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ABSTRACT

The derivation ofthe expression for the configurational or energetic force on a straight dislocation in
infinite and finite bodies caused by different sources of stress is revisited from the conceptual and
pedagogical points of view, which is of interest for undergraduate and graduate education in materials
science and engineering. The classical virtual work approach was first used, followed by the approach
based on the potential energy consideration which allows for the incorporation of the effects of image
stresses due to the presence of loaded, free, or constrained boundaries. The third utilized approach is
based on the evaluation of the J integral. The presented examples include a straight dislocation near
a slipping or free boundary of an isotropic half-space or a quarter-space, and a dislocation near a
circular or semi-circular hole. The glide and climb components of the dislocation force are evaluated
and discussed in each case.

Keywords: Climb force; dislocation; glide force; image stress; J integral; Peach-Koehler force; potential
energy; virtual work; void

Glossary of symbols:

b Burgers vector
f Dislocation force
S Dislocation line vector
p Dislocation core radius
tn Traction vector
n, ill, e Unit vectors
(J Stress tensor

Applied stress
Image stress tensor
Strain tensor

JW Virtual work
II Potential energy
U Strain energy
w Strain energy density
E Modulus of elasticity
G Shear modulus
v Poisson's ratio
Jp J integrals

,sap Kronecker delta
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1. INTRODUCTION

Dislocations are crystallographic defects of
greatest importance for the analysis of inelastic
response of crystalline materials. Their existence
was proposed independently by Taylor, Orowan
and Polanyi in 1934 in an attempt to explain the
shear strength of metals, which was observed to
be two or three orders of magnitude lower than
the theoretical shear strength. 1·5 The presence of
dislocations in crystals was experimentally
confirmed by the transmission electron
microscopy in the late 1950's and since then
dislocations are widely recognized to be the
main feature of material structure that controls
the plastic yield strength, hardening and ductility
of metals." Numerous dislocation-based
theories were proposed to explain phenomena
such as the grain-size dependence of the
yield-stress, crack initiation at grain boundaries
and inhomogeneities, brittle-to-ductile
transition, size effects at micron scale, creep and
fatigue behavior, etc.S.13

Historically, without any consideration or
referral to atomic structure, Vito Volterra in
1907 derived the elastic fields associated with
displacement discontinuities in a linearly elastic
continuum that correspond to what later became
known as the edge and screw dislocations. The
stress and strain fields of Volterra dislocations
are characterized by an r-I singularity, where r
is the distance from the dislocation line, so that
the model represents well the elastic fields of a
crystalline dislocation sufficiently away from
the dislocation line. Very near the dislocation
line, nonlinear theories or other remedies are
needed to accurately describe the severe
distortion of lattice in the dislocation core
region. Among them, the most well-known is the
Peicrls-Nabarro model, which incorporates the
size of a spread core or width of a dislocation
and the distance between crystallographic
planes.I?

The scientific contributions to dislocations by
Volterra in 1907 and by Taylor, Orowan and
Polanyi in 1934 demonstrate a strong connection
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between research fields of materials science and
mechanics of solids. Another remarkable
example of this conoection is a celebrated
ellipsoidal inclusion problem of Eshelbyl4,
which keeps engaging researchers from both
communities for over sixty years now. An
ellipsoidal regiou (inclusion) undergoes a
uniform trausformation strain (eigenstrain), such
as twinning or martensitic transformation, but
due to the constraint from the surrounding
material, the inclusion is left in a state of
uniform stress. The derived closed form solution
for this stress greatly facilitated the
developments in the fields of mechanics of
heterogeneous materials and mechanics of
composites. 15,16 The materials-mechanics
linkage in engineering research and education
have already been addressed in several
publications in the Journal of Materials
Educationlb'"

When material is under stress, dislocations move
and produce crystallographic slip, which gives
rise to plastic deformation. To describe
dislocation motion, interaction of dislocations
with other dislocations or with other defects,
such as foreign atoms, inclusions, grain and
phase boundaries, fundamentally important is
the so-called energetic or configurational force
acting on each portion of the dislocation loop.
This force was first derived by Peach and
Koehler," and their expression has become
known as the Peach-Koehler dislocation force
expression. We review in this paper the
two-dimensional derivation of the
Peach-Koehler force on a straight dislocation,
which is simpler and more suitable for the
coverage of the topic in undergraduate courses
of materials science and mechanical behavior of
materials. Some of the derivation may also be
appealing for graduate courses. The derivation
based on the virtual work is first reviewcd'v" and
then generalized by using the method of the
potential energy to include image effects
associated with the presence of free or
constrained boundaries of the material.i'<" The
third utilized approach is based on the evaluation
of the J integral, '6·28 which is suitable for more
advanced courses of dislocation theory or
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continuum mechanics. The selected examples
used to illustrate different approaches include a
straight dislocation near free or slipping
boundary of a half-space, and a straight
dislocation within a quarter- and three-quarter
space. These dislocation configurations play
important roles in the study of mechanics of thin
films and interfaces, grain boundaries, and
surface junctions at the comers or re-entrant
comers of microstructural elements.P" The
non-uniqueness of dislocation force in multiply
connected domains is illustrated by an example
of a straight dislocation near a cylindrical
circular void. This configuration is of
importance for the study of void growth by
dislocation emission and the material failure by
void coalescence and spalling. Numerical
determination of dislocation forces near surface
steps, circular grooves, or other more complex
geometries are discussed. The reference to
earlier work on the subject is incorporated
throughout the paper.

