1
, M1122 =M2211 =−

L1122

1
, M1212 =

1
4L1212

, (41)

where
1= L1111L2222−L2

1212. (42)

If the strain energy is given by the Evans–Skalak form (6), the determinant 1 is

1= 2κµ(2λ1λ2− 1)(λ2
1+ λ

2
2), (43)

while the elastic moduli Li jkl (on the principal axes of stress) are given by (39).

3.5. Rate-type elasticity on arbitrary axes. The objective rate form of the constitutive expression (13)
can be obtained directly by applying to it the Jaumann derivative. Since B̊ = B · D+ D · B, İB = 2B : D,
and İI B = 2IIB tr D, it readily follows that

τ̊i j = Li jkl Dkl, (44)

where

Li jkl = c1δi jδkl + c2(δi j Bkl + Bi jδkl)+ c3 Bi j Bkl + c4(δik B jl + Bikδ jl + δ jk Bil + B jkδil) (45)
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are the components of the fourth-order tensor of elastic moduli with respect to arbitrary orthogonal axes,
and

c1 = 4IIB

(
∂φ

∂ IIB
+ IIB

∂2φ

∂ II 2
B

)
, c2 = 4IIB

∂2φ

∂ IB∂ IIB
, c3 = 4

∂2φ

∂ I 2
B
, c4 =

∂φ

∂ IB
. (46)

If the strain energy is expressed in terms of the invariants α and β, rather than IB and IIB , the param-
eters ci become

c1 = (1+α)2
∂2φ

∂α2 + (1+β)
2 ∂

2φ

∂β2 − 2(1+α)(1+β)
∂2φ

∂α∂β
+ (1+α)

∂φ

∂α
+ (1+β)

∂φ

∂β
,

c2 =
∂2φ

∂α∂β
−

1
1+α

[
(1+β)

∂2φ

∂β2 +
∂φ

∂β

]
,

c3 =
1

(1+α)2
∂2φ

∂β2 , c4 =
1

2(1+α)
∂φ

∂β
.

(47)

In the case of the Evans–Skalak strain energy, this simplifies to

c1 = κ(1+α)(1+ 2α)+µ(1+β), c2 =−µ(1+α)−1, c3 = 0, c4 =−c2/2. (48)

If the coordinate axes are parallel to the principal axes of B, (45) with (48) reduces to (39). In this case,
L1111 = L2222 = c1, L1122 = c1− 2L1212, and L1212 = µ(1+β).

4. Isoareal membranes

As discussed in the introduction, the areal modulus of the red blood cell is several orders of magnitude
higher than the shear modulus, and for some applications it may be appropriate to model the membrane
as infinitely stiff to the area change (κ →∞, ν = 1). In this case, there is a deformation constraint
λ1λ2 − 1 = 0, so that D11 + D22 = 0. The rate of work is φ̇ = (σ1 − σ2)λ̇1/λ1, and by differentiation
φ = φ(λ1) with respect to time, there follows

σ1− σ2 = λ1
dφ
dλ1

. (49)

The average normal stress is undetermined by the constitutive analysis, and denoting it by −p0, we can
write

σ1+ σ2 =−2p0. (50)

Therefore, the principal stresses are

σ1 =
1
2
λ1

dφ
dλ1
− p0, σ2 =−

1
2
λ1

dφ
dλ1
− p0. (51)

The function p0 = p0(x1, x2) is determined by solving a specific boundary-value problem under consid-
eration. If the strain energy is

φ = µβ = µ
( 1

2(λ
2
1+ λ

−2
1 )− 1

)
, (52)

the stresses become

σ1 =
1
2 µ(λ

2
1− λ

−2
1 )− p0, σ2 =−

1
2 µ(λ

2
1− λ

−2
1 )− p0. (53)
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4.1. Rate theory for isoareal membranes. For isoareal membranes the Cauchy and Kirchhoff stress are
equal to each other, so that (31) becomes

σ̊12 = λ1
dφ
dλ1

λ2
1+ λ

−2
1

λ2
1− λ

−2
1

D12. (54)

