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r example, the thickness of a red blood cell is

3mm, respectively.
a b s t r a c t

The constitutive analysis of the mechanical response of thin elastic membranes under

inplane deformation is presented by using the multiplicative decomposition of the

deformation gradient into its areal and distortional parts. Specific results are obtained

for the Evans–Skalak form of the strain energy function. The solution to the problem of

radial stretching of a hollow circular membrane obeying this constitutive model is then

derived. The stress concentration factor is determined as a function of the relative hole

size and the magnitude of the applied tension. The tension boundary is identified above

which no compressive stress appears in the membrane. The limit boundary is

introduced below which the membrane cannot support the applied loading without

unstable wrinkling. For the loading between the tension and the limit boundary,

nonuniformly distributed infinitesimal wrinkles appear within the inner portion of the

membrane, carrying radial tension but no circumferential stress (tension field). The

specific form of the strain energy function is used to describe this behavior, and to

calculate the amount of the membrane area absorbed by infinitesimal wrinkles. The

wrinkled portion is surrounded by the outer portion of the membrane carrying both

radial and circumferential stresses. The limit boundary is reached when wrinkles spread

throughout the membrane. It is shown that for a sufficiently large tension at the outer

boundary, the wrinkling does not spread throughout the membrane no matter how

large the applied tension at the inner boundary of the membrane is, provided that no

rupture takes place. The limiting extent of the tension field in such cases is calculated.

The linearized version of the analysis is characterized by a closed form solution.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A thin membrane is considered whose thickness is so small that the model of the continuum mechanics applies only
within the plane of the membrane. Because of its negligible thickness, applied forces are considered to be distributed along
the length, so that the membrane stresses are defined by the force/length ratios,1 having the dimension N/m. Since an
infinitesimally thin membrane has no buckling resistance, the membrane loading is assumed to be such that the principal
membrane stresses are noncompressive. This continuum model can be used to study some aspects of the mechanical
behavior of thin biological membranes, such as red blood cells (Evans and Skalak, 1980; Fung, 1993; Boal, 2002). More
sophisticated bio-chemo-mechanical models, which include dynamic reorganization and active remodeling of cell during
ll rights reserved.

about 50–100 Å, while its diameter and height (in its equilibrium biconcave shape) are about 8mm
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its large deformation, are needed to explain other aspects of the cell behavior (Gov, 2007; Li et al., 2007; Park et al., 2010).
This is beyond the scope of the present analysis, although it could be pursued at the phenomenological level by extending
the related work on constitutive theory of biological remodeling and growth (Lubarda and Hoger, 2002; Garikipati et al.,
2006; Dervaux et al., 2009; Taber, 2009).

In this paper, we present the constitutive analysis of thin elastic membranes under large inplane deformations by using
the multiplicative decomposition of the deformation gradient into its areal and distortional parts. The deformation
parameters ðz,GÞ are used to account for the two distinct modes of deformation. The strain energy is expressed as the sum
of the contributions from the areal change (represented by the parameter z), and the distortional deformation (represented
by the parameter G). The corresponding decomposition of the stress is established. Specific results are obtained for the
Evans–Skalak form of the strain energy function. The solution to the problem of the radial stretching of a hollow circular
membrane obeying this constitutive model is then derived. The stress concentration factor is determined as a function of
the relative hole size and the magnitude of the applied tension. The tension boundary is identified above which no
compressive stress appears in the membrane. For the loadings below the tension boundary, the membrane will wrinkle
due to the lack of compressive (buckling) strength. We analyze early stages of wrinkling by assuming that wrinkles are
infinitesimal and continuously but nonuniformly distributed within the inner portion of the membrane, which carries
radial tension but no circumferential stress. This is known as a tension field analysis (Pipkin, 1986; Steigmann, 1990;
Haughton, 2001). The specific form of the strain energy function is proposed and used to describe this behavior, and to
calculate the amount of the membrane area absorbed by infinitesimal wrinkles. The inner tension-field portion is
surrounded by the outer portion of the membrane, which carries both radial and circumferential stresses. With the further
increase of loading, infinitesimal wrinkles may spread throughout the membrane. We refer to this limiting state as the
limit boundary state. The membrane cannot support the loading states below the limit boundary without unstable
wrinkling. The analysis of unstable wrinkling and the determination of the shape and discrete distribution of finite
wrinkles is beyond the membrane theory, and requires the incorporation of the bending stiffness of the membrane. It is
shown that for a sufficiently large tension at the outer boundary, the membrane will not reach the limit boundary state no
matter how large the applied tension at the inner boundary of the membrane is, provided that no rupture takes place. The
limiting extent of the tension field in such cases is then calculated. The analysis is performed for the prescribed traction
and for the two types of mixed boundary conditions, with full details given in the case of the traction boundary conditions.
The linearized version of the analysis, applicable to small strains, yields the closed form expressions for the tension and
limit boundaries, and for the stress and displacement fields.
2. Kinematics of deformation

Consider an inplane deformation of a thin membrane element, with the principal stretches l1 and l2. The corresponding
deformation gradient is F¼ l1n1N1þl2n2N2, where Ni are the unit vectors along the principal directions of the stretch
tensor U in the undeformed configuration, and ni ¼R �Ni are the unit vectors in the deformed configuration, along the
principal directions of the stretch tensor V. The inplane rotation tensor R¼ n1N1þn2N2 relates U and V by the polar
decomposition F¼ V � R¼R � U.