2. BASIC DISLOCATION CONCEPTS

Figure I shows an' edge dislocation at the
continuum and atomistic levels of description.
At the continuum level shown in Fig. Ia, the
dislocation is created by cutting a block of
material from its left edge to the location of the
dislocation line, and by displacing the upper side
of the cut by amount b, relative to the lower
side of the cut. The imposed displacement
discontinuity is known as the Burgers vector of

--- ---
b

the dislocation. For edge dislocations, the
Burgers vector is orthogonal to the dislocation
line and is defined by the Burgers circuit shown
in Fig. 2. Any cut can be used to create a
dislocation by imposing a prescribed
displacement discontinuity along it; two cut
choices are shown in Fig. 2. On atomistic scale
(Fig. Ib), the edge dislocation can be thought as
being created by inserting an extra half-plane of
atoms midway between two adjacent planes of
atoms. I·' The dislocation line, orthogonal to the
plane offigure, coincides with the bottom row of
the extra half-plane of atoms. The heavily
distorted region around the dislocation line is the
dislocation core.

A screw dislocation is created by displacing the
upper side of the cut relative to the lower side of
the cut in the direction of the dislocation line.
There is no extra half-plane of atoms, but the
crystalline lattice is heavily distorted around the
dislocation line. The elastic fields of screw
dislocation in an infinite medium are particularly
simple. The non-vanishing displacement
component is u, = b, B /2" where
B E [0,2,,] is the polar angle in the (r, B) plane,
orthogonal to the dislocation line along the x,
direction. The corresponding nonvanishing
stress is 0"8 = Gb, /21/Y, demonstrating the
previously mentioned r') singularity along the
dislocation line r = O. The shear modulus of
the material is denoted by G.

fL
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(a) (b)

Figure 1. An edge dislocation at: (a) the continuum level, introduced by a displacement discontinuity of amount
b along the shown horizontal cut surface, and (b) the atomic level, introduced by insertion of an extra

half-plane of atoms.
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(a)
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(b)
Figure 2. An edge dislocation created by the displacementdiscontinuity b. In part (a) the upper surface z:. of
the cut is displaced by b to the right relative to the lower surface L_ along the negative Xl axis, while in part
(b) the displacementdiscontinuity is imposed along the positive Xl axis. In each case the chosen direction of the
dislocation line vector ~ is out of the plane of figure. The Burgers circuit is right-handed with respect to ~, it

begins at the point S and ends at the point F.

In general, dislocations in crystals are curved,
appearing as either closed loops entirely within a
crystal, or open loops with their ends exiting at
the inner and outer boundaries of the crystal. The
dislocation Burgers vector is constant along the
dislocation loop, and at an arbitrary point of the
loop can be decomposed into its edge
component, orthogonal to the loo~, and its screw
component, tangent to the 100p'·1 (Fig.vlb),

If the length of a Burgers vector is equal to one
lattice spacing, the dislocation is referred to as a
perfect dislocation (or dislocation of unit
strength); otherwise, it is a partial dislocation. It
can be shown that the strain energy of
dislocation is proportional to the square of the
Burgers vector. For example, the strain energy
per unit length of a screw dislocation, stored in
an annular circular region bounded by the
dislocation core radius p and a large outer radius
R is

_ JR - 71:JR 2 Gb; RU - 271: 0"3eG3erdr - - 0"3erdr =--In - ,
P .' G P 471: P

(I)
where G30 = 0"3e / 2G is the shear strain. Thus,
in order to minimize the strain energy, the
Burgers vector of a dislocation is equal to the
shortest lattice translation vector. If is

energetically preferred, a perfect dislocation
may dissociate into two partial dislocations,
separated by a stacking fault, which is referred to
as an extended dislocation.":" Under applied
stress, dislocations move along the most dense
planes of atoms, because the lattice resistance to
their motion increases with the spacing between
atomic planes. I·'

While the motion of a crystalline dislocation
within its glide plane is opposed by the lattice
friction (Peierls-Nabarro stress)," the
dislocation motion orthogonal to its glide plane
is opposed by the barriers to atomic diffusion,
because a dislocation can move out of its plane
only if the point defects (e.g., vacancies) diffuse
to or away from the dislocation, assuming that
the temperature of the material is sufficiently
high for rapid diffusion." This climb resistance
can be estimated by the consideration of the
Gibbs energy, which gives the corresponding
chemical or osmotic force on a dislocation.