Furthermore, by differentiating (50) and (51),

σ̊11+ σ̊22 =−2 ṗ0, σ̊11− σ̊22 =

(
λ1

dφ
dλ1
+ λ2

1
d2φ

dλ2
1

)
D11. (55)

If φ is given by (52), the rate-type constitutive expressions, on the principal stress axes, become

σ̊i j =− ṗ0δi j +µ(λ
2
1+ λ

−2
1 )Di j . (56)

4.2. Expressions on arbitrary axes. The strain energy of an isotropic isoareal membrane is a function
of only one strain of stretch invariant, e.g., φ = φ(IB). Its rate is

φ̇ = 2
dφ
dIB

B ′i j Di j , (57)

because İB = 2B ′i j Di j , the rate of deformation being deviatoric, so that Bi j Di j = B ′i j Di j . Since the rate
of work is φ̇ = σi j Di j = σ

′

i j Di j , again because Dkk = 0, the comparison with (57) gives

σ ′i j = 2
dφ
dIB

B ′i j , (58)

and thus the stress response is

σi j =−p0δi j + 2
dφ
dIB

B ′i j , (59)

To derive the rate-type form of (59), it is convenient to first rewrite (59) as

σi j =−

(
p0+ IB

dφ
dIB

)
δi j + 2

dφ
dIB

Bi j . (60)

The application of the Jaumann derivative to (60), having regard to İB = 2Bi j Di j and B̊i j = Bik Dk j +

Dik Bk j , then yields

σ̊i j =− ṗ0 δi j +
[
c0δi j Bkl + c3 Bi j Bkl + c4(δik B jl + Bikδ jl + δ jk Bil + B jkδil)

]
Dkl . (61)

The parameters c0, c2, and c4 are

c0 =−2
(

dφ
dIB
+ IB

d2φ

dI 2
B

)
, c3 = 4

d2φ

dI 2
B
, c4 =

dφ
dIB

. (62)

If the strain energy is of the Evans–Skalak form

φ = µβ = µ
( 1

2 IB − 1
)
, (63)

the parameters (62) reduce to c0 =−µ, c3 = 0, and c4 = µ/2, while (61) simplifies to

σ̊i j =− ṗ0 δi j +
1
2 µ
(
δik B jl + Bikδ jl + δ jk Bil + B jkδil − 2δi j Bkl

)
Dkl . (64)
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When coordinate axes coincident with the principal directions of B are used, (64) reduces to (56).

5. Rate theory of viscoelasticity

To study the time-dependent aspiration of an erythrocyte cell membrane into a micropipette [Evans
and Hochmuth 1976], or the cell recovery upon its deformation by optical tweezers [Dao et al. 2003;
Mills et al. 2004], viscoelastic constitutive models have been employed. In this section, we extend
the constitutive models their considered by constructing the objective rate type viscoelastic constitutive
equations of both Maxwell and Kelvin type, based on an arbitrary isotropic strain energy function, and its
special Evans–Skalak form. For an integral type of viscoelastic constitutive equations for thin membranes,
we refer to [Tözeren et al. 1982; Wineman 2007].

5.1. Maxwell viscoelastic model. In the Maxwell viscoelastic model, the rate of deformation is assumed
to be the sum of the elastic and viscous parts, i.e.,

Di j = De
i j + Dv

i j . (65)

The elastic part is related to the objective Jaumann rate of the Kirchhoff stress by the constitutive expres-
sion (36), in which φ = φe(I e

B, II e
B), so that

τ̊i j = Le
i jkl De

kl, De
i j =Me

i jkl τ̊kl . (66)

The viscous part is assumed to be deviatoric and governed by the Newton viscosity law

Dv
i j =

1
2η
σ ′i j , σ ′i j = σi j −

1
2
σkkδi j . (67)

The coefficient of membrane viscosity η is assumed to be constant, although it could vary with the
amount of stretching [Evans and Hochmuth 1976]. The experimentally reported values for η are in the
range between 0.6 and 2.7 µN·s/m, being strongly influenced by the concentration of hemoglobin in the
cytoplasm, which binds to the membrane of the cell [Hochmuth 1987; Hochmuth and Waugh 1987]. By
substituting (66) and (67) into (65), there follows

