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1 Iniroduction

I recent vears the subject of the partitioning of the total
spin into its elastic and plastic parts has received a considerable
attention within the framework of polycrystalline phenome-
nological plasticity theory. We will show that such partitioning
is arbitrary in the absence of a physical structure that describes
the process of the plastic flow as in single crystal plasticity. In
fact, within a phenomenological plasticity theory, there is no
need to partition the total spin inro irs constituents nor make
any reference 10 them.

To introduce the so-called plastic spin within a polyerys-
talline, phenomenological plasticity theory is a consequence
of the improper identification of elastic and plastic parts of
the total strain rate. This led to the statement in the literature
that 2 tacit assumption of the Prandtl-Reuss equations is that
the plastic spin is zero. Furthermore, it has been interpreted
by some that a more complete plasticity theory can be obtained
by including a constitutive law for plastic spin. Advocates of
such an approach have made a superficial parallel between
polycrystalline plasticity and single crystal plasticity, in which
an additional physical structure is introduced to deseribe ma-
terial flowing through the crystal lattice.

Within a phenomenological plasticity of polyerystalline ma-
terials, plastic spin has been introduced to describe certain
features of anisctropic hardening (Dafalias, 1983; Loret, 1983).
Thesc attemnpts were motivated by the observation that spu-
rious oscillations of shear stress occurred in the analysis of
monotonically increasing simple shear (Nagtegaal and de Jong,
1982). Various plastic spin measures were subsequently infro-
duced and discussed by many authors; i.e., Dafalias (1985,
1987), Dashner (1986), Zbib and Aifantis (1988), Aravas and
Atfantis (1991), and others, Earlier work on the subject of
plastic spin and its significance also includes Mandel (1973)
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Plastic Spin and Related Issues in
Phenomenological Plasticity

The rofe of plastic spin within the framework of a Phenomenalogical polvervstafline
plasticity is examined. We show that if elastic and plastic strain rates are property
identified, partitioning of fotal spin and ideniification of its “plastic”’ part is nor
required in the elastoplastic constitutive analysis of elustically isotropic materialy.,

and Kratochvil {1973). Since most of the work on plastic spin
utilizes the multiplicative decomposition of deformation gra-
dient into its elastic and plastic parts, introduced by Lee (] 969),
the same is done here. Elastoplastic constitutive analysis based
on this decomposition has been a topic of active research in
the last several decades (Willis, 1969; Freund, 1970; Manclel,
1973; Sidoroff, 1975; Kleiber 1975; Lubliner 1978; Lubarda
and Lee 198]; Necdlernan 1985; Agah-Tehrani et al. 1987
Moran et al., 1990; Lubarda, 1991a, 1991b, etc.). Various
issucs related to applicability of the dzcomposition in elasto-
plasticity were discussed by Green and Naghdj {1971), Nemat-
Nasser {1979, 1982}, Casey and Naghdi {1980}, and Naghdi
(1930). In the context of single crystal plasticity. the multi-
plicative decompesition was used by Asaro and Rice (1977},
Hill and Havner (1982}, Asaro (1983a, 1983h), Mohan et al.
(1992}, and others.

2 Partition of Elustoplastic Strain Rate and Spin into
Their Constituents

To elucidate our ideas we resirict atiention 1o elastically
isotropic polycrystalline materials that can harden in an ar-
bitrary manner during the course of elastoplastic deflormation.
Let F be the deformation gradient that deforms the body 1o
its current configuration. Following Lee (1969), we introduce
an intermediate configuration which is obtained from the cur-
rent configuration by (possibly virtual) elastic distressing to
zero stress. The multiplicative decomposition then holds

F=F.F,, gy

where F, is the elastic and ¥, the plastic parr of deformation
gradient F. The intermediate configuraiion is not uniguely
defined singe it remains unstressed after any superposcd rigid-
body rotation. Alternatively, the intermediate contiguration
cun be obtained by the mapping F, appiied to the initial con-
figuration. To the extent that F, contains an unspecified ro-
tation the intermediate configuration is also nonunigue.

We adopt the assumption that plastic deformation does not
affect the elastic characteristics of the material, In this case,
the response of elastically [sotropic naterial does not depend
on any rotation superposed to the intermediate configuration.

Transactions of the ASME

R T — st Rt e s




The hyperelasticity law defined with respect to any intermediate

configuratien is (Truesdell and Noli, 1963}
WAC:) r
oF, el gl 2
* T3¢, i2)

Here ¢, the strain energy per unit unstressed volume, is an
lSOLIOplC functzon of the right Cauchy-Green deformation ten-

sor C, = F! l' and r = (detF o is the Cauchy stress ¢ weighted
by detF,. [f pldsllc deformation is taken to be incompressible,
detF, = detF and 7 is then the Kirchhoff siress.

Using (1} in she velocity gradient expression L = FF~'

obtain
L=FF; '+ FFF; IF, 3

where suparimposed dot denotes the material time derivative,
The strain tute D and spin W arc given by the symmetric and
antisymmeiric parts of L:

= (FF; )+ [Fp(t'},r; DL ()

W =(F,F; "), + [F.(F,F; ¥, '],. ()

The first term on the right-hand side of {4} has often been
identified as the elastic strain rates and the second term as the
plastic strain rate. Other definitions of clastic and piastic strain
rates have also been proposed. These identifications are made
without taking full use of the kinetics of elastoplastic defor-
mation. Similarly, the first term on the right-hand side of (35)
has often been identified as the elastic spin and the second
term as the plastic spin. However, the later partitioning is
arbitrary in the absence of a relevant physical structure upon
which spin can be defined. We shall show that the nced for
the partitioning W arises from an improper identification of
the elastic and plastic strain rates in (4). When the elastic and
plastic strain rates are properly identified, only the total spin
enters the elastoplastic constitutive formulation. Thus the par-
titioning of W is unnecessary.

We begin with partitioning [} intc Iy, and 1),.. We note that
the elastic and plastic strain rate cannot be identified from (4)
and the corresponding kinematics, since F, or F, arc not
uniquely defined. Furthermore, any proposed partitioning of
D which docs not tuke into considerations the kinetics of elas-
toplastic deformation is insufficiently specificd and arbitrary.

‘To develop this line ol reasoning, we begin by differentiating
the hyperelasticity relation (2) ta obtain

P (F Y —r(F 8 Y = A, (B F ), (&

Here : denotes the trace product and A, is the corresponding
tensor of elastic moduli, with the components
o Y (C)
A""U:‘:IF?,, e F(' e (?)
1 Fig -
! dC AT,

The left-hand side of {(6) is the Lie (or convected) derivative
of stress 7, with respect to ¥, {e.g., Simo and Ortiz, 19835).
Equation {6} can be equivalently rewritten in terms of the
Jaumnann derivative with respect to the spin (F,F, '),, as

T (FF Nor4 1, = A (FFS), (8)
The elastic maduli tensor A, has the components

1 R -

A;H:i' (Bt Bumie + i by + b ) + Al (9
where §;; is the Kronecker delta.

It deformalion is purely elastic, i.e., F = F,, then clearly
(FF. Y, in (8} is the elastic strain rate. lnlhat case, F,isdefined
rclatwe to a nonchanging (initial) configuration. However, if
deformation is clastoplastic, F, is defined relative to an inter-
mediate configuration, which is changing during clastoplastic
deformation. Consequently, two difficulties can arise in ihe
identification of the elastic strain rate. First, since F, and ