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Abstract

The complementary energy momentum tensor, expressed in terms of the spatial gradients of stress

and couple-stress, is used to construct the Ĵk and L̂k conservation integrals of infinitesimal micropolar

elasticity. The derived integrals are related to the release rates of the complementary potential energy

associated with a defect translation or rotation. A nonconserved M̂ integral is also derived and related

to the energy release rate that is associated with a self-similar cavity expansion. The results are

compared to those obtained on the basis of the classical energy momentum tensor, expressed in terms

of the spatial gradients of displacement and rotation, and the release rates of the potential energy. It is

shown that the evaluation of the complementary conservation integrals is of similar complexity to that

of the classical conservation integrals, so that either can be effectively used in the energetic analysis of

the mechanics of defects. The two-dimensional versions of the dual conservation integrals are then

derived and applied to an out-of-plane shearing of a long cracked slab.
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1. Introduction

There has been a great amount of research during the past several decades devoted to
conservation integrals in classical, micropolar, and nonlocal elasticities, thermoelasticity,
see front matter r 2007 Elsevier Ltd. All rights reserved.

.jmps.2007.03.005

nding author. Tel.: +1858 534 3169; fax: +1 858 534 5698.

dress: vlubarda@ucsd.edu (V.A. Lubarda).

www.elsevier.com/locate/jmps
dx.doi.org/10.1016/j.jmps.2007.03.005
mailto:vlubarda@ucsd.edu


ARTICLE IN PRESS
V.A. Lubarda, X. Markenscoff / J. Mech. Phys. Solids 55 (2007) 2055–20722056
piezoelectricity, finite-strain elasticity, and related branches of continuum mechanics. Most
of this research has been inspired by Eshelby’s (1951, 1956) pioneering work on the energy
momentum tensor and configurational forces on moving material defects such as
inclusions, voids, cracks, dislocations, and phase boundaries. Additional impetus was
provided by the work of Knowles and Sternberg (1972), Budiansky and Rice (1973), and
Eshelby (1975), who related the conservation integrals to Noether’s theorem on invariant
variational principles and established their physical interpretations. These results were of
practical significance for fracture and damage mechanics, dislocations studies, mechanics
of moving interfaces, biomechanics of tissue growth and remodeling, and other problems
concerning the micromechanics of heterogeneous materials (Rice, 1985; Maugin, 1995;
Gurtin, 2000; Kienzler and Herrmann, 2001).
The classical conservation integrals are expressed in terms of the spatial gradients of

displacements and rotations, and are related to the release rates of the potential energy
associated with a defect motion within the material. The complementary conservation
integrals are related to the release rates of the complementary potential energy, and are
expressed in terms of the spatial gradients of stresses and couple stresses. The
consideration of the complementary or dual conservation integrals was initiated by Bui’s
(1973, 1974) introduction of the I-integral, a dual to Rice’s (1968) J-integral of two-
dimensional fracture mechanics. An independent study of the complementary conservation
integrals was presented by Carlsson (1974). The subsequent research includes, among
others, the work by Sun (1985), Moran and Shih (1987), Li (1988), Bui (1994), Trimarco
and Maugin (1995), and Li and Gupta (2006). In recent paper on dual conservation
integrals in classical elasticity, Lubarda and Markenscoff (2007) pointed out and corrected
some conceptual errors made by others in the analysis and derivation of the relationship
between the dual integrals and the release rates of the complementary potential energy in
nonpolar elasticity. In the present paper, devoted to micropolar elasticity, we derive the
complementary energy momentum tensor and the complementary or dual Ĵk, L̂k, and M̂

integrals, which were neither studied nor reported in the literature before. We then relate
them to the release rates of the potential and complementary potential energy associated
with particular types of the defect motion within the material. The conservation laws
Ĵk ¼ 0 and L̂k ¼ 0 are proved for any closed surface that does not embrace a singularity or
a defect. If there is a defect inside the surface, the values of Ĵk andL̂k are related to the
release rates of the complementary potential energy that is associated with a defect
translation or rotation. A nonconserved M̂ integral is also derived and related to the
energetic force due to a self-similar expansion of the cavity. A complete duality between
the two formulations is established. The two-dimensional versions of the dual integrals are
then deduced and applied to an out-of-plane shearing of a long cracked slab. The
calculations illustrate that the evaluation of the complementary conservation integrals is of
similar complexity to that of the classical conservation integrals, so that either can be used
in the energetic analysis of the mechanics of defects.

2. Basic equations of micropolar elasticity

In a micropolar continuum the deformation is described by the displacement vector and
an independent rotation vector, so that an infinitesimal material element can experience
a microrotation without undergoing a macrodisplacement. An infinitesimal surface
element transmits a force and a couple vector, which give rise to nonsymmetric stress and
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couple-stress tensors. The nonsymmetric stress is related to nonsymmetric strain tensor,
and the couple stress is related to the gradient of the rotation vector. This type of the
continuum mechanics was introduced by Voigt (1887) and the brothers Cosserat (1909),
and later further developed by numerous investigators in the second half of the last
century. The books by Brulin and Hsieh (1982), Nowacki (1986), and Eringen (1999) offer
extensive list of pertinent references. A finite strain and rotation theories of polar elasticity
and thermoelasticity are presented by Maugin (1998).

The physical rationale for the extension of the classical to micropolar and couple-stress
theory was that the classical theory was not able to predict the size effect experimentally
observed in problems which had a geometric length scale comparable to material’s
microstructural length, such as the grain size in a polycrystalline or granular aggregate.
The classical theory was also in disagreement with experiments for high-frequency
ultrashort wave propagation problems, in which the wavelength is comparable to the
material’s microstructural length. Furthermore, couple stresses can affect the singular
nature of the crack tip fields, and may be of interest in explaining the deformation
mechanisms of micro and nanostructured materials, inelastic localization and instability
phenomena (Asaro and Lubarda, 2006).

A brief summary of the governing equations of micropolar elasticity is as follows. An
infinitesimal deformation of a micropolar elastic material is described by the displacement
vector ui and an independent rotation vector ji. The surface forces are in equilibrium with
the nonsymmetric Cauchy stress tij , and the surface couples are in equilibrium with the
nonsymmetric couple-stress mij, such that

Ti ¼ njtji; Mi ¼ njmji, (1)

where nj are the components of the unit vector orthogonal to the surface element under
consideration. In the absence of body forces and body couples, the conservation laws for
vanishing linear and angular momenta are the integral conditions of equilibriumZ

S

Ti dS ¼ 0;

Z
S

ðMi þ eijkxjTkÞdS ¼ 0, (2)

where eijk are the components of the permutation tensor. The corresponding differential
equations of equilibrium are (e.g., Mindlin, 1964)

tji;j ¼ 0; mji;j þ eijktjk ¼ 0. (3)

Note that the second equation in (3) is equivalent to ðmji þ eilktjkxlÞ;j ¼ 0. For elastic
deformations of micropolar continuum, the strain energy is W ¼W ðgij ; kijÞ, with the
complementary strain energy, as its counterpart, defined by

Fðtij ;mijÞ ¼ tijgij þmijkij �W ðgij ; kijÞ. (4)

Their rates are

_W ¼ tij _gij þmij _kij ; _F ¼ gij
_tij þ kij _mij , (5)

where

gij ¼ uj;i � eijkjk; kij ¼ jj;i (6)
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are the nonsymmetric strain and curvature tensors, respectively. The constitutive relations
of micropolar elasticity are

tij ¼
qW

qgij

; mij ¼
qW

qkij

,

gij ¼
qF
qtij

; kij ¼
qF
qmij

. ð7Þ

If the material is linearly elastic, the strain energy W and the complementary strain
energy F are the quadratic functions of their arguments,

W ¼ 1
2

Cijkl gijgkl þ
1
2

Kijkl kijkkl ,

F ¼ 1
2

C�1ijkl tijtkl þ
1
2

K�1ijkl mijmkl . ð8Þ

The components of the fourth-order tensors of micropolar elastic moduli are Cijkl and
Kijkl , while the components of their inverse tensors are the elastic compliances C�1ijkl and
K�1ijkl . Since the strain and curvature tensors are not symmetric, only the reciprocal
symmetries Cijkl ¼ Cklij and Kijkl ¼ Kklij hold, and likewise for the compliances. The
inverse tensors are thus defined such that CijmnC�1mnkl ¼ dikdjl and KijmnK�1mnkl ¼ dikdjl . The
constitutive expressions (7), associated with the strain energies (8), are

tij ¼ Cijkl gkl ; mij ¼ Kijklkkl ,

gij ¼ C�1ijkl tkl ; kij ¼ K�1ijkl mkl . ð9Þ

In the material is isotropic, and using the notation of Nowacki (1986), the moduli are

Cijkl ¼ ðmþ m̄Þdikdjl þ ðm� m̄Þdildjk þ ldij dkl ,

Kijkl ¼ ðaþ āÞ dikdjl þ ða� āÞdildjk þ bdij dkl , ð10Þ

where m; m̄; l and a; ā; b are the Lamé-type elastic constants. The corresponding elastic
compliances are

C�1ijkl ¼
1

4

1

m
þ

1

m̄

� �
dikdjl þ

1

4

1

m
�

1

m̄

� �
dil djk �

l
2mð3lþ 2mÞ

dijdkl ,

K�1ijkl ¼
1

4

1

a
þ

1

ā

� �
dikdjl þ

1

4

1

a
�

1

ā

� �
dildjk �

b
2að3bþ 2aÞ

dijdkl , ð11Þ

where both m̂ and â are assumed to be different from zero.

3. Dual J integrals in micropolar elasticity

A spatial gradient of the strain energy function W ¼W ðgij ; kijÞ is

W ;k ¼
qW

qgij

gij;k þ
qW

qkij

kij;k ¼ tijgij;k þmijkij;k, (12)

which can be rewritten, by using (6), as

W ;jdjk � tjiui;jk �mjiji;jk þ tjiejiljl;k ¼ 0. (13)
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In view of the equilibrium equations (3), this reduces to

ðWdjk � tjiui;k �mjiji;kÞ;j ¼ 0, (14)

which defines a divergence-free energy momentum tensor of micropolar elasticity, given by

Pjk ¼Wdjk � tjiui;k �mjiji;k; Pjk;j ¼ 0. (15)

Consequently, there is a conservation law

Jk ¼

Z
S

Pjknj dS ¼ 0, (16)

for any closed surface S which does not enclose a singularity or a defect.
An alternative derivation to the above simple derivation of the Jk conservation law was

earlier presented by Dai (1986) and Jaric (1986) in the case of elastostatics, and by
Vukobrat (1989) in the case of elastodynamics. A derivation based on Noether’s theorem
on invariant variational principles, was given by Pucci and Saccomandi (1990) and, in a
more general context, by Lubarda and Markenscoff (2003). An extension of the analysis to
account for the material nonhomogeneity and anisotropy effects, as well as for body forces
and body couples, was recently presented by Lazar and Kirchner (2007).

3.1. Dual Ĵk integral

Consider next a spatial gradient of the complementary strain energy function
F ¼ Fðtij ;mijÞ,

F;k ¼
qF
qtij

tij;k þ
qF
qmij

mij;k ¼ gij tij;k þ kijmij;k. (17)

In view of the kinematic expressions (6), this becomes

F;jdjk � ui;j tji;k þ ejirjrtji;k � ji;jmji;k ¼ 0. (18)

Incorporating the equilibrium equations (3), the above reduces to

ðFdjk � uitji;k � jimji;kÞ;j ¼ 0. (19)

From this we recognize a divergence-free complementary energy momentum tensor,
defined by

P̂jk ¼ Fdjk � uitji;k � jimji;k; P̂jk;j ¼ 0. (20)

Consequently, there is a dual conservation law1

Ĵk ¼

Z
S

P̂jknj dS ¼ 0, (21)

for any closed surface S that does not embrace a singularity or a defect.
The Jk integral in (16) is expressed in terms of the spatial gradients of the displacement

and rotation, while Ĵk in (21) is expressed in terms of the stress and couple-stress gradients.
1In the context of nonpolar elasticity, a dual conservation law of this type was originally introduced by Bui

(1973, 1974).
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It readily follows that

Pjk þ P̂jk ¼ ðW þ FÞdjk � ðtjiui þmjijiÞ;k,

Pkk ¼ 3W � tijgij �mijkij � eijktijjk; P̂kk ¼ 3F� eijktijjk. ð22Þ

When specialized to classical nonpolar elasticity, the first of these expressions reduces to
the result noted by Li and Gupta (2006) in their study of the relationship between the dual
conservation laws and the invariance of an appropriate variational principle.
In a particular case, when the strain energy W is a homogeneous function of degree r in

both the strain and curvature components, the complementary strain energy F is a
homogeneous function of degree s ¼ r=ðr� 1Þ in the stress and couple-stress components,
and F ¼ rW=s. For this case it can be shown that

rJk � sĴk ¼

Z
S

½sðuitji;k þ jimji;kÞ � rðtjiui;k þmjiji;kÞ�nj dS. (23)

If S encloses a defect then Ĵk ¼ �Jka0 (shown in Section 6), and (23) yields

Jk ¼

Z
S

1

r
ðuitji;k þ jimji;kÞ �

1

s
ðtjiui;k þmjiji;kÞ

� �
nj dS. (24)

This result is later used in Section 7 to evaluate the dual integrals around the crack tip in a
long rectangular slab weakened by a semi-infinite crack.

4. Dual M integrals in micropolar elasticity

If the strain energy W ¼W ðgij ;kijÞ is a homogeneous function of degree r in both the
strain and curvature components, it can be written as

W ¼
1

r
ðtjkgjk þmjkkjkÞ. (25)

Being divergence-free, the energy momentum tensor (15) satisfies the equation

ðPjkxkÞ;j � Pkk ¼ 0. (26)

From the expression for Pkk in (22), and by using (25), we have

Pkk ¼
3� r

r
ðtjkuk;j þmjkjk;jÞ �

3

r
eijktijjk. (27)

The substitution into (26) then yields

Pjkxk �
3� r

r
ðtjkuk þmjkjkÞ

� �
;j

¼ �eijktijjk. (28)

When this is subjected to the Gauss divergence theorem, we deduce an integral of the form

N ¼

Z
S

Pjkxk �
3� r

r
ðtjkuk þmjkjkÞ

� �
nj dS ¼ �eijk

Z
V

tijjk dV . (29)

The surface integral in the expression for N is not equal to zero but to the volume integral
on the right-hand side of (29), so that the N integral is not a conserved integral. Since

mjkkjk ¼ ðmjkjkÞ;j þ eijktijjk, (30)
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the expression (29) yields another nonconserved surface integral, defined by

M ¼

Z
S

Pjkxk �
3� r

r
tjkuk �

3

r
mjkjk

� �
nj dS ¼ �

Z
V

mjkkjk dV . (31)

For the quadratic strain energy, r ¼ 2 and (31) reduces to the expression derived by
Lubarda and Markenscoff (2003). In the absence of micropolar effects, there is a
conservation law

M ¼

Z
S

Pjkxk �
3� r

r
tjkuk

� �
nj dS ¼ 0, (32)

for any closed surface that does not embrace a singularity or a defect (Günther, 1962;
Knowles and Sternberg, 1972; Budiansky and Rice, 1973).

4.1. Dual M̂ and N̂ integrals

The complementary energy momentum tensor (20) is a divergence-free tensor and thus it
satisfies the equation

ðP̂jkxkÞ;j � P̂kk ¼ 0. (33)

The complementary strain energy corresponding to the homogeneous strain energy
function of degree r, given by (25), is

F ¼
1

s
ðtjkgjk þmjkkjkÞ; s ¼

r

r� 1
. (34)

Thus, from the second expression in (22), we obtain

P̂kk ¼
3

s
uktjk þ jkmjk

� �
;j
þ eijktijjk. (35)

When this is substituted into (33), there follows

P̂jkxk �
3

s
ðuktjk þ jkmjkÞ

� �
;j

¼ eijktijjk. (36)

Therefore, upon the application of the Gauss divergence theorem, we identify a dual N̂

integral,

N̂ ¼

Z
S

P̂jkxk �
3

s
ðuktjk þ jkmjkÞ

� �
nj dS ¼ eijk

Z
V

tijjk dV , (37)

and a dual M̂ integral,

M̂ ¼

Z
S

P̂jkxk �
3

s
uktjk �

3� s

s
jkmjk

� �
nj dS ¼

Z
V

mjkkjk dV . (38)

The duality is such that N þ N̂ ¼ 0 and M þ M̂ ¼ 0, where the M and N integrals are
expressed in terms of the spatial gradients of the displacement and rotation, while N̂ and
M̂ integrals are in terms of the stress and couple-stress gradients.

In the absence of micropolar effects, there is a dual conservation law (Sun, 1985)

M̂ ¼ N̂ ¼

Z
S

P̂jkxk �
3

s
uktjk

� �
nj dS ¼ 0. (39)
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5. Dual L integrals in micropolar elasticity

To derive the L integral of isotropic micropolar elasticity, consider the identity

ck ¼ ekijðtilgjl þ tliglj þmilkjl þmlikljÞ ¼ 0. (40)

This holds because the tensors ðtilgjl þ tligljÞ and ðmilkjl þmlikljÞ are both symmetric in ij

(for isotropic elasticity), as can be verified by the substitution of the constitutive
expressions for stresses and couple stresses. In view of (6), the expression for ck in (40) can
be rewritten as

ck ¼ ekijðtilul;j þ tliuj;l þmiljl;j þmlijj;l � eirstrsjjÞ. (41)

By using the energy momentum tensor (15), the above becomes

ck ¼ ekijðPji þ tliuj;l þmlijj;l � eirstrsjjÞ. (42)

The energy momentum and stress tensors, in the absence of body forces, are divergence-
free tensors (Pli;l ¼ 0, tli;l ¼ 0). Thus, recalling that mli;l ¼ �eirstrs, we can express ck as

ck ¼ dkl;l ; dkl ¼ ekijðPlixj þ tliuj þmlijjÞ. (43)

Since ck ¼ 0, the application of the Gauss divergence theorem yields the conservation law

Lk ¼ ekij

Z
S

ðPlixj þ tliuj þmlijjÞnl dS ¼ 0, (44)

for any closed surface S that does not embrace a singularity or a defect.2
5.1. Dual L̂k integral

In a dual analysis, we first introduce a dual vector ĉk, such that ĉk þ ck ¼ 0. From (41) it
follows that

ĉk ¼ ekijðui;l tlj þ ul;itjl þ ji;lmlj þ jl;imjl � jiejrstrsÞ, (45)

or, by using the expression for the complementary energy momentum tensor (20),

ĉk ¼ ekijðP̂ji þ ui;l tlj þ ji;lmlj � jiejrstrs þ ul;itjl þ ultjl;i þ jl;imjl þ jlmjl;iÞ. (46)

The complementary energy momentum tensor is divergence-free, and (46) can be recast in
terms of the spatial gradient of d̂kl , such that

ĉk ¼ d̂kl;l ; d̂kl ¼ ekij ½P̂lixj þ uitlj þ jimlj þ dilðurtjr þ jrmjrÞ�. (47)

Since ĉk ¼ 0, (47) yields a dual conservation law

L̂k ¼ ekij

Z
S

½P̂lixj þ uitlj þ jimlj þ dilðurtjr þ jrmjrÞ�nl dS ¼ 0, (48)

for any closed surface S that does not embrace a singularity or a defect.
2A derivation of (44) based on Noether’s theorem on invariant variational principles, for both couple-stress and

micropolar elasticity, was given by Lubarda and Markenscoff (2000, 2003).
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6. Dual conservation integrals and energy release rates

The conservation integrals of micropolar elasticity introduced in the previous sections
can be given a physical interpretation based on the consideration of the potential and
complementary potential energies. For classical nonpolar elasticity this was recently
presented by Lubarda and Markenscoff (2007), who pointed out and corrected the errors
in the earlier derivations of the relationship between the dual integrals and the release rates
of the complementary potential energy.