3. PEACH-KOEHLER FORCE ON A
STRAIGHT DISLOCATION

Figure 3a shows a straight dislocation of a mixed
edge-screw type, located at the point C at large
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Figure 3. (a) A straight dislocation ofa mixed edge-screw type, located at the point e at large distance from the
bounding surface of a body. The displacement discontinuity is imposed along the cut from the bounding surface
to the pointe,by displacing L+ relative to L_ by a Burgers vector b. The unit vector of the dislocation line
~ is out of the plane of figure. (b) A nearby position of the dislocation, after it has experienced a displacement

Or from e to C'. The unit vector along CC', orthogonal to L+ and directed towards L_, is v.

distance from the surface of a loaded body, so
that the dislocation image stresses? due to
boundaries can be ignored compared to stresses
from the applied load. The Burgers vector ofthe
dislocation consists of the edge and screw
components, such that b = b,m + bs't" where
b, = (b,2+b;YI2, m = {bl' b2, O}/be , and
b; = b., The unit vector along the dislocation
line is 't,= e3• The rectangular coordinates
(x"x"xJ) are used as the background
coordinates, with unit vectors (el'e" e3). If the
stress field in the body (excluding the stress field
from the dislocation itself) is denoted by (J, the
work done by it (per unit length of the
dislocation), as the dislocation is introduced in
the body, is

W= Ct_2·bdx, t_2 =-(J·e2. (2)

The cut surface along which the displacement
discontinuity is imposed is conveniently
selected to be the horizontal surface with a trace
Be in the plane of the figure (B being the
point at the boundary of the body). In creating
the dislocation, the surface L + is displaced by
b relative to the surface L . The vector

C2 = -t2 is the traction vector over the surface
element of Be whose normal is in the negative
x, direction.

Suppose that the dislocation experiences a
(virtual) displacement or from its position e
to a nearby position C' (Fig. 3b). The
corresponding work is
OW'= tv·b a- = v-o-b a-, tv =(J·V = v-o ,

(3)
where v is the unit vector orthogonal to 6L+
defined by the upper cut along CC', extending
the surface cut L+ ' as indicated in Fig. Ib. The
vector tv is the corresponding traction vector.
In view of the geometric vector relation
't,x 8r = -va- , the substitution into Eq. 3 yields

OW' = -«J. b)· ('t,x8r) = -8r .[«J. b) x 't,] .
(4)

Consequently, by defining the force on a straight
dislocation f such that f· 8r = -OW' , the
comparison with Eq. 4 establishes the celebrated
Peach-Koehler'? expression .

f = «J·b)x't,. (5)

The same structure of the expression holds for
dislocation loops, provided that ~ is tangential
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to the loop (Fig. 4). The Peach-Koehler expres-
sion plays a fundamental role in materials
science studies of dislocation motion and
interaction of dislocations with other
dislocations or other material defects, such as
inhomogeneities, voids, and grain bound-
aries."!"

C+SC

---------

(b)

Figure 4. (a) The dislocation loop C created by a cut
surface below the plane of the loop. The surface L.
is displaced by a Burgers vector b relative to the
surface L_. The dislocation line vector along the
loop is ; . The traction vector over L+ is tv'
where V is the unit vector orthogonal to L. and
directed towards L_. A nearby configuration of the
dislocation loop is C+ 8 C, obtained from C by a
displacement variation c'Ji' specified along the loop.
The surface connecting C and c-z c is 8 L. (bl
The glide and climb components of the dislocation
force along a planar dislocation loop C in the plane
whose unit normal is n. The unit vector m is in the
plane of the loop, orthogonal to it and directed
outward from it. The projections of the dislocation
force f onto ill and n are its glide and climb
components, fglide = fm and (limb = fn·

Lubarda

If the image stresses from the boundary of the
body (a) and the stresses due to interaction of
the dislocation with other dislocations or other
defects in the body (oin') are included in the
analysis, the Peach-Koehler expression for the
dislocation force takes the form's-"
f = [(00 +&+o'n'). b] x~,
(6)
where e" represents the stress contribution
from the extemalload only.

In some studies, and textbooks on
dislocarions.v" one direction of the dislocation
line vector is taken as positive, while in
others,'4,,, the opposite direction is taken as
positive, Although both directions are
permissible choices, a care is needed to properly
identify the corresponding direction of the
Burgers vector of the dislocation."

3.1 Glide and climb components of
dislocation force

Since for a straight dislocation ~ = e, , the
rectangular (x"x"x,) components of the
corresponding dislocation force are, from Eq. 5,

J.. = O'"b, +O'"b, + O'2Jb, ,
/, = -( a.b, + O'12b, + O'13b,) ,

/, =0.
(7)

The force f can also be decomposed into its
glide component fglide = (f·m)m and its
climb component f'limb = (f 'D)D (Fig. 4b),
such that f 7 fglid, + felimb, where

D=~(~Xb)=~{-b b O}b'" b 2' P ,, ,
I

m = DX~= -{b" b2, O}.b,
Equation 9 (next page) readily follows.

