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INTERACTION BETWEEN A CIRCULAR INCLUSION
AND A CIRCULAR VOID

UNDER PLANE STRAIN CONDITIONS

VLADO A. LUBARDA

The interaction force between a circular inclusion characterized by uniform eigenstrain and a nearby
circular void is determined by evaluating the J -integral around the void. The Kienzler–Zhuping formula
was used to determine the hoop stress along the boundary of the void in terms of the infinite-medium
solution to the inclusion problem. Specific results are given for the inclusion with dilatational eigenstrain.
The M-integrals around the void and inclusion are then evaluated, the former being proportional to the
energy release rates associated with a self-similar expansion of the void. The energy rate associated with
an isotropic expansion of the inclusion differs from the M-integral around the inclusion. The relationship
between the two is derived. It is shown that the greater the distance from the void, the greater the energy
associated with the presence of the inclusion and the greater the energy rate associated with its growth,
which suggests that the presence of nearby free surfaces facilitates the eigenstrain transformations. The
attraction exerted on a circular inclusion with a uniform shear eigenstrain by the free surface of a half-
space is also evaluated. Peculiar variation of this configurational force with the distance between the
inclusion and the free surface is noted and discussed.

1. Introduction

Kienzler and Zhuping [1987] derived an appealing formula for the hoop stress along the boundary of
a circular void of radius a in an infinite medium under plane stress or plane strain conditions, due to
remote loading or an internal source of stress, which reads

σθ (a, θ)= 2[σ 0
θ (a, θ)− σ

0
r (a, θ)] +

1
2 [σ

0
θ (0, θ)+ σ

0
r (0, θ)]. (1)

The stress field in an infinite medium without a void due to the same source of stress is denoted by the
superscript 0, and (r, θ) are the polar coordinates with the origin at the center of the void. This formula
received relatively little attention in the literature, although it did stimulate research efforts that led to the
formulation of the so-called heterogenization procedure [Honein and Herrmann 1988; 1990], according
to which the solution to the problem of two or more inhomogeneities under remote or other types of
loading is expressed in terms of the solution to the corresponding homogeneous problem. An important
part of the latter analysis is that the elastic field produced by the prescribed tractions or displacements
over the boundary of a circular hole in an infinite medium can be expressed in terms of the elastic field
produced by the same quantities acting on the boundary of a circular disk, and vice versa. We use the
Kienzler–Zhuping formula in this paper to evaluate the J -integral along the boundary of a circular void, or
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along the straight edge of a half-space, without using or deriving the solution to the entire boundary value
problem at hand. Based on this, we determine the configurational force exerted by the free surface on a
nearby source of internal stress. The latter is taken to be a circular inclusion with a uniform dilatational
eigenstrain. The M-integrals around the void and the inclusion are evaluated. The MO -integral around
the void is proportional to the energy release rate associated with a self-similar expansion of the void,
if the surface of the void is traction-free. The energy rate associated with an isotropic expansion of the
inclusion differs from the ratio MC/b, where the MC -integral is evaluated around the boundary of the
inclusion of radius b. The relationship between the two quantities is derived. The attraction exerted on
a circular inclusion with a uniform shear eigenstrain by the free surface of a half-space is also evaluated.
Peculiar variation of this configurational force with the distance between the inclusion and the free surface
is noted and discussed.

The determination of physical quantities, such as the dislocation interaction force or the stress-intensity
factor in various dislocation and fracture mechanics problems, without solving the corresponding bound-
ary value problems, was earlier considered by Eshelby [1975], Freund [1978], Rice [1985], Kienzler and
Kordisch [1990], and Lubarda and Markenscoff [2007], among others. More recently, Lubarda [2015]
employed the antiplane-strain version of the Kienzler–Zhuping formula, first recognized by Lin et al.
[1990], to determine the configurational force between a circular void and inclusion characterized by
uniform eigenshear. The study of inclusions and interactions among them plays an important role in
materials science problems concerned with displacive transformations and transformation toughening
mechanisms in crystalline metallic materials and ceramics. A comprehensive review of recent works on
inclusions can be found in [Zhou et al. 2013].