6.1. Release rates of potential energy

Let the body of volume V be loaded by the surface tractions Ti ¼ T̄ i over the portion ST

of its external bounding surface S, and by the surface couples Mi ¼ M̄i applied over SM .
The displacements ui ¼ ūi are prescribed over Su and the rotations ji ¼ j̄i over Sj. Within
a body there is an unloaded cavity (or crack) of the bounding surface S0. The potential
energy of this body is

P ¼
Z

V

W dV �

Z
ST

T̄ iui dS �

Z
SM

M̄iji dS. (49)

Extending the nonpolar analysis of Budiansky and Rice (1973), without changing the
boundary conditions on S, the rate of change of the potential energy associated with the
spatial variation of the cavity surface S0, described by its velocity field _u0

i , is

_P ¼
Z

V

_W dV �

Z
S0

W _u0
i ni dS �

Z
ST

T̄ i _ui dS �

Z
SM

M̄i _ji dS, (50)

where _ui and _ji are the associated kinematic fields within V ðtÞ due to the imposed velocity
_u0

i . The surface integral over S0 comes from the Reynolds transport theorem, where ni is
the unit normal to S0 directed into the material. Assuming that _ui and _ji are kinematically
admissible fields within V ðtÞ, the rate of the strain energy is

_W ¼ tij _gij þmij _kij ; _gij ¼ _uj;i � eijk _jk; _kij ¼ _jj;i. (51)

By using the equilibrium conditions tji;j ¼ 0 and mij;i ¼ �ejkltkl , (51) can be rewritten as

_W ¼ tij _gij þmij _kij ¼ ðtij _uj þmij _jjÞ;i. (52)

Since the surface of the cavity is unloaded, the application of the Gauss divergence
theorem gives3Z

V

_W dV ¼

Z
ST

T̄ j _uj dS þ

Z
SM

M̄i _ji dS. (53)

The substitution of (53) into (50) yields

_P ¼ �
Z

S0

W _u0
i ni dS. (54)

The rate of the energy release due to spatial variation of S0, specified by a prescribed
velocity field _u0

i , is f ¼ � _P, which represents a configurational force on the cavity (defect).
3Eq. (53) can also be viewed as a direct consequence of the principle of virtual work.
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Since Wni ¼ Pjinj over the unloaded surface of the cavity, we obtain from (54),

f ¼ � _P ¼
Z

S0

Pji _u
0
i nj dS. (55)

If the cavity translates with a unit velocity in the k-direction, then _u0
i can be replaced by

dik, and (55) gives the rate of the energy release per unit cavity translation in the k-
direction, i.e.,

f k ¼

Z
S0

Pjknj dS ¼ JkðS0Þ. (56)

Since the cavity is assumed to be unloaded, f k is equal to Jk, evaluated over S0. By the
conservation law Jk ¼ 0, applied to the surface S0 þ S bounding a region between S0 and
any closed surface S around the cavity, the configurational force f k is also equal to Jk

evaluated over S, so that f k ¼ JkðS0Þ ¼ JkðSÞ.
If the cavity is given a unit angular velocity around the k-axis, then _u0

i in (55) can be
replaced by �ekilxl , and

f k ¼ �ekil

Z
S0

Pjixlnj dS ¼ �LkðS0Þ. (57)

Again, by the conservation law Lk ¼ 0 applied over S0 þ S, the configurational force is
also equal to �Lk evaluated over S, so that f k ¼ �LkðS0Þ ¼ �LkðSÞ.
Finally, if the cavity transforms such that _u0

i ¼ xi, the corresponding configurational
force is

f ¼

Z
S0

Pjixinj dS ¼MðS0Þ. (58)

In this case the energy release rate is with respect to t ¼ lðtÞ=l � 1, where l is any
characteristic length of the original cavity, scaling according to lðtÞ ¼ ð1þ tÞl. The
corresponding configurational force f is equal to M evaluated over S0, but not over any
other surface enclosing the cavity. In fact, in view of (31), we have

f ¼MðS0Þ ¼MðSÞ þ

Z
V

mijkij dV , (59)

where V is the volume between S0 and S. In the absence of polar effects, f ¼M evaluated
over any closed surface surrounding the cavity (Budiansky and Rice, 1973).