(8)

Journal a/Materials Education Vol. 39 (5-6)
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I'lid' =~[<0"22 -0"11)blb2 + 0"12(b1
2-bi)+0"32bA -0"3Ib3b2],

b,

!climb =-~[0"1lbI2 +0"22bi +20"12blb2 +0"31bA +0"32b3b,j.
b,

If fjJ is the angle between the edge component of the dislocation and the XI axis, then
b, = b; cos tp , b2 = b, sin fjJ, and Eq. 9 can be recast as
/g/;d' =<»: +0"3nb3' !c/;mb = -(O"mmb, +0"3mb3)'

229

(9)

(10)

where

O"mn =~(0"2l-0"11)Sin2fjJ+0"12COS2fjJ, O"mm= 0"11COS2
fjJ+ 0"22Sin2fjJ+0"IlSin2fjJ, (II)

0"3m =0"32sinfjJ+0"3ICOSfjJ, 0"3n =0"32COSfjJ-0"3IsinfjJ.

Alternatively, Eg. 10 can be derived directly from Eg. 5 by expressing the stress tensor (J and the
Bnrgers vector b in the coordinate system specified by unit vectors (m, n, e.). Further discussion
with specific evaluations of glide and climb forces will be given in section 4.

3.2 Image force on dislocation near a slipping boundary

Figure 5a shows a straight dislocation with a Burgers vector {bpb2,b3} at a distance h from a
slipping boundary of a half-space. The slipping boundary prevents the normal displacement
(ul = 0, 0"11'" 0) , but allows tangential displacements (u2 '" 0, u3 '" 0, 0"12= 0"13= 0) . The
dislocation is created by the displacement discontinuity along the XI axis from XI= h to infinity.

:
I,,

Xl

h XI .- h h \1hz XI

J hi ,0 hi
h] ,,,,,

I,,,,
:

(a) (b) .
Figure 5. (a) A straight dislocation with a Burgers vector {bpb2,b3} at a distance h from the sliding
boundary of an isotropic half-space, which can be a model for a grain boundary incapable of supporting the shear
stress. (b) The solution to the problem in Fig. 2a is obtained by superimposing the infinite-medium elastic fields
of the actual dislocation with a Burgers vector {bpb2,bJ and an image dislocation with a Burgers vector
{bp-b2,-b3}, placed at point (x, = -h, x, = 0).
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The complete elastic solution for this problem
can be obtained by placing in an infinite medium
an image dislocation with a Burgers vector
{b" -b" -b3} at point (x, = -h, x2 = 0, Fig.
5b), because two dislocations together produce
neither shear stress nor horizontal displacement
along the plane x, = 0 in an infinite medium

(0"'2 = 0"13 = 0, U, = 0) .

In the absence of other stresses, the
Peach-Koehler dislocation force is due to image
stresses (rJ ij) only, caused by the interaction of

dislocation with the boundary, i.e.,
;; = rJ21b, + rJ22b2+ rJ23b3. (12)

The stress components rJij at the dislocation
position XI = h are equal to those produced in
an infinite medium by the image dislocation
{b],-b2,-b3} at x, = -h. These are'
, Gb, I
0" = -

2] 2Jr(I- v) 2h '

, Gb2 I
0"22 = - 2Jr(l- v) 2h ' (13)

, Gb3 I
(J" = -----
2J 2Jr 2h'

where G is the shear modulus and v is the
Poisson ratio. The substitution ofEq. 13 into Eq.
12 yields

;;=£(b]'-b; bi). (14)
4nh I-v

The dislocation is in equilibrium if
b]2= b; +(l-v)b;. For example, a pure edge
dislocation is in equilibrium if its Burgers vector
is oriented so that b] = ±b, .

Alternatively, Eq. 14 can be deduced from the
analysis of an edge dislocation near a circular
inclusion with a slipping interface," by letting
the radius of a rigid inclusion to be much greater
than the distance of the dislocation from the
interface. For slipping interface, the contribution
from the screw dislocation component to the
dislocation force is the same as in the case of a
traction-free boundary."

Lubarda

4. DISLOCATION FORCE BY
POTENTIAL ENERGY CONSIDERATION

Consider an infinitely thick rectangular block of
isotropic elastic material having a width a and
height h. An edge dislocation of a Burgers
vector b. resides at distance x, from the left
side of the block (Fig. 6a). The dislocation is
introduced by the slip discontinuity b. along
the horizontal cut from x] = 0 to the current
position x]; the upper side of the cut is
displaced by b, to the right relative to the lower
side of the cut. The entire block is subjected to
external uniform shear stress of magnitude O"~,.
The potential energy ofa dislocated block is

_ ° - - I rx" °n -rr +U, -o.: -Zb'Jo O"12dx,-b]O"12X"

(15)
where 0-], stands for the image shear stress due
to the boundaries of the block. The strain energy
around the dislocation in an infinite medium,
stored within the dislocation core of small radius
p , is denoted by U,. The infinite-medium
strain energy outside of the dislocation core,
stored within a circular cylinder of large radius
R, iS9,IO

fJ = Gb,' InR
00-' 4Jr(l-v) p '