Imagine that the total deformation is achieved in two steps: by a purely distortional (isoareal) deformation,
accompanied by the rotation, followed by the deformation which changes the membrane area only (Fig. 1). The
deformation gradient can be accordingly decomposed as F¼ Fa � Fd, where

Fa ¼ laðn1n1þn2n2Þ, Fd ¼ ldn1N1þ
1

ld
n2N2: ð1Þ
Fig. 1. The schematics of the multiplicative decomposition of the deformation gradient F into its areal and distortional parts. The rectangular

element is subjected to distortional deformation with the stretch ratios kd and 1=ld and the rotation, followed by an isotropic areal change with the

stretch ratio la.
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Thus, lald ¼ l1 and la=ld ¼ l2, which can be solved to la and ld to obtain la ¼ ðl1l2Þ
1=2 and ld ¼ ðl1=l2Þ

1=2. The areal and
deviatoric parts of the multiplicative decomposition of the deformation gradient can therefore be expressed as

Fa ¼
ffiffiffiffiffiffiffiffiffiffi
l1l2

p
ðn1n1þn2n2Þ, Fd ¼

1ffiffiffiffiffiffiffiffiffiffi
l1l2

p ðl1n1N1þl2n2N2Þ: ð2Þ

The Lagrangian and Eulerian strains are defined by E¼ ðU2
�dÞ=2 and e¼ ðd�V�2

Þ=2, where d is the unit tensor. It readily
follows that

E¼ Eaþl
2
aEd, e¼ eaþ

1

l2
a

ed, ð3Þ

where

Ea ¼
1
2 ðl

2
a�1Þd, ea ¼

1
2ð1�l

�2
a Þd, ð4Þ

and

Ed ¼
1
2 ðl

2
d�1ÞN1N1þ

1
2ðl
�2
d �1ÞN2N2,

ed ¼
1
2 ð1�l

�2
d Þn1n1þ

1
2ð1�l

2
dÞn2n2: ð5Þ

The traces of Ea and ea are

tr Ea ¼ l2
a�1¼ l1l2�1, tr ea ¼ 1�l�2

a ¼
l1l2�1

l1l2
: ð6Þ

Thus, tr Ea is equal to the area change per unit undeformed area, while tr ea is equal to the area change per unit deformed
area. Similarly,

tr Ed ¼
1

2
ðl2

dþl
�2
d Þ�1¼

1

2

l1

l2
þ
l2

l1

� �
�1,

tr ed ¼ 1�
1

2
ðl2

dþl
�2
d Þ ¼�tr Ed: ð7Þ

The deformation parameter G¼ tr Ed represents a symmetric (arithmetic mean) measure of the aspect ratio change (Evans
and Skalak, 1980). This parameter can also be expressed in terms of the angles f and c (Fig. 2a) as

G¼
1

2
tan

j
2
þtan

c
2

� �
�1: ð8Þ

In addition

G¼
½1�tanðj=2Þ�2

2tanðj=2Þ
¼ ð1þtan2gÞ1=2

�1, ð9Þ

where g¼ 903
�j¼c�903 is the angle change between the initially orthogonal diagonals of the square produced by the

distortional (shear) deformation (Fig. 2b). Its tangent is

tang¼ 1�tan2ðj=2Þ

2tanðj=2Þ
¼

1

2

l1

l2
�
l2

l1

� �
, ð10Þ

which is a commonly used measure of finite shear strain in a simple shear test. In particular, the amount of the deviatoric
portion of the strain ed is e0d ¼ ðtangÞ=2.
Fig. 2. (a) The angles j and c between the diagonals of the membrane element in its deformed state, under stretch ratios l1 and l2, used to give the

geometric interpretation of G. (b) The angle change g due to shearing of a membrane element, with the stretch ratios l1 and l2 ¼ 1=l1 along the two

diagonals of the element.
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3. Kinetics of deformation

If f¼fðl1,l2Þ is the strain energy per unit initial area, the Cauchy stress components are

s1 ¼
1

l2

@f
@l1

, s2 ¼
1

l1

@f
@l2

: ð11Þ

The strain energy of an isotropic membrane must be a symmetric function of l1 and l2. Evans and Skalak (1980) proposed
that f¼fðz,GÞ, where

z¼ l1l2�1, G¼
1

2

l1

l2
þ
l2

l1

� �
�1, ð12Þ

so that in the undeformed configuration z¼G¼ 0. As discussed earlier, z¼ tr Ea is the area change per unit undeformed
area, while G¼ tr Ed is a measure of the distortional deformation. Consistent with the introduced multiplicative
decomposition of the deformation gradient, the strain energy is decomposed as f¼faðzÞþfdðGÞ, where fa represents the
strain energy due to the area change, and fd due to distortional deformation. In this case, from (11) there follows:

s1,2 ¼ sa7
1

l2
a

sd, ð13Þ

where

sa ¼
dfa

dz
, sd ¼

dfd

dG
tang: ð14Þ

A simple model of nonlinear elastic membrane is obtained if it is assumed that fa ¼ kz
2=2 and fd ¼ mG, so that

f¼
1

2
kðl1l2�1Þ2þm 1

2

l1

l2
þ
l2

l1

� �
�1

� �
, ð15Þ

where k and m are the areal (bulk) modulus and the shear modulus of the membrane, respectively. For example, in the red
blood cell, the areal modulus of the membrane is controlled mostly by the phospholipidic bilayer, while the shear modulus
is determined by the elastic properties of the cytoskeleton, a network of spectrin strands bound to the bilayer. The strain
energy representation (15) was first proposed by Evans and Skalak (1980). The corresponding stresses are

s1,2 ¼ kðl1l2�1Þ71
2m l�2

2 �l
�2
1

� �
: ð16Þ

3.1. Isoareal membranes

If the membrane is infinitely stiff to the area change,2 there is a deformation constraint l1l2�1¼ 0. In this case, one can
introduce the strain energy function F¼fðl1,l2Þ�p0ðl1l2�1Þ, such that l2s1 ¼ @F=@l1 and l1s2 ¼ @F=@l2. This gives