6.2. Release rates of complementary potential energy

The complementary potential energy is defined by

O ¼
Z

V

FdV �

Z
Su

ūiTi dS �

Z
Sj

j̄iMi dS. (60)

Since the surface of the cavity is unloaded, we have

Pþ O ¼
Z

V

ðW þ FÞdV �

Z
S

ðTiui þMijiÞdS ¼ 0, (61)
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which follows from W þ F ¼ tijgij þmijkij using the equilibrium conditions (3), geometric
relationships (6), and the Gauss divergence theorem. The rate of O, associated with a
spatial variation of the cavity due to its imposed velocity field _u0

i , is

_O ¼
Z

V

_FdV �

Z
S0

F _u0
i ni dS �

Z
Su

ūi
_Ti dS �

Z
Sj

j̄i
_Mi dS, (62)

where _Ti and _Mi are the loading rates on Su and Sj due to infinitesimal motion of S0.
Assuming that the stress and couple-stress rate fields within V ðtÞ are statically admissible
(_tji;j ¼ 0 and _mij;i ¼ �ejkl _tkl), we can write

_F ¼ gij
_tij þ kij _mij ¼ ðuj _tij þ jj _mijÞ;i. (63)

The rates _sij and _mij are the rates at fixed points in space (local or nonconvected rates).
Thus, by integrating (63) over the entire volume of the body,Z

V

_FdV ¼

Z
S

ðuj _tij þ jj _mijÞni dS þ

Z
S0

ðuj _tij þ jj _mijÞni dS. (64)

Within a geometrically linear theory, we can write _sijni ¼ _Tj and _mijni ¼ _Mj on S ( _Tj and
_Mj being equal to zero on ST and SM , respectively). Consequently, (64) can be rewritten asZ

V

_FdV ¼

Z
Su

ūj
_Tj dS þ

Z
Sj

j̄j
_Mj dS þ

Z
S0

ðuj _tij þ jj _mijÞni dS. (65)

The substitution into (62) then yields

_O ¼ �
Z

S0

ðF _u0
i þ uj _tij þ jj _mijÞni dS. (66)

The surface of the cavity is unloaded, so that its tractions Tj ¼ nitij and couples Mj ¼

nimij remain zero throughout the motion. This means that

dTj

dt
¼

dni

dt
tij þ ni

dtij

dt
¼ 0;

dMj

dt
¼

dni

dt
mij þ ni

dmij

dt
¼ 0, (67)

where d=dt designates the material time derivative, following the particle. Expressing the
material derivative of stress as the sum of its local (_tij) and convected (tij;l _u0

l ) parts, and
similarly for the material derivative of the couple-stress, we obtain from (67) the following
expressions:

ni _tij ¼ �
dni

dt
tij � nitij;l _u

0
l ; ni _mij ¼ �

dni

dt
mij � nimij;l _u

0
l . (68)

In the case when the cavity translates and/or expands in a self-similar manner, we can
write dni=dt ¼ 0, and (68) reduce to

ni _tij ¼ �nitij;l _u
0
l ; ni _mij ¼ �nimij;l _u

0
l . (69)

When this is introduced in (66), there follows

_O ¼
Z

S0

ð�Fdil þ ujtij;l þ jjmij;lÞni _u
0
l dS ¼ �

Z
S0

P̂ilni _u
0
l dS. (70)



ARTICLE IN PRESS
V.A. Lubarda, X. Markenscoff / J. Mech. Phys. Solids 55 (2007) 2055–20722066
Recalling that Pþ O ¼ 0, and in view of (55), the release rate of the complementary
potential energy due to spatial variation of the cavity is

f ¼ � _P ¼ _O ¼ �
Z

S0

P̂ilni _u
0
l dS. (71)

If the cavity translates with a unit velocity in the k-direction, then _u0
l can be replaced by

dkl , and (71) gives the release rate of the complementary potential energy per unit cavity
translation in the k-direction,

f k ¼ �

Z
S0

P̂ikni dS ¼ �ĴkðS0Þ. (72)

By the conservation law Ĵk ¼ 0 applied over S0 þ S, the configurational force f k is also
equal to �Ĵk evaluated over S. Furthermore, by comparing with (56), we conclude that
Ĵk ¼ �Jk over S0, or any other closed surface surrounding the cavity.
If the cavity transforms such that _u0

l ¼ xl , the energy release rate is

f ¼ �

Z
S0

P̂ilnixl dS ¼ �M̂ðS0Þ. (73)

Since M̂ is not conserved, but given by (38), we have

f ¼ �M̂ðS0Þ ¼ �M̂ðSÞ þ

Z
V

mijkij dV , (74)

where V is the volume between S0 and S. When the polar effects are absent, any closed
surface surrounding the cavity can be used to evaluate f ¼ �M̂.
If the cavity rotates within the material, then

dni

dt
¼ �njQji, (75)

where Qji are the components of anti-symmetric spin matrix, and _u0
i ¼ Qijxj. When (75) is

introduced into (68), we obtain

ni _tij ¼ ðdiktlj � tij;kxlÞniQkl ; ni _mij ¼ ðdikmlj �mij;kxlÞniQkl . (76)

In this case, (66) gives

f ¼ _O ¼ �
Z

S0

½P̂ikxl þ dikðujtlj þ jjmljÞ�niQkl dS. (77)