2. Circular inclusion near a circular void

Suppose that a circular cylinder of radius b is taken out from an infinite medium and given a uniform
plane eigenstrain (ε•x , ε

•

y, ε
•

xy). When the cylinder is inserted back into the medium, with their interface
perfectly bonded, the stress fields expressed in polar coordinates (ρ, ϕ) with respect to the center C of
the inclusion (Figure 1), are

σ 0,in
ρ =−2k

[
(ε•ρ + ε

•

ϕ)+
1
2 (ε

•

ρ − ε
•

ϕ)
]
,

σ 0,in
ϕ =−2k

[
(ε•ρ + ε

•

ϕ)−
1
2 (ε

•

ρ − ε
•

ϕ)
]
,

σ 0,in
ρϕ =−2kε•ρϕ,

(2)

where ε•ρ + ε
•

ϕ = ε
•

x + ε
•

y , k = µ/[4(1− ν)], and

ε•ρ − ε
•

ϕ = (ε
•

x − ε
•

y) cos 2ϕ+ 2ε•xy sin 2ϕ,

2ε•ρϕ =−(ε
•

x − ε
•

y) sin 2ϕ+ 2ε•xy cos 2ϕ.
(3)

The expressions (2) are obtained from the results for circular inclusions presented in [Lubarda 1998]
and [Lubarda and Markenscoff 1999], which were derived by using the Papkovich–Neuber potentials.
They can also be obtained from the general ellipsoidal inclusion analysis in [Eshelby 1957; 1959]. The
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Figure 1. A circular inclusion of radius b in an infinite medium near the void of radius a.
The eigenstrain of the inclusion is (ε•x , ε

•

y, ε
•

xy). The centers of the inclusion and void
are separated by the distance d. The distance from the center C of the inclusion to an
arbitrary point on the boundary of the void is ρa. The polar coordinates (ρ, ϕ) are with
respect to the point C , and (r, θ) with respect to the point O .

in-plane stress components outside of the inclusion are

σ 0,out
ρ =−2k

b2

ρ2

[
(ε•ρ + ε

•

ϕ)+
1
2

(
4− 3

b2

ρ2

)
(ε•ρ − ε

•

ϕ)

]
,

σ 0,out
ϕ = 2k

b2

ρ2

[
(ε•ρ + ε

•

ϕ)−
3
2

b2

ρ2 (ε
•

ρ − ε
•

ϕ)

]
,

σ 0,out
ρϕ = 2k

b2

ρ2

(
2− 3

b2

ρ2

)
ε•ρϕ.

(4)

When rewritten in terms of the polar coordinates (r, θ) with respect to the point O , the outside stress
field (omitting the superscript “out”) is

σ 0
r + σ

0
θ = σ

0
ρ + σ

0
ϕ ,

σ 0
r − σ

0
θ = (σ

0
ρ − σ

0
ϕ ) cos 2(ϕ− θ)− 2σ 0

ρϕ sin 2(ϕ− θ),

2σ 0
rθ = (σ

0
ρ − σ

0
ϕ ) sin 2(ϕ− θ)+ 2σ 0

ρϕ cos 2(ϕ− θ).

(5)

In these expressions,

sinϕ = r sin θ
ρ

, cosϕ = r cos θ−d
ρ

,

sin(ϕ− θ)= d sin θ
ρ

, cos(ϕ− θ)= r−d cos θ
ρ

,

ρ2
= r2
+ d2
− 2rd cos θ.

(6)

The total strain energy in the entire medium (inside and outside of the inclusion, per unit thickness)
can be determined from the equation [Lubarda and Markenscoff 1999]

E0
T =−

1
2

∫
Ain
σ

0,in
i j ε•i j dA =− 1

2

(
σ 0,in
ρ ε•ρ + σ

0,in
ϕ ε•ϕ + 2σ 0,in

ρϕ ε
•

ρϕ

)
b2π, (7)
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which gives
E0

T = πkb2{(ε•x + ε•y)2+ 1
2

[
(ε•x − ε

•

y)
2
+ 4ε• 2

xy
]}
. (8)

The rate of energy change associated with an infinitesimal increase of the inclusion radius δb is

δE0
T

δb
= 2πkb

{
(ε•x + ε

•

y)
2
+

1
2

[
(ε•x − ε

•

y)
2
+ 4ε• 2

xy
]}
. (9)

This can also be deduced from the expression for the specific configurational force ( f 0) (per unit length
of the circumference of the inclusion, at each point orthogonal to the circumference), defined such that
[Gavazza 1977]

δE0
T =−(2πb) f 0δb, f 0

=
1
2(σ

0,in
i j + σ

0,out
i j )ρ=bε

•

i j . (10)

This formula has recently been extended to problems of dynamically expanding inclusions in a compre-
hensive sequence of papers by Markenscoff and Ni [2010; 2011].