Finally, nOin Eq. 15 is the potential energy of
the block without a dislocation, i.e.,

n° = ~(J"~2Y~2(ah) - (J"~2(hY~2)a ,
2

(16)

°o 0"12
Y12=(i'

(17)
where y,O, = 2G'~2 is the engineering shear strain
in the block. The horizontal displacement of the
upper side of the block relative to the lower side
. ° h °IS U, = Y12'

The change of the potential energy due to an
additional slip of the dislocation (Ox, ) is
orr = -MrJ12 + O"~,)&, . (18)
Since the dislocation force I, is defined by
;;&, = -orr , the comparison with Eq. 18

Journal of Materials Education Vol. 39 (5-6)
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establishes the expression

j, =(0-" +O"~,)b,. (19)
Being parallel to the Burgers vector, this is a
glide force on the dislocation.

If the dislocation is deep inside a large block, so

that the image stress 0-'2 «O"~" only then we
have the (approximate) expression for the

dislocation force j, = O",o,b" commonly listed
in the undergraduate textbooks of materials
science and mechanical behavior of materials."
Near the free surface of the block, however, the
image stress 0-" can easily be comparable or

exceed the applied stress 0",0" and in such cases
the proper expression for the dislocation force is
given by Eq. 19.

crl~----
j

j

I 1;
all 1 x, j>1 .... t 0 )f;12 h t a/2 o-

j a,l _

I 1 x, ~I

l.X2 t X2
j XI a t XI--- a

aJ~
(a) (b)

Figure 6. (a) An infinitely thick rectangnlar block of width a and height h. The block is under applied
uniform shear stress 0"1°2' An edge dislocation with a Burgers vector hi resides at the distance XI from the
left side. The dislocation is introduced by the slip discontinuity b, along the horizontal cut from x, = 0 to the
current x. Shown is the glide component of the force acting on the dislocation (j, > 0 ). (b) The same block as
in (a), under applied uniform normal stress CT,o,.The edge dislocation with a Burgers vector b" located at the
distancex, from the lower side of the block, is created by the displacement discontinuity b, along the vertical
cut below the dislocation. Shown is the climb component of the force acting on the dislocation (;; < 0).

It is appealing to evaluate the average dislocation force required to drive the dislocation through the
entire block, from x = 0 to x = a .This can be accomplished by first noting that

la Il"A °j, dx, = -(IIx <a - IIx ~o)= -b, O""dx, + b,CT,p ,° "2 °
. from which the average force is

- Ila 1(1 laA ° )j, = - j, dx, = - -b, CT"dx, + b,O""a .
a ° a 2 °

On physical grounds, the image stress 0-" must be an od~ function of the horizontal coordinate
measured from the middle of the block (x, = al2 ), so that 10-" dx, = 0 , and the change of potential
energy is simply the negative of (plastic) work done by applied stress 0",0, on plastic shear strain
(b/h), i.e., IIya - IIyo = -CT,o,(b/h)ah = -CT,oAa. Consequently, the ave!age force acting on
the dislocation, as it glides from the left to the right side of the block, is exactly j, =O",o,b,.

(20)

(21)

Journal of Materials Education Vol. 39 (5-6)
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4 CLIMB FORCE

Figure 6b shows a rectangular block of width a
and height h , under applied uniform normal
stress O"~I' with an edge dislocation of the
Burgers vector b, at a distance x, from the
lower side of the block. The dislocation is
introduced by the displacement discontinuity bl
along the vertical cut below the dislocation; the
left side of the cut is displaced by b, to the right
relative to the right side of the cut, and the
overlapping material imagined to be scraped out.
The total potential energy is

° ~ - 1 IX
2' °IT=IT +U,+Uoo~+-bl 0"11dx2+b10"11X2

2 °
(22)

where

ITo = .lO"?llilo/ah)- 0"1°1(ali?l)h ,2 .
(23)

0"0
li?1 =(l-V2)_II.

E
The modulus of elasticity is E, while the
horizontal displacement of the right side of the
block relative to its left side is uIO = alilol •

The change of potential energy, associated with
an additional displacement of the dislocation
(&2) is

e5I1 = b, (0-11+ 0"?I)ar2.

Since the dislocation force IS

12&' = -bIT , it follows that

j, = -(0-11+ O"?I)bl •

(24)
defined by

(25)

Being orthogonal to the Burgers vector, this is a
climb force on the dislocation. It is directed
downwards ( I, < 0 ) for bl > 0 and
, ° 0 d vi0"11+ all> , an vice versa.

If the dislocation is deep inside a large block of
material so that the image stress is negligible
(0-11 < < 0"1°1), the expression for the climb force
is given approximately by j, = -O"lolbl , which is
directed downwards for b. > 0 and O"?I > 0 .