Suppose that a spin of unit magnitude is about the k-axis, then Qij ¼ �eijk. The
corresponding configurational force, from (77), is

f k ¼ eijk

Z
S0

½P̂lixj þ dliðurtjr þ jrmjrÞ�nl dS. (78)

By comparing with L̂kðS0Þ in (48), we conclude that

f k ¼ L̂k, (79)

where L̂k is evaluated over S0 or any other closed surface surrounding the cavity.
Furthermore, by comparing (79) with (57), we identify the relationship between the dual L

integrals, which is L̂k ¼ �Lk.
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7. Dual conservation integrals in two-dimensional micropolar elasticity

7.1. Dual conservation integrals for plane strain

In the case of plane strain parallel to ðx1;x2Þ plane, the components j3, m13 and m23 are
generally different from zero, while other rotation and couple-stress components are equal
to zero. The corresponding energy momentum tensor and its dual can be written as

Pab ¼Wdab � tagug;b �ma3j3;b; P33 ¼W , (80)

P̂ab ¼ Fdab � ugtag;b � j3ma3;b; P̂33 ¼ F, (81)

where the Greek subscripts range from 1 to 2. The dual J integrals are

Jb ¼

Z
C

Pabna dC; Ĵb ¼

Z
C

P̂abna dC. (82)

If a closed contour C does not surround a defect, the above integrals vanish. The dual L

integrals are

L3 ¼ eab3

Z
C

ðPgaxb þ tgaubÞng dC, (83)

L̂3 ¼ eab3

Z
C

½P̂gaxb þ uatgb þ dagðudtbd þ j3mb3Þ�ng dC. (84)

The nonconserved dual M integrals are

M ¼

Z
C

Pabxb �
2� r

r
tabub �

2

r
ma3j3

� �
na dC,

M̂ ¼

Z
C

P̂abxb �
2

s
ubtab �

2� s

s
j3ma3

� �
na dC. ð85Þ

7.2. Dual conservation integrals for anti-plane strain

In the case of anti-plane strain, u1 ¼ u2 ¼ 0 and u3 ¼ u3ðx1;x2Þ, so that the dual energy
momentum tensors are

Pab ¼Wdab � ta3u3;b �magjg;b; P̂ab ¼ Fdab � u3ta3;b � jgmag;b. (86)

The corresponding dual integrals are given by

Jb ¼

Z
C

Pabna dC; Ĵb ¼

Z
C

P̂abna dC, (87)

L3 ¼ eab3

Z
C

ðPgaxb þmgajbÞng dC, (88)

L̂3 ¼ eab3

Z
C

½P̂gaxb þ jamgb þ dagðu3tb3 þ jdmbdÞ�ng dC. (89)
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Fig. 1. An infinitely long slab of thickness 2H with a semi-infinite crack. The upper and lower sides of the slab are

given uniform out-of-plane displacements �w.
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The nonconserved dual M integrals are

M ¼

Z
C

Pabxb �
2� r

r
ta3u3 �

2

r
mabjb

� �
na dC, (90)

M̂ ¼

Z
C

P̂abxb �
2

s
u3ta3 �

2� s

s
jbmab

� �
na dC. (91)

7.3. Dual J1 integrals around the crack tip in a long slab

An infinitely long rectangular slab is weakened by a semi-infinite crack as shown in
Fig. 1. The top and bottom side of the slab are given uniform out-of-plane displacements
�w. The objective is to evaluate dual integrals J1 and Ĵ1 along a small contour ab around
the crack tip. The J1 integral is

J1 ¼

Z
C

½Wn1 � ðt13u3;1 þm11j1;1 þm12j2;1Þn1 � ðt23u3;1 þm21j1;1 þm22j2;1Þn2�dC.

Since J1 ¼ 0 along the unloaded crack faces bh and ca, there is path-independent property

Jab
1 ¼ J

cdefghb
1 . (92)

As in the nonpolar elasticity, the only nonvanishing contribution to J1 along the path
cdefghb is from the segment ef. Since the field variations with respect to x1 along the
segment ef, sufficiently far from the crack tip, can be ignored, the results from the
Appendix can be used to obtain

J
ef
1 ¼

Z f

e

W dx2 ¼ wt23ðf Þ ¼ K
mw2

H
, (93)

where

K ¼ 1�
m̄

mþ m̄
tanhðkHÞ

kH

� ��1
; k2

¼
4mm̄

ðmþ m̄Þðaþ āÞ
. (94)

An analogous expression was derived by Atkinson and Leppington (1974) for the Mode II
loading of a cracked slab.
The Ĵ1 integral is defined by

Ĵ1 ¼

Z
C

½Fn1 � ðu3t13;1 þ j1m11;1 þ j2m12;1Þn1 � ðu3t23;1 þ j1m21;1 þ j2m22;1Þn2�dC.
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Since Ĵ1 ¼ 0 along the unloaded crack faces bh and ca, there is a path-independent
property of the dual integral,

Ĵab
1 ¼ Ĵ

cdefghb
1 . (95)

The only nonvanishing contributions to Ĵ1 along cdefghb are from the segments de, fg, and
ef. These contributions are, respectively,