2.1. Dilatational eigenstrain. If the inclusion is given a purely dilatational eigenstrain ε•x = ε
•

y = ε
• and

ε•xy = 0, the outside stress field in polar coordinates (ρ, ϕ), relative to the center of the inclusion, is

σ 0,out
ϕ =−σ 0,out

ρ = 4kε•
b2

ρ2 , σ 0,out
ρϕ = 0. (11)

When this is substituted into (5), the outside stress field in polar coordinates (r, θ), relative to the center
of the void, becomes

σ 0
θ (r, θ)=−σ

0
r (r, θ)= 4kε•

b2

ρ2

(
1−

2d2 sin2 θ

ρ2

)
,

σ 0
rθ (r, θ)=−8kε•

b2d
ρ3 (r − d cos θ) sin θ.

(12)

The outside stress field is deviatoric (σ 0
r + σ

0
θ = 0). Thus, from the Kienzler–Zhuping formula (1), it

follows that along the boundary of the void r = a, the hoop stress due to inserted inclusion is

σθ (a, θ)= 2[σ 0
θ (a, θ)− σ

0
r (a, θ)] = 4σ 0

θ (a, θ); (13)

that is, in view of (12),

σθ (a, θ)=
4µε•

1− ν
b2

ρ2
a

(
1−

2d2 sin2 θ

ρ2
a

)
, ρ2

a = a2
+ d2
− 2ad cos θ. (14)

The total strain energy (per unit thickness) due to inserted inclusion in an infinite medium, and its
rate, are

E0
T =

πµb2ε• 2

1− ν
,

δE0
T

δb
=

2πµbε• 2

1− ν
, (15)

which follows from (8) and (9). Thus, from (10), the configurational force per unit length of the circum-
ference of the inclusion is f 0

=−p0ε•, and p0
= µε•/(1− ν) is the interface pressure.



INTERACTION BETWEEN A CIRCULAR INCLUSION AND A CIRCULAR VOID 321

O

a

y

R

θ
d C

x

Figure 2. The closed contour around the void of radius a and its center at O , and the
inclusion of radius b and its center at C , used to evaluate the J - and M-integrals. The
radius R of the remote circle tends to infinity.

3. Configurational force between the inclusion and void

The Jβ-integral for the plane strain elasticity problems can be expressed in terms of the Eshelby’s energy
momentum tensor Pαβ [Eshelby 1956; 1957] as

Jβ =
∮

Pαβnα dl, Pαβ =Wδαβ − σαγ uγ,β, (α, β = x, y). (16)

In particular,

Jx =

∮
(W nx − tx ux,x − tyu y,x) dl, (17)

where tx = σx nx + σxyny and ty = σyx nx + σyny are the traction components over the contour whose
outward normal has the components (nx , ny). An analysis based on dual conservation integrals, originally
introduced by Bui [1973; 1974], could also be used, but is not pursued in this paper; see [Lubarda and
Markenscoff 2007] and [Lubarda 2012] for its application to other problems. When evaluated over a
closed contour which does not embrace a singularity or a defect, the integral in (17) vanishes. Such a
contour, going around the void and the inclusion, along the positive x-axis, and around a remote circle
of large radius R� (a, b, d), is shown in Figure 2. The contributions to Jx along the lines just above
and below the x-axis cancel each other, and the contribution from the remote circle vanishes because
the stresses fall off as 1/R2 in the limit R→∞, as in an unvoided infinite medium, because for large
R the stress field becomes increasingly unaware of the presence of the void near the inclusion. Thus,
Jx = J void

x + J incl
x = 0; i.e.,

J incl
x =−J void

x . (18)

The Jx -integral along the boundary of the void (r = a, nx = cos θ , ny = sin θ ) is