τ̊i j = Le
i jkl

(
Dkl −

1
2η
σ ′kl

)
, Di j =Me

i jkl τ̊kl +
1

2η
σ ′i j . (68)

When expressed on the principal axes of the current stress, Le
i jkl is given by (37), and (68) becomes

τ̊i j = Le
i jkl Dkl −

1
4η
(Le

i j11−L
e
i j22)(σ1− σ2). (69)

If the elastic response is governed by the Evans–Skalak form of the elastic strain energy, the elastic
moduli Le

i jkl are given by (39), in which λ1 and λ2 are replaced by λe
1 and λe

2. Since the viscous part of
the rate of deformation is assumed to be deviatoric, the membrane area change is entirely due to elastic
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deformation, so λ1λ2 = λ
e
1λ

e
2. Consequently, from Equations (10)–(11),

λe
1λ

e
2 =

1
2

[
1+

(
1+ 2 τ1+τ2

κ

)1/2
]
= 1+ σ1+σ2

2κ
,

λe
1
λe

2
=
τ1−τ2

2µ
+

[
1+

(
τ1−τ2

2µ

)2
]1/2

,
λe

2
λe

1
=−

τ1−τ2
2µ
+

[
1+

(
τ1−τ2

2µ

)2
]1/2

,

(70)

where τ1± τ2 is given in terms of stress by (11). This specifies the components of the elastic moduli
tensor Le

i jkl in terms of the current stress state, as needed in the incremental procedure of solving the
path-dependent viscoelastic boundary value problems.

If the membrane is modeled as an isoareal membrane, by using (56), we obtain (on the current principal
axes of stress)

σ̊i j =− ṗ0δi j + 2µ
[

1+
(
σ1−σ2

2µ

)2
]1/2 (

Di j −
1

2η
σ ′i j

)
(71)

and

D′i j =
1

2µ

[
1+

(
σ1−σ2

2µ

)2
]−1/2

σ̊ ′i j +
1

2η
σ ′i j . (72)

5.2. Kelvin viscoelastic model. An alternative, Kelvin-type viscoelastic model can be constructed by
assuming that the deviatoric part of stress is the sum of the elastic and viscous contributions, σ ′i j =

σ ′ei j + σ
′v
i j . By using the elastic constitutive expression (16) and the Newton viscosity law, this gives

σ ′i j =
1

det B
∂φ

∂β
B ′i j + 2ηD′i j . (73)

The average normal stress is assumed to be due to elastic deformation only, so that, from (16),

σkk = 2
∂φ

∂α
. (74)

The total stress is

σi j =
∂φ

∂α
δi j +

1
det B

∂φ

∂β
B ′i j + 2ηD′i j . (75)

When expressed on the principal stress axes, this is

σ1 =
∂φ

∂α
+

1
2
∂φ

∂β
(λ−2

2 − λ
−2
1 )+ η

(
λ̇1

λ1
−
λ̇2

λ2

)
,

σ2 =
∂φ

∂α
+

1
2
∂φ

∂β
(λ−2

1 − λ
−2
2 )+ η

(
λ̇2

λ2
−
λ̇1

λ1

)
.

(76)

A version of (76), corresponding to an isoareal Evans–Skalak model with φ = µβ, was used by [Mills
et al. 2004] in their finite-element evaluation of cell stretching by optical tweezers.

We next determine the expressions for the components of the rate of deformation tensor, which is
particularly important if the Kelvin model is combined in series with the Maxwell model to obtain a
more complex or capable viscoelastic model. The deviatoric part of the rate of deformation follows from



372 VLADO A. LUBARDA

(73) as

D′i j =
1

2η

(
σ ′i j −

1
det B

∂φ

∂β
B ′i j

)
. (77)

For a prescribed history of stress, it remains to determine the rate of the area change, i.e., Dkk =

d(ln dA)/dt . This can be accomplished by differentiating (74), which gives

σ̇kk = 2
(
∂2φ

∂α2 α̇+
∂2φ

∂α∂β
β̇

)
. (78)

It can be readily shown that
α̇ = II 1/2

B Dkk, β̇ = II−1/2
B B ′i j Di j , (79)

so that the substitution into (78) yields

σ̇kk = 2
∂2φ

∂α2 II 1/2
B Dkk + 2

∂2φ

∂α∂β
II−1/2

B B ′i j D′i j . (80)