Lubarda

In the context of a crystalline dislocation, this
means that the climb force acts in the direction
opposite to the direction of the inserted extra
half-plane of atoms, provided that 0"1°1> 0 . It is
noted that the Weertman and Weertmarr"
expression 3.13 on page 58 for the climb force is
j, = O"?lbl ' but their b, is opposite in direction
to ours, although both describe the same
dislocation.

Physically, the climb in a real crystal occurs by
diffusion (emission or absorption) of lattice
vacancies, but a discussion of these processes is
beyond the scope of the present paper.'·l5 One

, may, however, intuitively argue that the
increased tensile state of stress below the
positive edge dislocation, caused by the applied
stress 0"1°1> 0 , facilitates the absorption of
extra atoms below the dislocation, on the
expense of the correspondingly increased
vacancy concentration surrounding the
dislocation, which contributes to the downward
direction of the climb force in Fig. 6b (j, < 0).

To evaluate the average dislocation force
required to drive dislocation throughout the
block, from x2 = 0 to x2 = h (which results
in the plastic strain -b/a, associated with the
removed sheet of material of thickness b,), we
first note thatr {I 1·" 0 )/2dx2 =-(IIx =h -IIx =0)= -hi 0"1ldx2 +b1(711h ,o 2 2 2 0

(26)
from which we derive

], =H'/2dx, =-iGblf:o-l,dx,+blO"?lh}

(27)
The image stress 0-11 must be an odd function
of the vertical coordinate measured from the
middle of the block ( x2 = h/2), so that

h .

So 0-11dr, = 0 , and the change in potential

energy is simply the negative of (plastic) work
done by applied stress O"?l on plastic
longitudinal strain (-b/a) i.e.,
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normal n". The displacement components are
denoted by u" ' the comma specifies the
indicated partial derivative, and DafJ are the
components of the Kronecker delta tensor. The
summation convention is implied over a
repeated index. The strain energy density is

I
w;= "2CiafJSafJ + Ci'rli'r' (29)

The strain components are related to
stress components by Hooke's law
safJ ;= (CiafJ -VCirrDafJ)/2G and

li'r = CiJ/2G, with a rr = Cill + Ci" .

rrx,~h- rrx,~o= Ci?I(b/a)ah = CiIOlblh

Consequently, the average force acting on the
dislocation, as it moves from lower to upper side
of the block, is exactly], = -CiIOlbl .

5. DISLOCATION FORCE BY J
INTEGRAL EVALUATION

The JfJ integrals represent the energetic or

configurational forces associated with
infinitesimal translations of a material defect in
xfJ directions.Y" They are defined by

Jp =j(wOap-uarur,P-UaJuJP)nadl, (a,p)=1,2,
(28)

where the integration is taken over a closed
contour surrounding a defect, whose
infinitesimal element is dt with the outward

lf a defect is a straight dislocation, the JfJ
integrals represent the components of the
dislocation force in the x fJdirections. The JfJ
integrals were effectively used to address many
problems, particularly in fracture mechanics,
including dislocation-crack interactions. '9,40

5.1 Image force on a straight dislocation near a free surface

R.--_
Figure 7. A straight dislocation at pointA, a distance h from a free boundary
of an isotropic half-space. The JI integral can be conveniently evaluated
along a closed contour which consists of a long boundary segment from
XI = - R to XI = R , completed by a large semicircle of radius R > > h .The
contribution to J} from a large semicircle of radius R vanishes, because the
distance h is not observed from such large distances and a dislocation acts as
if it has exited the material.

X,

o h , ......

';(
R

Figure 7 shows a straight dislocation with a Burgers vector {b]>b"b,}
at a distance h from the free boundary of a half-space
(Cill = Cil, = Ci13 = 0). The dislocation is created by the displacement
discontinuity along the Xl axis from XI = h to infinity. By taking a
closed contour to consist of the segment (- R, R) along the free

boundary and a semicircle of radius R , centered at 0, rather than a small (dashed) circle around A , it
follows that in the limit as R ---+ ce the non-vanishing contribution to JI integral comes only from
stresses along the boundary XI = 0 , such that Eq. 28 gives

- l[ iro
, iro

, ]JI --- (l-v) Ci,,(O,x,)dx, +2 Ci32(O,t,)dx, .
2G 0" °

The integral J, = 0 because there is no change of energy associated with the change of dislocation
position along the x, direction.

-R

(30)
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The stress components 0"22(0,X2) and
0"32(0, x2) along the free surface x, = 0 can
be determined by either using the complete
solution for the stress field," or the procedure
which enables the calculation of 0"22(0,X2)

and 0"3,(O,X,) solely in terms of the
infinite-medium stresses, without solving the
entire boundary-value problem.t':" In either
case one obtains

0" (0 X ) = 4Ghx2 b,h - b,x,
22 , 2 1Z"(1-v) (h' +Xi)2 '

(0 ) - Gb3 h
lJ"32 ,x2 - --- -.,,----;;-

IZ" h' +xi

The substitution of Eq. 31 into Eq, 30 and
integration then gives

(31)

(32)

in agreement with the classical result of Head .,
obtained from the Peach-Koehler expressio~s
and the entire solution of the considered
boundary-value problem.