J void
x = a

∫ 2π

0
W (a, θ) cos θ dθ =

1− ν
4µ

a
∫ 2π

0
σ 2
θ (a, θ) cos θ dθ, (19)
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because σx nx +σxyny = 0, σyx nx +σyny = 0, and W = σθεθ/2= (1−ν)σ 2
θ /(4µ) along the traction-free

boundary of the void. By incorporating the stress expression (14) into (19), it follows that

J void
x =

8µaε• 2

1− ν

(
b
a

)4[
I1− 4

(
d
a

)2

I2+ 4
(

d
a

)4

I3

]
, (20)

where

I1 =

∫ π

0

cos θ dθ
ρ4

0
=

2π(d/a)
[(d/a)2− 1]3

,

I2 =

∫ π

0

sin2 θ cos θ dθ
ρ6

0

=
π [3(d/a)2− 1]

4(d/a)3[(d/a)2− 1]3
,

I3 =

∫ π

0

sin4 θ cos θ dθ
ρ8

0

=
π [2(d/a)2− 1]

4(d/a)5[(d/a)2− 1]3
,

(21)

and ρ2
0 = 1−2(d/a) cos θ+(d/a)2. These integral expressions were derived by using the general formula

[Gradshteyn and Ryzhik 1965]∫ π

0

cos nθ dθ
(1− 2α cos θ +α2)m

=
π

αn(α2− 1)2m−1

m−1∑
k=0

(m+n−1
k

)(2m−k−2
m−1

)
(α2
− 1)k, (22)

valid for α2 > 1, in conjunction with the appropriate integration by parts. The trigonometric identity
8 sin4 θ = 3− 4 cos 2θ + cos 4θ was also conveniently utilized. The expressions were also verified by the
Matlab evaluation of integrals. Consequently, by substituting (21) into (20), the J -integral around the
void becomes

J void
x = J x

(
b
a

)4 d/a
[(d/a)2− 1]3

, J x =
8πµaε• 2

1− ν
. (23)

This represents the material or configurational force exerted on the void by a nearby inclusion (per
unit length in the z-direction). It represents the energy release rate associated with an imagined void
translation within the material toward the inclusion (by diffusion or otherwise), keeping the position of
the inclusion fixed. The opposite force of the same magnitude is exerted on the inclusion by the surface
of the void. The maximum value of the force is reached at the minimum distance between the centers of
the inclusion and the void for which the presented analysis applies (dmin = a+ b), and is equal to

J void
x,max = J x

(b/a)(1+ b/a)
(2+ b/a)3

. (24)

The variation of J void
x (normalized by J x ) versus d/a for several values of b/a is shown in Figure 3.

In the limit of infinitely large radius of the void, the inclusion behaves as if it is near the free surface
of a half-space. If the distance from the center of the inclusion to that surface is denoted by c, the force
on the inclusion is found to be

J incl
x =−

πµε• 2

1− ν
b4

c3 . (25)

The force on an ellipsoidal inclusion with uniform dilatational eigenstrain near the free surface of a
half-space was evaluated and discussed by Mura [1987]. More recently, Zhou et al. [2013] provided
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Figure 3. Left: the variation of the strain energy ET /E0
T with d/a, according to (29),

for the indicated values of the ratio b/a. Right: the variation of the configurational
forces J void

x with d/a, according to (23), for the same values of the ratio b/a. The
scaling force parameter is J x = 8πµaε• 2/(1− ν). The left endpoints of the curves (at
d/a = 1+ b/a, when the inclusion is tangent to the void) specify the minimum strain
energy and maximum configurational force corresponding to a selected value of the
ratio b/a.

a comprehensive survey of recent works on inclusions and inhomogeneities in an infinite space and a
half-space, addressing the problems of a single inclusion, two inclusions, and multiple inclusions, as
well as dislocations and cracks.