s1 ¼ l1
@f
@l1
�p0, s2 ¼ l2

@f
@l2
�p0, ð17Þ

where p0=p0(x1,x2) is determined by solving a specific boundary-value problem under the consideration. Furthermore,
since l2 ¼ 1=l1, from (17) we obtain

s1þs2 ¼�2p0, s1�s2 ¼ l1
df
dl1

: ð18Þ

By taking the strain energy to be f¼fd ¼ mG, this becomes

s1þs2 ¼�2p0, s1�s2 ¼ m l2
1�l

�2
1

� �
: ð19Þ

In the case of small deformations of an isoareal membrane (e1þe2 ¼ 0), the strain energy is f¼ 2me2
1. The strain

components are e1,2 ¼ 7 ðs1�s2Þ=4m, with the corresponding stresses s1,2 ¼�p072me1, where p0 is an arbitrary isotropic
tension. The corresponding modulus of elasticity and the coefficient of lateral contraction are E¼ 4m and n¼ 1.

4. Radial stretching of a hollow circular membrane

The red blood cell membrane is a composite structure consisting of an outer phospholipid bilayer, transmembrane
proteins, and a network of spectrin molecules attached to the inner cytoplasmic side of the cell. Spectrin is a long
filamentous protein, which is cross-linked at junctional complexes containing actin. The transmembrane proteins are
tethered to spectrin by ankyrin, which is anchored in the membrane by a covalently bound palmitoyl side chain (Nelson
2 For example, the shear modulus of the red blood cell is estimated to be in the range 5220mN=m, while the areal modulus is in the order 103–104

higher than that (Fung, 1993; Dao et al., 2003).
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Fig. 3. The inner and outer deformed radii of a hollow membrane are a and b, while the corresponding tensions at two boundaries are p and q.
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and Cox, 2005). The areal modulus of the cell membrane is controlled mostly by the phospholipidic bilayer, while the shear
modulus is determined by the elastic properties of the cytoskeleton (Hansen et al., 1996). The viscous properties of the cell
are due to glycoproteins, lipid rafts, integral and peripheral membrane proteins, and transmembrane cholesterol (Berk
et al., 1989; Dao et al., 2003; Lubarda and Marzani, 2009). More involved cell models would incorporate active topological
remodeling (dynamic reorganization) of spectrin network (noninert cytoskeleton), due to mechanical, thermal, or chemical
driving forces, which results in evolving mechanical properties during large deformation of the red blood cell (Li et al.,
2007). For example, it was recently proposed that a metabolic remodeling due to adenosine 5

0

-triphosphate (ATP) is
manifested by association and disassociation of spectrin filaments within the network, or between the cytoskeleton and
the lipid membrane, the dissociated filaments spending a longer time disconnected when the network is stretched (Gov,
2007; Park et al., 2010).

The mechanical characterization of the red blood cell is commonly achieved by the micropipette aspiration technique
(Evans and Skalak, 1980; Fung, 1993), in which a suction pressure causes the cell to be drawn into a glass tube. If Dp is the
pressure difference between the cell and the pipette of inner radius a (suction pressure), the longitudinal stress (per unit
length) in the cylindrical portion of the membrane drawn into the pipette is3 p¼ aDp=2. Assuming that the membrane
slides smoothly (freely) at the tip of a small caliber pipette applied to a relatively flat region of the cell membrane, the
tension over the inner boundary of the horizontal flat portion of the membrane is also equal to p. With this as a motivation,
we consider a hollow circular membrane under internal tension p and external tension q, which accommodates for the
pressure difference across the membrane of the undeformed cell. The inner and outer radii of the membrane in its initial,
undeformed configuration are a0 and b0, while a and b are the radii in the deformed configuration (Fig. 3). The initial radius
r0 at an arbitrary point of the membrane becomes r=r(r0). The corresponding principal stretches are lr ¼ dr=dr0 and
ly ¼ r=r0. It is assumed that the membrane is infinitely stiff to its area change, so that the constraint lrly ¼ 1 holds, which
gives r dr¼ r0 dr0, i.e., r2=r0

2+C, where C is a constant to be determined from the boundary conditions.4

Denoting by sr and sy the radial and circumferential stress components, the equilibrium equation, in the absence of
body force, is

r
dsr

dr
þsr�sy ¼ 0: ð20Þ

In view of the constitutive equations (19) for an isoareal membrane, the stress difference is sr�sy ¼ mðl
�2
y �l

2
yÞ. Since

dr¼ r0 dlyþly dr0 and dr0 ¼ ly dr, the differential equation (20) becomes

dsr

dly
þm 1

ly
þ

1

l3
y

 !
¼ 0, ð21Þ

which has the solution

sr ¼
1

2
m 1

l2
y

�lnl2
y

 !
þD¼

1

2
m

r2
0

r2
�ln

r2

r2
0

 !
þD, ð22Þ

where D is an integration constant. The expression (22) can be conveniently expressed in terms of r0 as

sr ¼
1

2
m 1

1þC=r2
0

�ln 1þ
C

r2
0

 !" #
þD: ð23Þ
3 If the magnitude of the suction pressure is 50 Pa, and with the radius of the pipette typically about 1mm, the magnitude of p is 25mN=m, which is

about twice the value of the shear modulus, taken to be in the middle of its estimated range 5220mN=m.
4 Beginning with the early work by Rivlin and Thomas (1951), there have been numerous analytical and numerical studies of the stress and

deformation fields in hollow membranes or sheets made of highly elastic materials, described by different nonlinear constitutive models; e.g., Green and

Adkins (1970), Ogden (1984), Haughton (1998), and the references cited therein.
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The corresponding hoop stress follows from (20), and is

sy ¼
1

2
m 2 1þ

C

r2
0

 !
�

1

1þC=r2
0

�ln 1þ
C

r2
0

 !" #
þD: ð24Þ

The two boundary conditions needed to specify the constants C and D, srða0Þ ¼ p and srðb0Þ ¼ q, give

1

2
m 1

1þx
�lnð1þxÞ

� �
þD¼ p, ð25Þ

1

2
m 1

1þx=k2
�ln 1þ

x

k2

� �� �
þD¼ q, ð26Þ

where k¼ b0=a041 and x¼ C=a2
04�1. The lower bound on x is set to prevent the negative argument in the logarithmic

function appearing in (25). The subtraction of (26) from (25) gives a nonlinear equation for x:

1

2

1

1þx=k2
�

1

1þx
�ln

1þx=k2

1þx

� �
¼

q�p

m : ð27Þ

This equation is solved numerically, and its solution is plotted in Fig. 4 vs. the loading parameter ðq�pÞ=m, for various values
of the ratio k. Having x so determined, the constant D follows from (25). The radial displacement is uðr0Þ ¼

r�r0 ¼ ðr
2
0þxa2

0Þ
1=2
�r0.

The presence of the loading parameter (q�p) in (27) can be explained by noting that the loading (p,q) can be
decomposed into the loading (q�p) over the external boundary, and the tension p over both boundaries. Only the (q�p)
portion of the loading causes the deformation of an isoareal membrane. It is important to observe that the tension applied
over the outer boundary of a hollow membrane gives rise to a tensile hoop stress in the membrane, while the tension
applied over the inner boundary induces a compressive hoop stress in the membrane. In the later case, a superposition of
an appropriate tension at both boundaries can bring the membrane to an overall tensile state of stress.

For example, if b0=3a0, p=0, and q¼ 0:75m, we obtain x=2.447 (i.e., C=2.477a0
2 and D¼ 0:4737m). The variations of the

corresponding radial and hoop stresses from the inner to the outer boundary of the membrane are shown in Fig. 5a. The
plots of uðr0Þ=r0 ¼ ½1þxða0=r0Þ

2
�1=2�1 vs. r0/a0, for several values of the applied tension q, under p=0 and for k=3, are shown

in Fig. 5b. This type of plots was used by Rivlin and Thomas (1951) to compare their nonlinear rubber model with the
experimental results.

4.1. Stress concentration factor

The maximum shear stress at the radius r0, along the 7451 directions relative to the radial direction, is
tmaxðr0Þ ¼ ðsy�srÞ=2. The maximum shear stress at the inner boundary of the membrane and the hoop stress there are

tmaxða0Þ ¼
1

2
mx

2þx

1þx
, syða0Þ ¼ pþ2tmaxða0Þ: ð28Þ
−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 4. The plots of x vs. ðq�pÞ=m according to (27). The solid curve is for k=5, the dashed curve is for k=3, and the dotted curve is for k=2.
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Fig. 6. (a) The shear stress tmaxða0Þ vs. the loading parameter (q�p) in the case k=10, according to (31). The straight line corresponds to linear theory. (b)

The hoop stress vs. the applied tension q in the case p=0 and k=10. The stress concentration factor syða0Þ=q increases with q, whereas the linear theory

predicts the constant value of 2 (the slope of the straight line).
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Fig. 5. (a) The variations of the radial (solid curve) and hoop (dashed curve) stresses, normalized by q, along the radius in the case k=3, p=0, and

q¼ 0:75m. (b) The variation of the displacement u(r0)/r0 with r0/a0 corresponding to the tension q of amount 0:25m (lower-most curve), 0:5m, 0:75m, and m
(upper-most curve).
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The plot of tmaxða0Þ vs. the loading parameter (q�p), in the case k=10, is shown in Fig. 6a. The straight line in this figure
corresponds to linear theory. The amplification of the stress concentration factor due to nonlinearity is more pronounced
for positive values of the loading parameter.

The increase of the stress concentration factor for the hoop stress with the increasing tension q, under p=0, is shown in
Fig. 6b. The stress concentration factor syða0Þ=q increases with q, being greater than the linear theory prediction of 2. For
example, if q¼ 0:5m , the stress concentration factor is equal to 2.438, while for q¼ m it is 3.479.
4.2. Tension boundary

For negative values of (q�p) in Fig. 6a, the absence of the compressive hoop stress in the membrane needs to be
verified, because the tension p at the inner boundary causes the compressive hoop stress, which must be exceeded by the
tensile hoop stress due to tension q applied at the outer boundary of the membrane. In other words, the negative values of
(q�p) give rise to compressive hoop stress at the inner boundary, which must be exceeded by the tensile hoop stress (p)
due to tension p applied at both boundaries, to avoid the net compression in the hoop direction. Otherwise, in the absence
of compressive strength and buckling resistance of the membrane, the membrane wrinkling would take place. In order that
tension prevails throughout the membrane, we require that syða0ÞZ0, which specifies the maximum applied tension p at
the inner boundary relative to applied tension q at the outer boundary. Thus, from (28), pZpc, where

pc ¼�mx
2þx

1þx
: ð29Þ

The tensile boundary shown in Fig. 7 is obtained by calculating, for each x4�1, the critical value of pc from (29), and
ðqc�pcÞ, and thus qc, from (27). The three curves shown in Fig. 7 correspond to k=2,3,10. In the loading range (p,q) above
the tension boundary ðpc,qcÞ, tensile stresses prevail throughout the membrane; in the loading range below the tension
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Fig. 7. The tension boundary corresponding to syða0Þ ¼ 0. The tensile stresses prevail throughout the membrane for the loading pairs (p,q) which lie

above the plotted curves. The solid curve is for k=2, the dashed curve is for k=3, and the dotted curve is for k=10.
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boundary, the hoop stress becomes compressive near the inner portion of the membrane, in spite of tensile radial stresses
at both boundaries.