The trace product B ′i j D′i j can be eliminated from (80) by using (77), with the result

B ′i j D′i j =
1
η

(
1
2 σi j B ′i j −β(β + 2) ∂φ

∂β

)
. (81)

In the derivation, the Frobenius norm of B′ is expressed as B ′i j B ′i j =
1
2 I 2

B − 2IIB . The substitution of
(81) into (80) gives the desired expression for Dkk in terms of the current stress and its rate. This is

Dkk =
II−1

B

2∂2φ/∂α2

[
II 1/2

B σ̇kk −
1
η

∂2φ

∂α∂β

(
σi j B ′i j − 2β(β + 2) ∂φ

∂β

)]
. (82)

If the strain energy is given by the Evans–Skalak form φ = 1
2κα

2
+µβ, (77) and (82) reduce to

D′i j =
1

2η

(
σ ′i j −

µ

det B
, B ′i j

)
, Dkk =

1
(det B)1/2

σ̇kk

2κ
. (83)

On the principal stress axes, this becomes

D1− D2 =
1

2η

(
σ1− σ2+µ(λ

−2
1 − λ

−2
2 )
)
, D1+ D2 =

1
2κλ1λ2

(σ̇1+ σ̇2) . (84)

If the membrane is modeled as isoareal, with φ = φ(β), then

D′i j =
1

2η

(
σ ′i j −

dφ
dβ

B ′i j

)
, Dkk = 0. (85)

In this case, the average normal stress σkk/2=−p0 is unspecified by the constitutive analysis.

6. Conclusion

We have presented in this paper the rate-type constitutive analysis of erythrocyte membrane undergoing
large elastic and viscoelastic deformations. The results are obtained for an arbitrary isotropic strain energy
function, and for its special Evans–Skalak form, commonly used to study the mechanical response of
red blood cells. The explicit representation of the fourth-order tensor of elastic moduli, which relates
the objective rate of the Kirchhoff stress to the rate of the deformation tensor, is derived with respect
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to the principal axes of stress, and an arbitrary set of orthogonal axes, used as the background axes in
the numerical treatment of the boundary-value problems. Since the areal modulus of the erythrocyte
membrane is several orders of magnitude higher than the shear modulus, the rate-type equations are also
derived for an isoareal membrane. The viscoelastic constitutive equations are then derived by adopting
either the Maxwell or the Kelvin viscoelastic model, i.e., by adopting the additive decomposition of the
rate of deformation, or the stress tensor, into its elastic and viscous parts. More involved viscoelastic
models can also be considered, such as those used in [Lubarda and Marzani 2009] in the context of
small strains. The obtained constitutive equations may be readily implemented in the incremental (nu-
merical) treatments of the path-dependent boundary-value problems, such as those associated with large
deformation and shape recovery of an erythrocyte passing through and exiting from narrow capillaries
[Pozrikidis 2003], or excessive aspiration of the cell membrane into micropipette, which may lead to
membrane necking followed by formation of a vesicle [Peng et al. 2010]. Other potential application of
derived equations is in a related study of the mechanics of nuclear membranes, bounding the nucleus of
eukaryotic cells [Vaziri and Mofrad 2007].

The elastic properties of a healthy cell during its lifetime of about 120 days are essential for its main
function to deliver the oxygen, while squeezing through capillaries. The degradation of elastic properties
and the gradual loss of the membrane elasticity are therefore an important extension of the present work.
From the mechanics point of view, this extension may proceed in the spirit of the rate-type theory of
damage elasticity [Lubarda and Krajcinovic 1995], provided that the appropriate specification of the
parameters which account for biochemical and physical processes of membrane damage and fatigue,
and their evolution equations, are available. This, together with the description of active topological
remodeling of the membrane structure during large deformations, is a challenging avenue for future
research.
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Appendix A: Rate-type elasticity with respect to symmetric Piola–Kirchhoff stress

If the initial configuration is used as the reference configuration in the formulation and the solution of the
boundary value problem, the rate-type constitutive expressions are needed with respect to the Lagrangian
strain