4. Total strain energy

The total strain energy in the medium with inserted inclusion near a traction-free void is the sum of the
strain energy term corresponding to the inclusion inserted in an infinite medium far away from the void,
thus given by the first expression in (15), and the term dependent on d which accounts for the interaction
between the void and inclusion. The latter includes the strain energy of the auxiliary (image) field and
the cross term due to energy of the auxiliary σ̂i j field on the infinite-medium strain field, as well as the
energy of the infinite-medium stress field on the auxiliary ε̂i j strain field. Thus,

ET =
πµb2ε• 2

1− ν
+ ÊT (d, b). (26)

The energy ÊT can be conveniently determined by noting that its negative gradient with respect to the
distance between the inclusion and the void must be equal to the configurational force on the void, as
given by the expression (23):

−
∂ÊT

∂d
=

8πµε• 2

1− ν
adb4

(d2− a2)3
. (27)

Upon integration, this gives

ÊT =−
2πµε• 2

1− ν
a2b4

(d2− a2)2
, (28)
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up to an immaterial constant term. Consequently, by substituting (28) into (26), the total strain energy
becomes

ET = E0
T

[
1−

2a2b2

(d2− a2)2

]
, E0

T =
πµb2ε• 2

1− ν
. (29)

Therefore, the introduction of the void in an infinite medium with the inserted inclusion decreases the
strain energy, the decrease being greater for larger voids that are closer to the inclusion. This is sketched
in Figure 3 (left image).

For later use, we also evaluate from (29) the following quantities:

−a
∂ET

∂a
=

4πµa2ε• 2

1− ν

(
b
a

)4
(d/a)2+ 1
[(d/a)2− 1]3

, (30)

−b
∂ET

∂b
=

2πµa2ε• 2

1− ν

[
−

(
b
a

)2

+

(
b
a

)4 4
[(d/a)2− 1]2

]
, (31)

which will be discussed in relation to M-integrals in the next two sections.

5. M-integral around the void

The M-integral of the plane strain elasticity with respect to the coordinate origin at the point O can be
expressed as [Knowles and Sternberg 1972; Budiansky and Rice 1973]

MO =

∮
Pαβxβnα dl =

∮ [
x(Pxx nx + Pyx ny)+ y(Pxynx + Pyyny)

]
dl; (32)

that is,

MO =

∮ [
W (xnx + yny)− tx(xux,x + yux,y)− ty(xu y,x + yu y,y)

]
dl. (33)

By using the same closed contour from Figure 2, as in the evaluation of the Jx -integral, the contribution
from the remote circle M R

O tends to 0 as R tends to∞, because the stresses decay as 1/R2 far away from
the inclusion. Thus, Mvoid

O +M incl
O = 0, where

Mvoid
O = a2

∫ 2π

0
W (a, θ) dθ =

(1− ν)a2

4µ

∫ 2π

0
σ 2
θ (a, θ) dθ. (34)

Upon using the circumferential stress expression (14), the integration in (34) gives

Mvoid
O =

8µa2ε• 2

1− ν

(
b
a

)4[
K1− 4

(
d
a

)2

K2+ 4
(

d
a

)4

K3

]
, (35)

where

K1 =

∫ π

0

dθ
ρ4

0
=
π [(d/a)2+ 1]
[(d/a)2− 1]3

,

K2 =

∫ π

0

sin2 θ dθ
ρ6

0

=
π

2[(d/a)2− 1]3
,

K3 =

∫ π

0

sin4 θ dθ
ρ8

0

=
π [3(d/a)2− 1]

8(d/a)4[(d/a)2− 1]3
.

(36)
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Figure 4. The variation of Mvoid
O (left) and Mvoid

C (right) with d/a for the indicated
values of the ratio b/a. The scaling factor for both plots is M O = MC , as defined in (37).

The substitution of (36) into (35) yields

Mvoid
O = M O

(
b
a

)4
(d/a)2+ 1
[(d/a)2− 1]3

, M0 =
1
2

J xa =
4πµa2ε• 2

1− ν
. (37)

Physically, the ratio Mvoid
O /a represents the energy release rate associated with isotropic void growth (by

material absorption over the surface of the void), keeping the position of the inclusion fixed relative to
the center of the void. Indeed, the comparison of (37) with (30) shows that Mvoid

O =−a(∂ET /∂a).