An alternative, even simpler derivation of the
force exerted on a dislocation by the free surface
of a half-space can be obtained from the
consideration of the so-called M conservation
integral, as in the Rice's4' analysis of dislocation
force near a bi-material interface, or from the
corresponding Barnett and Lothe45 formula
expressed in terms of the pre-logarithmic energy
factors. Details of these calculations can be
found in a recent paper," but this coverage is
beyond the background of undergraduate
engineering students and is recommended only
for graduate courses of solid mechanics and
materials. Related aspects of the stress and
energy analysis of dislocation arrays near the
free surfaces and bi-material interfaces are also
worthwhile consulting."

5.2 Further comments on glide and climb
forces

Figure 8a shows a straight dislocation with a
Burgers vector {b,,0,b3} at a distance h from

Lubarda

the free surface (x, = 0) of a half-space x, 2:: 0 .
Figure 8b shows the same dislocation at a
distance h (along the x, axis) from the free
surface ( x, = x, cot rp ) of a half-space
x2 - x, cot rp< O. We prove below that the
glide force on the dislocation is the same in both
cases and given by

..=-£(~+b'JJ, 4nh I-v 3'

independently of the angle -7l!2 <rp < 7l!2 .
The proof of this result is a corollary of Eq. 31.
Indeed, the total force acting on the dislocation
in Fig. 8b is directed along the n -direction
(orthogonal to the free boundary) and is given by

(33)

f. =-£(~+b2J a =hcosrp, (34)
n 4JZ'a I-v 3'

where a is the normal distance of the
dislocation from the free boundary. The glide
component of this force is j, = in cos tp , thus
Eq.33.

The climb component of the dislocation force in
Fig. 8b is i, = -in sin tp , which gives

G ( b' )j, = 4nh I~V +b; tanrp. (35)

For 0 < rp< 7l!2 the climb force is directed
upwards, and for -7l!2 < tp < 0 downwards.

For completeness of this analysis, it is pointed
out that the radial force on a straight dislocation
in a quarter- or three-quarter space shown in Fig.
9, directed along the radius r from the apex 0,
is given by

1,=£(b,2+bi +b'J.
4nr I-v 3

(36)

This result follows from the M integral
consideration, analogous to the analysis of a
dislocation in a bi-material wedge." It can be
furthermore shown that the radial component of
dislocation force toward the tip of a wedge of
any angle, including a semi-infinite crack," is
also given by Eq. 36.
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I J; X01--.10==--': /
h

X,X,

'11 <, !:' If, J; Xo -.- I

h <,1.
n

(a) (b)
Figure 8. (a) A straight dislocation with a Burgers vector {bl, 0, b,} at a distance h from the free surface of
a half-space. (b) The same dislocation at a distance h (along the XI axis) from the inclined free surface ofa
half-space at an angle rp from the x, axis. The glide and climb components of the dislocation force are J,

and I, .The total dislocation force is In ' orthogonal to the free surface.

o ~. /f.
r "'V 8

"---...f
r

x,

r-r- ---,:L.c--,,-_-,-,,--'x/
O····.~ jf"

r "'''<. •
'-.....1,

(a) (b)

Figure 9 A straight dislocation in (a) quarter-space, and (b) three-quarter space. The former is a model for a
junction of two free surfaces, and the latter for a re-entrant comer of a microstructural element. The radial and

circumferential components of the dislocation force are denoted by f, and10_
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The circumferential component Ie has to be determined numerically for a given angle B (except for
B= 45" and b. =±b2, when Ie = 0 ). For a pure screw dislocation (b, = b, = 0) in a
quarter-space there is an analytical solution based on the method of image dislocations."

6. DISLOCATION NEAR A CIRCULAR VOID

Elastic stress and strain fields for a dislocation in multiply connected regions depend on a cut used to
create a dislocation. Ifthe connectivity of a region is n, there are that many different fields.'o,51This is
illustrated for a dislocation near a circular cylindrical void in an infinite medium in Fig. 10. Ifa straight
dislocation is created by a cut from A to infinity (Fig. IDa), the components of the dislocation force
are"?

G ' za a" b']2 ,[(2--2)bl +b, +(I-v) , ,
27Z"(I-v) d(d -a) d

f = Gblb, a2

z 27Z"(I-v) d'
The radius of the void is denoted by a and d is the distance of the dislocation from the center of the
void. If the dislocation is created by a cut from the surface of the void to the center of dislocation at A
(Fig, lOb), the components of the dislocation force are?

G d , a' a4 z ,
, , [bl +(1+-, --4)b, +(I-v)b, ] ,

27Z"(I-v) d -a d d

Gblb, ~ (2-~) ,
27Z"(I-v) d d'

1,
(37)

1,
(38)

I,
Expressions 38 played an important role in the analysis of void growth by dislocation emission from
its surface and consequent material failure by void coalescence and spalling.Pr"

x, X'I
x,

0.0(/- --r-........----,

';J,/!e
A\

1,.

h,..- *,,_--;-;o--'x,
0<,0 /f,i;-"'y 0

...........1,.