If q=0, any level of applied tension p at the inner boundary will induce a compressive circumferential stress, and, in the
absence of buckling strength, cause immediate wrinkling of the membrane. In view of this observation, we note that the
well-known analysis of the micropipette aspiration test by Evans and Skalak (1980, pp. 160–166), which assumes q=0 at
the remote boundary and which does not account for this wrinkling, should be reexamined.
4.3. Tension field

A simplified analytical study of the membrane response for the loading below the tension boundary can be performed
by adopting the so-called tension field theory (Reissner, 1938; Pipkin, 1986; Steigmann, 1990). In this theory, the details of
wrinkling are ignored by assuming that wrinkles are continuously distributed and infinitesimal. Such analysis has been
used to study various thin membrane problems, including bending of a stretched rectangular membrane and twisting of a
hollow stretched membrane (Miller et al., 1985), combined stretching and shearing of a rectangular strip, with and without
a hole (Haseganu and Steigmann, 1994), and wrinkling of annular disks made of Varga materials subjected to radial
displacements (Haughton and McKay, 1995; Haughton, 2001).

If the loading (p,q) lies below the tension boundary in Fig. 7, the inner portion of the membrane (arrrr) supports only
the radial stress, while the circumferential stress is identically equal to zero ðsy ¼ 0Þ. The extent of infinitesimal wrinkling
r will be determined in the sequel. Thus, the equilibrium equation in this portion of the membrane is

r
dsr

dr
þsr ¼ 0, arrrr, ð30Þ

with the solution sr ¼ pa=r¼ tr=r, where t¼ srðrÞ is the radial stress at the boundary between the tension region and the
outside portion of the membrane.

Within the tension field region, the wrinkles are assumed to be continuously distributed and infinitesimal. As a
consequence of wrinkling, which takes place in circumferential direction, the effective area of the membrane within the
plane of the membrane will decrease and the local area decrease is more pronounced in the region of more intense
wrinkling.5 Consequently, we shall model the wrinkled membrane in the tension region as a flat membrane carrying radial
tension but no circumferential stress, capable of decreasing its effective flat area. Therefore

sr ¼
1

ly
@f�
@lr

, sy ¼
1

lr

@f�
@ly
¼ 0 ðarrrrÞ, ð31Þ

where f� is the strain energy density (per unit initial area) of the wrinkled membrane. The vanishing of the circumferential
stress implies that f� ¼f�ðlrÞ. Since at the boundary of the wrinkled region (r¼ r), the radial stress is sr ¼ mðl2

r�l
�2
r Þ, and
5 Another type of wrinkling of the erythrocyte membrane, not considered here, is associated with thermal undulations and nonequilibrium dynamic

fluctuations—flickering, which is enhanced by local breaking and reforming of the spectrin network (Park et al., 2010).
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since there ly ¼ l�1
r , the following representation of the strain energy density suggests itself

f� ¼
1

2
mðl2

r þl
�2
r �2Þ, lr Z1: ð32Þ

The corresponding radial stress is

sr ¼ m
1

lrly
ðl2

r�l
�2
r Þ, ð33Þ

i.e.,

sr ¼ m
r0

r

dr0

dr

dr

dr0

� �2

�
dr0

dr

� �2
" #

: ð34Þ

In the outer portion of the membrane (rrrrb), both radial and circumferential tensile stresses exist, governed by the
expressions (23) and (24). Denoting the radial stress at r¼ r by t, the boundary conditions srðrÞ ¼ t and srðbÞ ¼ q give

1

2
m 1

1þx
�lnð1þxÞ

� �
þD¼ t, ð35Þ

1

2
m 1

1þx=k2
�ln 1þ

x

k2

� �� �
þD¼ q, ð36Þ

where k¼ b0=r0, and

x¼
C

r2
0

4�1, C ¼ r2�r2
0 , r0Zr0: ð37Þ

The subtraction of (35) from (36) gives

1

2

1

1þx=k2
�

1

1þx
�ln

1þx=k2

1þx

� �
¼

q�t

m : ð38Þ

But the circumferential stress at r¼ r is equal to zero, so that

1

2
m 2ð1þxÞ�

1

1þx
�lnð1þxÞ

� �
þD¼ 0: ð39Þ

When this is combined with (35) to eliminate D, the tension t can be expressed as

t¼�m 1þx�
1

1þx

� �
: ð40Þ

The substitution of (40) into (38) yields

1

2

1

1þx=k2
þ

1

1þx
�2ð1þxÞ�ln

1þx=k2

1þx

� �
¼

q

m : ð41Þ

For a given q=m and assumed value of r04a0, this equation can be solved for x.
Having x so determined, the tension t follows from (40), while r¼ r0ð1þxÞ1=2. The radial stress in the tension region can

therefore be expressed as

sr ¼ m
ar0

r
, a¼ ð1þxÞ1=2 1

1þx
�1�x

� �
: ð42Þ

It remains to determine the tension p associated with the assumed value of r0 and calculated x, and to determine the
variation of the displacement within the tension field region. Both follow by determining the variation r¼ rðr0Þ within the
tension field region. This is accomplished by equating the expressions (34) and (42), which yields a differential equation