6. M integral around the inclusion

By using the well-known relationship between the M-integrals relative to the coordinate origins at O
and C [Rice 1985],

M incl
O = M incl

C + d · J incl
x , (38)

and in view of the relationship Mvoid
O +M incl

O = 0, it follows that

M incl
C =−(Mvoid

O + d · J incl
x ). (39)

Consequently, by substituting into (39) the expression for Mvoid
O from (37) and the expression for J incl

x =

−J void
x from (23), the MC integral around the inclusion is found to be

M incl
C = MC

(
b
a

)4 1
[(d/a)2− 1]2

, MC = M O . (40)

If d � a, then M incl
C approaches zero, as if the inclusion was in an infinite medium without the void

(M incl,∞
C = 0). The variation of Mvoid

O and M incl
C with d/a for several values of the ratio b/a is shown in

Figure 4. In the limit of infinitely large radius of the void, the M-integral around the inclusion is

M incl
C =

πµε• 2

1− ν
b4

c2 , (41)

in duality with (25) through the relation M incl
C =−cJ incl

x .
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Figure 5. Left: the variation of the strain energy ET , given by (29) and normalized
by MC , with b/a in the case d = 2a. Right: the corresponding variation of δET /δb and
M incl

C /b, given by (42) and normalized by MC/b, where b = a.

6.1. Expansion of the inclusion. The ratio M incl
C /b does not represent the energy rate associated with

the isotropic growth (self-similar expansion) of the inclusion (δET /δb), which is given by (31). In fact,
the two are related by

δET

δb
=

2πµbε• 2

1− ν
−

2M incl
C

b
. (42)

Figure 5 (right image) shows the variation of δET /δb and M incl
C /b (both normalized by MC/b) with b/a,

in the case d = 2a. The energy (ET ) plot itself is shown in Figure 5 (left image). The maximum value
of the rate δET /δb is 0.2887 MC/a, taking place for b = 0.866a. The energy rate in the case when the
inclusion is tangent to the void (b= a) is 0.2778 MC/a. Figure 6 shows the variation of the energy ET and
the energy rate δET /δb with the distance d/a in the case of a circular inclusion of radii b = a, b = 3a/4,
and b = a/2. In the limit as d→∞, the energy ET approaches the value E0

T according to (29), while
the energy rate δET /δb approaches the value 1

2(b/a)
2 times MC/b, according to (42). Therefore, the

greater the distance from the void, the greater the energy ET associated with the presence of the inclusion,
and the greater the rate of energy δET /δb associated with the increase of the inclusion. This suggests
that the presence of a nearby free surface facilitates the eigenstrain transformation, which may be of
importance for the study of displacive transformations and transformation toughening mechanisms in
crystalline metallic materials and ceramics.

If the specific configurational force f is introduced, the rate of total strain energy associated with a
uniform expansion of inclusion can be expressed as

δET

δb
=−

∫ 2π

0
f (b, θ)b dθ, f =

[ 1
2(σ

0,in
i j + σ

0,out
i j )ρ=b+ σ̂i j (b, θ)

]
ε•i j , (43)

where σ̂i j (b, θ) are the stress components of the auxiliary problem around the inclusion. This type
of expression for f was originally derived by Gavazza [1977]. For the dilatational eigenstrain, (43)
reduces to

δET

δb
=

2πµbε• 2

1− ν
− bε•

∫ 2π

0
σ̂kk(b, θ) dθ. (44)
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Figure 6. Left: the variation of the strain energy ET , given by (29) and normalized
by MC , with the normalized distance d/a, for the three indicated radii of the inclusion.
Right: the corresponding variation of δET /δb, given by (42) and normalized by MC/b,
where b = a.

To evaluate σ̂kk(b, θ), one would have to solve the auxiliary boundary-value problem, which was circum-
vented in the earlier derivation of the rate δET /δb. The average normal stress around the inclusion can,
however, be determined immediately by comparing (44) with (31):

1
2π

∫ 2π

0
σ̂kk(b, θ) dθ =

4µε• 2

1− ν
a2b2

(d2− a2)2
. (45)

7. Circular inclusion in a half-space

Figure 7 (left image) shows a circular inclusion of radius b whose center is at distance c from the free
surface (x = 0) of a half-space. If the inclusion was given a uniform shear eigenstrain ε•xy , the longitudinal
stress along the free surface can be calculated from