(a) (b)

Figure 10. A straight disloeation near a surfaee step of a half-space (a), or near a half-spaee weakened by a
semi-cireular groove (b), The radial and eireumferential eomponents of the disloeation foree

are denoted by f, and Ie .
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The ratios of the forces f" calculated from Eq.
37 and 38, for each of the components of the
Burgers vector, are

(39)

Since a < d , it follows that j,D < j,L for all
three types of dislocations. The glide and climb
components of the dislocation force are easily
determined from If!! = f, cos rp+ j, sin rp and

;;, =-j,sinrp+ j,cosrp,wheretanrp=b,lbl
The derivation of expressions 37 and 38 is based
on the use of the Airy stress function" and is
quite lengthy, but their special cases
corresponding to a pure screw dislocation are
simple and can be covered even in an
undergraduate materials course. In this case, the
solution is readily obtained by the method of
image dislocations. For the cut shown in Fig.
lOa, two image dislocations are needed: a
positive screw dislocation at 0 and a negative
screw dislocation at the conjugate point, which
is at distance a2

( d from the center of the void
along the XI direction. For the cut shown in Fig.
lOb, only one image dislocation is needed, a
negative screw dislocation at the conjugate
point. 50 The resulting dislocation forces are

f,D =_ Gb3
2 a2

I 2" d(d2 _a2)'

f,L =_ Gb; d
I 2" d2 2

(40)
-a

The minus sign indicates that they are directed
towards the void. The method of image
dislocations can also be used to determine the
dislocation force on a screw dislocation near a
cylindrical circular inhomogeneity.v"

7. DISCUSSION

We included in this paper three different
approaches to the derivation of the expression
for the energetic force on a straight dislocation:
the classical virtual work approach, the potential
energy approach which incorporates the effects
of image stresses, and the approach based on the
evaluation of the J integral. The virtual work
approach is the simplest and requires the least
amount of mechanics and mathematics
background. Its two-dimensional variant
presented in section 3 can be readily covered in
senior level undergraduate courses of
mechanical behavior of materials, advanced
mechanics of materials, and mechanics of
nanomaterials, which are offered in mechanical
engineering, materials science, and nano-
engineering curricula. The potential energy
approach is more general and conceptually more
involved, because it incorporates in the analysis
the effects of image stresses, Their contribution
to dislocation force must be accounted for
whenever a dislocation is close to an
inhomogeneity, void, grain boundary, or
external boundary of the body. This has been
illustrated by several appealing examples which
are sufficiently simple to be included in
undergraduate coverage of the topic. These
include determination ofthe dislocation force on
straight dislocations near slipping and fixed
boundaries of an elastic isotropic half-space, or
near a cylindrical circular void. The third
utilized approach is based on the evaluation of
the J integral. It is a powerful approach to
determine the dislocation force in many cases
without solving the entire boundary-value
problem at hand, but it is conceptually most
involved and requires the mechanics
background that is gained only at the graduate
level of engineering or physics education. The
presented examples of the determination of glide
and climb dislocation forces are sufficiently
simple to allow closed-form analytical solutions.
For dislocations in material bodies with more
complicated boundaries, and for more complex
loadings, dislocation force can in general be
determined only numerically. For example, to
determine dislocation force on an edge or screw
dislocation near a surface step of a half-space
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a a
~ ~6----+--)<----_

(a) (b)

Figure 11. A straight dislocation of a Burgers vector {b" b2,b3} at a distance OA = d > a from the center
of a circular void of radius a. In part (a) dislocation is created by displacement discontinuity along the Xl axis
from point A to infinity,while in part (b) displacement discontinuity is imposed from the surface of the void to

the dislocation atA.

(Fig. Ila), or near a half-space weakened by a
semi-circular groove (Fig. II b), the fmite
element method can be used to calculate the
stress field due to image tractions used to cancel
the infinite-medium tractions over the stepped or
grooved boundary of a half-space.l'r" The
so-calculated stresses can then be incorporated
into the Peach-Koehler expression for the
dislocation force. Such calculations are of
importance for the analysis of dislocation
nucleation from surface steps,'6.57or the analysis
of inelastic material response which may depend
on attractive vs. repulsive effects of surface
steps on the dislocation motion.58,59 Even more
complex geometries, involving large number of
dislocations, have been considered in the
so-called dislocation based plasticity:o,6' in
which plastic deformation is determined as a
consequence of collective motion of a large
number of discrete dislocations, Kinetic rules
are specified for the nucleation and annihilation
of dislocations, their motion over obstacles or
through grain boundaries, etc, This approach is
aimed to explain the formation of organized
dislocation structures, such as dislocation walls
and cells, and to predict the resulting plastic
response of crystalline materials.
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