dr

dr0

� �4

�
ar0

r0

dr

dr0

� �3

�1¼ 0, a0rr0rr0: ð43Þ

This quartic equation for dr=dr0 has only one real and positive root, which is

dr

dr0
¼
ar0

4r0
þ

1

2
ðf þgÞ, ð44Þ

where the functions f= f(r0) and g=g(r0) are

f ¼
a2r2

0

4r2
0

þz

 !1=2

, g ¼
a2r2

0

2r2
0

�zþ
a3r3

0

4r3
0 f

 !1=2

: ð45Þ
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The function z=z(r0) is defined by

z¼ �
a2r2

0

2r2
0

þw1=2

 !1=3

�
a2r2

0

2r2
0

þw1=2

 !1=3

, w¼
64

27
þ
a4r4

0

4r4
0

: ð46Þ

The first order quasi-linear differential equation (44), with the boundary condition rðr0Þ ¼ r0ð1þxÞ1=2, can be solved
numerically by using the ode45 solver. The displacement within the tension field is then u(r0)=r(r0)�r0, while the
corresponding tension at the inner boundary of the membrane is, from (42), p¼ mar0=a, where a=r(a0).

The variations of sr and sy with r0, in the case r0 ¼ 1:5a0 and q¼ 0:5m, so that x=�0.3518 and p¼ 1:968m, are shown in
Fig. 8a. The dotted curves correspond to the analysis based on the original theory, without the correction based on the
tension field analysis. Due to the stress redistribution by the inclusion of the tension field, the value of r at which
the circumferential stress vanishes is greater than that predicted by the analysis without the tension field correction. Note
the continuity of the gradient of the radial stress at r¼ r, which follows from (30) and the continuity of the radial stress
itself. The effect of wrinkling on both radial and circumferential stresses increases with the increase of r0. Fig. 8b shows the
variation of the displacement u=u(r0). The end displacements are u(a0)=�0.451a0 and u(b0)=�0.135a0. The corresponding
values without the tension field correction are u(a0)=�0.422a0 and u(b0)=�0.113a0, which is in magnitude substantially
less inward than the displacements based on the tension field theory. This difference may be of importance for the
interpretation of results obtained from the red blood aspiration tests in the pressure range for which the wrinkling of
the membrane may take place.

The wrinkling between a0 and r0 has absorbed the membrane area of the amount DAw ¼ pðr2
0�a2

0Þ�pðr2�a2Þ ¼

p½r2ða0Þ�a2
0�xr2

0�. For example, if r0 ¼ 1:5a0, this gives a 7.43% area reduction relative to the initial area pðr2
0�a2

0Þ of the
wrinkled region. Fig. 9a shows the variation of the specific area decrease DðdAÞ=dA¼ 1�lrly along a0rr0rr0. The
corresponding effective area modulus of the wrinkled membrane is negative because, due to its wrinkling, the membrane
area decreases in spite of being subjected to tensile radial stress.
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Fig. 8. (a) The radial stress distribution with the tension field correction (solid curve) and without it (nearby dotted curve). The dashed curve and its

nearby dotted curve are the corresponding variations of the hoop stress. The curves are obtained for the loading p¼ 1:968m and q¼ 0:5m, while b0=3a0.

The tension field ðsy ¼ 0Þ extends to r0 ¼ 1:5a0 and t ¼srðr0Þ ¼ 0:894m. (b) The displacement variation with the tension field correction (solid curve) and

without it (dashed curve), for the same loading as in part (a).
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Fig. 9. (a) The variation of the specific area decrease 1�lrly along r0 at: (a) r0 ¼ 1:5a0, and (b) the limiting state r0 ¼ b0. The plots are for q¼ 0:5m and

b0=3a0.
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4.4. Limit boundary

The maximum extent of the tension field is r0 ¼ b0, in which case the entire membrane is infinitesimally wrinkled and
under radial tension sr ¼ pa=r¼ qb=r. In the limit as r0-b0, the expressions (40) and (41) both give

1þx�
1

1þx
¼�

q

m : ð47Þ

For a given q, this can be solved for (1+x) to obtain

1þx¼
1

2
�

q

m
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q

m

� �2

þ4

s2
4

3
5: ð48Þ

The parameter a in (42) reduces to a¼ ð1þxÞ1=2qm. With this value of a, and with r0 ¼ b0 in (45) and (46), the differential
equation (44) can be solved numerically, subject to the boundary condition r(b0)=b=b0(1+x)1/2. When this is done, we
obtain the variation r=r(r0) and thus the displacement field u(r0)=r(r0)�r0. The radial stress sr ¼ qb=r becomes

sr ¼
b0ð1þxÞ1=2

rðr0Þ
q, a0rr0rb0: ð49Þ

Fig. 10a shows the variation of the radial stress in the case q¼ 0:5m (giving x=�0.2192). The tension on the internal
boundary of the membrane is p¼ 9:488m. The hoop stress is zero everywhere in the membrane. Without the tension field
correction, the hoop stress is as shown by the dotted line in Fig. 10a, with syða0Þ ¼�6:845m and syðb0Þ ¼ 0:285m. The plot of
u=u(r0) is shown in Fig. 10b. The end displacements are u(a0)=�0.86a0 and u(b0)=�0.349a0. The corresponding values
without the tension field correction are u(a0)=�0.753a0 and u(b0)=�0.161a0, which is substantially less inward than the
displacements based on the tension field theory. The magnitude of the maximum difference of the displacement predicted
by two theories is 0.293a0, which occurs at r0=1.474a0. The infinitesimal wrinkling of the membrane has absorbed 12.41%
of the membrane area. Fig. 9b shows the corresponding variation of the specific area decrease 1�lrly along the radius of
the membrane.

The limit boundary q=q(p), specifying the loading pairs (p,q) for which the infinitesimal wrinkling has spread
throughout the entire membrane is obtained by repeating the above calculations for each value of qZ0. The lower curve in
Fig. 11a is the resulting limit boundary, in the case b0=3a0. The upper curve represents the tension boundary. The loading
pairs (p,q) below the limit boundary cannot be supported by the membrane without its unstable (localized) wrinkling.6 The
limit and tension boundaries are closer to each other smaller the value of the ratio b0/a0. This is illustrated in Fig. 11b. For
each b0/a0, there is a saturation value of q¼ q̂ to which the limit boundary asymptotically approaches as p increases
indefinitely. If b0=3a0, the limit boundary approaches q̂ ¼ 0:5725m as p increases indefinitely. If q4 q̂, the membrane will
not wrinkle unstably regardless of how large is the applied tension p at the inner boundary, provided that no rupture
intervenes in the limiting process. In fact, if q4 q̂ and p-1, from (49) it follows that the radius of the hole a=r(a0) shrinks
to zero.

For example, if q¼ 0:75m and b0=3a0, then x=�0.4346 and the limiting extent of the tension field is r0 ¼ 1:96a0, the
radial tension at r0 ¼ r0 being t¼ 1:203m, as calculated from (40). The plot of r0=a0 versus p=m in this case is shown in
6 The analysis of unstable wrinkling and the determination of the shape and distribution of finite wrinkles is beyond the membrane theory, and

requires the incorporation of the bending stiffness of the membrane (Helfrich, 1973; Steigmann, 1999). See also Mansfield (1960).
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Fig. 12. (a) The increase of the extent of infinitesimal wrinkling r0 with the increasing p4pc, at constant q¼ 0:5m (solid curve) and q¼ 0:75m (dashed
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0 ¼ 1:96a0. (b) The variation of the normalized deformed radii a/a0 (solid curve) and b/b0 (dashed curve) with the increasing p, at constant

q¼ 0:75m. In the limit as p increases indefinitely, r0-1:96a0 and a-0.
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loading pairs (p,q) below the limit boundary (lower curve) cannot be supported by the membrane without its unstable wrinkling. The plots are for b0=3a0,

in which case the limit boundary approaches q̂ ¼ 0:5725m as p increases indefinitely. (b) The limit and tension boundaries are closer to each other smaller
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Fig. 12a. The critical value of p at the tension boundary is pc ¼ 1:591m, which is calculated from (29) in the case q¼ 0:75m.
The corresponding x=�0.5177 was calculated by solving the nonlinear equation obtained by substituting (29) into (27).
The variation of the normalized deformed radii a/a0 and b/b0 with p is shown in Fig. 12b.

Fig. 12a also shows the variation of r0 ¼ r0ðr0Þ in the case b0=3a0 and q¼ 0:5m, as p increases from the value pc ¼ 1:013m
at the tension boundary (with the corresponding x=�0.3855), to p̂c ¼ 9:488m at the limit boundary (with the
corresponding x¼�0:2192m). The tension field analysis, with continuously distributed infinitesimal wrinkles, does not
apply beyond this value of p̂c.
5. Discussion

We have presented in this paper the constitutive analysis of thin biological membranes by using the multiplicative
decomposition of the deformation gradient into its areal and distortional parts. Kinematic aspects of the analysis were
presented in Section 2, and the kinetic aspects in Section 3. Consistent with the introduced multiplicative decomposition of
the deformation gradient, the strain energy was decomposed into contributions from the areal and distortional
deformations. The stress response was derived in the general case and in the case of the Evans–Skalak biological membrane
model. The solution to the problem of the radial stretching of a hollow circular membrane obeying this constitutive model
was derived in Section 4. The stress concentration factor was determined as a function of the relative hole size and the
magnitude of the applied tension. Its amplification due to nonlinearity is evaluated. We identify the tension boundary
above which no compressive stress appears in the membrane, and the limit boundary below which the membrane cannot
support the loading without unstable wrinkling. For the loadings between the tension and the limit boundary, tension field
theory is used to derive the stress and displacement fields in the region of continuously distributed infinitesimal wrinkles.
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The specific form of the strain energy function is used to describe this behavior and to calculate the amount of the
membrane area absorbed by infinitesimal wrinkling. The limit boundary is reached when the wrinkles spread throughout
the membrane. It is shown that for a sufficiently large tension at the outer boundary, the membrane will not reach the state
at the limit boundary no matter how large the applied tension at the inner boundary of the membrane is, provided that no
rupture takes place. The limiting extent of the wrinkled zone in such cases is determined.

The presented analysis of the radial stretching of a hollow membrane can be extended to the mixed type boundary
conditions, in which the displacement is prescribed on the inner boundary and the traction on the outer boundary, or vice versa.
The details of the derivation are omitted for brevity; only comments on some of the obtained results are given. The variations of
sr and sy with r0, in the case p¼ 1:968m and ub=�0.135a0, so that the tension field extends to r0 ¼ 1:5a0, are shown in
Fig. 13a. The dotted curves correspond to the analysis which does not include the correction based on the tension field. There is
a dramatic difference between the stress fields predicted by the two theories. While the tension field theory predicts q¼ 0:5m,
the value q¼�0:621m is obtained in the theory without the tension field correction. In the latter case, the hoop stress is
negative (compressive) throughout the membrane, while syðb0Þ ¼ 0:316m according to tension field theory. Fig. 13b shows the
corresponding variation of the displacement u=u(r0). Both theories predict the same displacements outside the tension field,
because the prescribed displacement ub uniquely specifies the displacement in an isoareal (unwrinkled) portion of the
membrane. The difference in the predicted displacement within the wrinkled region increases toward the hole of the
membrane, so that u(a0)=�0.451a0 according to the tension field theory, while u(a0)=�0.543a0 without the tension field
correction. Physically, the reason for a large difference in the stress field is that the prescribed displacement ub=�0.135a0,
under tensile stress at the inner boundary of amount 1:968m, is so much inward that it can take place in the membrane with a
compressive strength only if accompanied (aided) by the compression of amount 0:621m at the outer boundary.