E = 1
2 (λ

2
1− 1) N1⊗ N1+

1
2 (λ

2
2− 1) N2⊗ N2,

and its conjugate symmetric Piola–Kirchhoff stress S. The components of the stress S= S1 N1⊗ N1+

S2 N2⊗ N2 are
S1 =

1
λ1

∂φ

∂λ1
, S2 =

1
λ2

∂φ

∂λ2
,

such that φ̇ = Si j Ėi j . Omitting details of the derivation, the corresponding rate-type constitutive expres-
sion is

Ṡi j =3i jkl Ėkl,
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where

31111 =
1
λ2

1

(
∂2φ

∂λ2
1
−

1
λ1

∂φ

∂λ1

)
, 32222 =

1
λ2

2

(
∂2φ

∂λ2
2
−

1
λ2

∂φ

∂λ2

)
,

31122 =
1

λ1λ2

∂2φ

∂λ1∂λ2
, 31212 =

1
λ2

1− λ
2
2

(
1
λ1

∂φ

∂λ1
−

1
λ2

∂φ

∂λ2

)
,

with the obvious symmetries 31212 = 32121 = 31221 = 32112 and 31122 = 32211. The well-known
relationship [Hill 1978] between the moduli Li jkl , appearing in the constitutive structure τ̊i j = Li jkl Dkl ,
and the moduli 3i jkl , appearing in the constitutive structure Ṡi j =3i jkl Ėkl , is

Li jkl = Fim F jn3mnpq Fkp Flq +
1
2
(τikδ jl + τ jkδil + τilδ jk + τ jlδik).

If the strain energy is given by the Evans–Skalak form (6), the elastic moduli become

31111 =
1
λ4

1

(
κλ1λ2+µ

3λ2
2− λ

2
1

2λ1λ2

)
, 31122 =

1
λ2

1λ
2
2

(
κλ1λ2(2λ1λ2− 1)−µ

λ2
1+ λ

2
2

2λ1λ2

)
,

32222 =
1
λ4

2

(
κλ1λ2+µ

3λ2
1− λ

2
2

2λ1λ2

)
, 31212 =

1
λ2

1λ
2
2

(
κλ1λ2(1− λ1λ2)+µ

λ2
1+ λ

2
2

2λ1λ2

)
.

Appendix B: Rate-type elasticity with respect to nominal stress

The nominal stress P = F−1
· τ appears in the variational formulation of the boundary value problems,

when the differential equations of motion are expressed in terms of the displacement components. The
rate of work is then φ̇ = P1λ̇1+ P2λ̇2, and the components of P = P1 N1⊗ n1+ P2 N2⊗ n2 are

P1 =
∂φ

∂λ1
, P2 =

∂φ

∂λ2
.

Again omitting details of the derivation, it follows that Ṗj i = 3̂ j ilk Ḟkl , where

3̂1111 =
∂2φ

∂λ2
1
, 3̂2222 =

∂2φ

∂λ2
2
, 3̂1122 = 3̂2211 =

∂2φ

∂λ1∂λ2
,

3̂1212 = 3̂2121 =
1

λ2
1− λ

2
2

(
λ1
∂φ

∂λ1
− λ2

∂φ

∂λ2

)
,

3̂1221 = 3̂2112 =
1

λ2
1− λ

2
2

(
λ2
∂φ

∂λ1
− λ1

∂φ

∂λ2

)
.

Since Ṗ = Ṡ · FT
+ P · LT , the relationship between the pseudomoduli 3̂i jkl and the moduli 3i jkl from

Appendix A is 3̂ j ilk =3 jmln Fim Fkn + S jlδik .
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If the strain energy is given by (6), the elastic pseudomoduli become

3̂1111 = κλ
2
2+µ

λ2

λ3
1

, 3̂2222 = κλ
2
1+µ

λ1

λ3
2

,

3̂1122 = 3̂2211 = κ(2λ1λ2− 1)−µ
λ2

1+ λ
2
2

2λ2
1λ

2
2
,

3̂1212 = 3̂2121 = µ
1

λ1λ2
,

3̂1221 = 3̂2112 = κ(1− λ1λ2)+µ
λ2

1+ λ
2
2

2λ2
1λ

2
2
.
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