Ĵde
1 ¼ �w

Z e

d

t23;1 dx1 ¼ �wt23ðeÞ, (96)

Ĵ
fg
1 ¼ w

Z g

f

t23;1 dx1 ¼ �wt23ðf Þ, (97)

Ĵ
ef
1 ¼

Z f

e

Fdx2. (98)

As shown in the Appendix, the stress t23 at the points e and f is the same, so that

Ĵab
1 ¼

Z f

e

Fdx2 � 2wt23ðf Þ. (99)

Since for linear elasticity W ¼ F, and since t23ðf Þ ¼ mKw=H, the above gives

Ĵab
1 ¼ �wt23ðf Þ ¼ �K

mw2

H
. (100)

In retrospect, we note that J1 and Ĵ1 can be calculated without actually evaluating the
integral of the strain energy along the segment ef, by combining the expressions for the two
dual integrals. Indeed, from (93) and (99), we have

Ĵab
1 ¼ Jab

1 � 2wt23ðf Þ. (101)

Since Ĵ1 ¼ �J1, there follows

Jab
1 ¼ wt23ðf Þ ¼ K

mw2

H
. (102)

This result can also be obtained from (24), with r ¼ s ¼ 2, which gives

J1 ¼
1

2

Z
C

½ðu3t13;1 þ j1m11;1 þ j2m12;1 � t13u3;1 �m11j1;1 þm12j2;1Þn1

þ ðu3t23;1 þ j1m21;1 þ j2m22;1 � t23u3;1 �m21j1;1 �m22j2;1Þn2�dC.

The only nonvanishing contributions to this integral along the path hgfedcb are the two
equal contributions from the horizontal segments de and fg. Since rotations vanish along
these segments, we obtain

J1 ¼

Z g

f

wt23;1 ð�dxÞ ¼ wt23ðf Þ ¼
Kmw2

H
.
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Appendix A. Out-of-plane shearing of a long rectangular slab

The upper and lower sides of an infinitely long rectangular slab of height 2H are given
uniform out-of-plane displacements �w, while keeping the rotation components
constrained, i.e., u3 ¼ �w and j1 ¼ j2 ¼ 0 at x2 ¼ �H.4 The slab being infinitely long,
with uniform boundary conditions, suggests that in the interior of the slab

u3 ¼ u3ðx2Þ; j1 ¼ j1ðx2Þ; j2 ¼ 0.

The nonvanishing strain and curvature components are

g32 ¼ j1; g23 ¼ u3;2 � j1; k21 ¼ j1;2,

with the corresponding stress and couple-stress components

t23 ¼ ðmþ m̄Þu3;2 � 2m̄j1; t32 ¼ ðm� m̄Þu3;2 þ 2m̄j1,

m21 ¼ ðaþ āÞj1;2; m12 ¼ ða� āÞj1;2.

The two equilibrium equations are

ðmþ m̄Þu3;22 ¼ 2m̄j1;2,

ðaþ āÞj1;22 � 4m̄j1 ¼ �2m̄u3;2.

Their solution is found to be

u3 ¼ Kw
x2

H
�

m̄
mþ m̄

sinhðkx2Þ

kH coshðkHÞ

� �
,

j1 ¼
Kw

2H
1�

coshðkx2Þ

coshðkHÞ

� �
,

where

K ¼ 1�
m̄

mþ m̄
tanhðkHÞ

kH

� ��1
; k2

¼
4mm̄

ðmþ m̄Þðaþ āÞ
.

The corresponding strain and curvature components are

g32 ¼ j1; g23 ¼
Kw

2H
1þ

m� m̄
mþ m̄

coshðkx2Þ

coshðkHÞ

� �
,

k21 ¼ �
Kkw

2H

sinhðkx2Þ

coshðkHÞ
.

4The effects of the boundary and interface conditions in couple-stress elasticity problems were discussed by

Lubarda (2003).
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The stress and couple-stress components in the slab follow as

t32 ¼
Kw

H
m 1�

2m̄
mþ m̄

coshðkx2Þ

coshðkHÞ

� �
; t23 ¼

Kw

H
m,

m12 ¼ �ða� āÞ
Kkw

2H

sinhðkx2Þ

coshðkHÞ
; m21 ¼ �ðaþ āÞ

Kkw

2H

sinhðkx2Þ

coshðkHÞ
.

The strain energy density at an arbitrary point of the slab is

W ¼ 1
2
½ðmþ m̄Þðg223 þ g232Þ þ 2ðm� m̄Þg23g32 þ ðaþ āÞk221�,

while the strain energy per unit length of the slab in the x1 direction is

Z H

�H

W dx2.

The evaluation of W, by using the derived expressions for the strain and curvature
components and a tedious integration, can be circumvented by observing that the above
strain energy integral must be equal to the external work done per unit length of the slab,
i.e.,

Z H

�H

W dx2 ¼ t23ðHÞw ¼
Kmw2

H
m.

This result is conveniently used in Section 7 to derive the expressions for the dual J1

integrals around the crack tip in a long cracked slab.
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