Finally, we note that in the case of infinitesimally small strains, the nonlinear equation (27) reduces to a linear equation
for x. The tension boundary in the (p,q) plane is a straight line q=p(1+a2/b2)/2, while the limit boundary is q=pa/b. For
example, if q=0, the membrane cannot support any p without wrinkling, because the positive p-axis is under the limit
boundary. On the other hand, if p=0, the membrane can support any tension q (before rupture or other tensile failure),
because the positive q-axis is above the tension boundary. For a very small hole in a large membrane, the tension boundary
approaches the line q=p/2, while the limit boundary approaches the horizontal line q=0.
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limit. J. Mech. Phys. Solids 57, 458–471.
Evans, E.A., Skalak, R., 1980. Mechanics and Thermodynamics of Biomembranes. CRC Press, Boca Raton.
Fung, Y.C., 1993. Biomechanics: Mechanical Properties of Living Tissues. Springer, New York.



ARTICLE IN PRESS

V.A. Lubarda / J. Mech. Phys. Solids 58 (2010) 860–873 873
Garikipati, K., Olberdin, J.E., Narayanan, H., Arruda, E.M., Grosh, K., Calve, S., 2006. Biological remodelling: stationary energy, configurational change,
internal variables and dissipation. J. Mech. Phys. Solids 54, 1493–1515.

Gov, N.S., 2007. Active elastic network: cytoskeleton of the red blood cell. Phys. Rev. E 75, 011921-1–011921-6.
Green, A.E., Adkins, J.E., 1970. Large Elastic Deformations. Oxford University Press, Oxford.
Hansen, J.C., Skalak, R., Chien, S., Hoger, A., 1996. An elastic network model based on the structure of the red blood cell membrane skeleton. Biophys. J. 70,

146–166.
Haseganu, E.M., Steigmann, D.J., 1994. Analysis of partly wrinkled membranes by the method of dynamic relaxation. Comput. Mech. 14, 596–614.
Haughton, D.M., 1998. Exact solutions for elastic membrane disks. Math. Mech. Solids 4, 393–410.
Haughton, D.M., 2001. Elastic membranes. In: Fu, Y.B., Ogden, R.W. (Eds.), Nonlinear Elasticity: Theory and Applications. Cambridge University Press,

Cambridge, UK, pp. 233–267.
Haughton, D.M., McKay, B.A., 1995. Wrinkling of annular discs subjected to radial displacements. Int. J. Eng. Sci. 33, 335–350.
Helfrich, W., 1973. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28C, 693–703.
Li, J., Lykotrafitis, G., Dao, M., Suresh, S., 2007. Proc. Nat. Acad. Sci. USA 104, 4937–4942.
Lubarda, V.A., Hoger, A., 2002. On the mechanics of solids with a growing mass. Int. J. Solids Struct. 39, 4627–4664.
Lubarda, V.A., Marzani, A., 2009. Viscoelastic response of thin membranes with application to red blood cells. Acta Mech. 202, 1–16 (with Addendum, Acta

Mechanica, in press).
Mansfield, E.H., 1960. On the buckling of an annular plate. Q. J. Mech. Appl. Math. 13, 16–23.
Miller, R.K., Hedgepeth, J.M., Weingarten, V.I., Das, P., Kahyai, S., 1985. Finite element analysis of partly wrinkled membranes. Computers & Structures 20,

631–639.
Nelson, D.L., Cox, M.M., 2005. Lehninger Principles of Biochemistry, fourth ed. W.H. Freeman, New York.
Ogden, R.W., 1984. Non-Linear Elastic Deformations. Ellis Horwood Ltd., Chichester, England (second ed., Dover, 1997).
Park, Y.-K., Best, C.A., Auth, T., Gov, N.S., Safran, S.A., Popescu, G., Suresh, S., Feld, M.S., 2010. Proc. Nat. Acad. Sci. USA 107, 1289–1294.
Pipkin, A.C., 1986. The relaxed energy density for isotropic elastic membranes. IMA J. Appl. Math. 36, 85–99.
Reissner, E., 1938. On tension field theory. In: Proceedings of the Fifth International Congress for Applied Mechanics, pp. 88–92.
Rivlin, R.S., Thomas, A.G., 1951. Large elastic deformations of isotropic materials. VIII. Strain distribution around a hole in a sheet. Philos. Trans. R. Soc.

Lond. A 243, 289–298.
Steigmann, D.J., 1990. Tension field theory. Proc R. Soc. Lond. A 429, 141–173.
Steigmann, D.J., 1999. Fluid films with curvature elasticity. Arch. Ration. Mech. Anal. 150, 127–152.
Taber, L.A., 2009. Towards a unified theory for morphomechanics. Philos. Trans. R. Soc. A 367, 3555–3583.


	Constitutive analysis of thin biological membranes with application to radial stretching of a hollow circular membrane
	Introduction
	Kinematics of deformation
	Kinetics of deformation
	Isoareal membranes

	Radial stretching of a hollow circular membrane
	Stress concentration factor
	Tension boundary
	Tension field
	Limit boundary

	Discussion
	Acknowledgment
	References