σy(0, y)= 2[σ 0
y (0, y)− σ 0

x (0, y)], (46)

where the infinite medium stress field outside the inclusion is specified in Section 2. Upon using the
stress-transformation formulas between the (ρ, ϕ) and (x, y) coordinate systems, it follows that

σy(0, y)=−σ ycb2
(

2−
3b2

c2+ y2

)
y(c2
− y2)

(c2+ y2)3
, σ y =

8µε•xy

1− ν
. (47)

The plot of this stress along the y-axis for several values of the ratio c/b is shown in Figure 8.
The configurational force between the inclusion and the free surface of a half-space is determined from

J incl
x =−

∫
∞

−∞

W (0, y) dy =−
1− ν
4µ

∫
∞

−∞

σ 2
y (0, y) dy. (48)

Upon the substitution of (47) and integration, (48) becomes

J incl
x = J x

32(c/b)4− 72(c/b)2+ 45
5(c/b)7

, J x =−
5πµ

32(1− ν)
bε• 2

xy , (49)



328 VLADO A. LUBARDA

y

O c

b x

1

0.8

0.6

0.4

0.2

0
1 1.5 2 2.5 3

c/b

Jin
cl

x
/

J̄ x
Figure 7. Left: a circular inclusion of radius b with its center at the distance c from the
free surface of the half-space. Right: the variation of Jx with c/b. The scaling factor is
J x =−5πµε•xy/[32(1− ν)].

where J x is the value of Jx when c = b. In the evaluation of integrals, the following recursive relations
were used [Gradshteyn and Ryzhik 1965]:∫

∞

0

ym dy
(1+ y2)n

=
m− 1

2n−m− 1

∫
∞

0

ym−2 dy
(1+ y2)n

, n > m/2,∫
∞

0

dy
(1+ y2)n

=
2n− 3
2n− 2

∫
∞

0

dy
(1+ y2)n−1 , n > 1.

(50)

The variation of J incl
x with c/b is shown in Figure 7 (right image). For the values of the ratio c/b

between 1.1794 and 1.5359 there is a peculiar increase of the force with the increase of c/b, after which
the configurational force resumes its expected decay with the increase of c/b. The brief interruption
of the force decay in this region with the increase of the ratio c/b is a consequence of the markedly
different nature of the stress variation σy(0, y), corresponding to different values of the ratio c/b, as
shown in Figure 8.

8. Conclusion

The J - and M-integrals along the boundary of a circular void, or along the straight edge of a half-space,
due to a nearby circular inclusion with uniform dilatational or shear eigenstrain, are evaluated by using
the Kienzler–Zhuping formula, without solving the entire boundary value problem at hand. Three types
of interactions between inclusion and void are considered. First, the configurational force exerted on the
void by the inclusion is determined by means of the J -integral evaluation. This represents the energy
release rate associated with an imagined void translation within the material toward the inclusion (by
diffusion or otherwise), keeping the position of the inclusion fixed. Second, the energy release rate is
evaluated associated with a self-similar expansion of the void (by material absorption over the surface of
the void), keeping the position of the inclusion fixed relative to the center of the void. This energy rate is
related to the M-integral around the void. Third, the energy rate associated with an isotropic expansion of
the inclusion is evaluated and related to the M-integral around the inclusion. The former differs from the
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Figure 8. The variation of the stress component σ(0, y) along the y-axis for several
values of the ratio c/b. The left image is for the values of c/b corresponding to the
local minimum and maximum of Jx , and the right image is for three other values of
c/b. The utilized scaling factor is 8µε•xy/(1− ν). The values of the ratio c/b at which
the configurational force has a local maximum and minimum are the roots of (c/b)2 =
(15±

√
15)/8. The corresponding force values are 0.5280J x and 0.4262J x .

latter. The relationship between the two quantities is derived and discussed. It is shown that the greater
the distance from the void, the greater the energy associated with the presence of the inclusion and the
energy rate associated with its growth. This suggests that the presence of a nearby free surface facilitates
the eigenstrain transformation, which may be of importance for the study of displacive transformations
and transformation toughening mechanisms in crystalline metallic materials and ceramics. The attraction
exerted on a circular inclusion with a uniform shear eigenstrain by the free surface of a half-space is also
evaluated. Peculiar variation of this configurational force with the distance between the inclusion and
the free surface is noted and discussed.
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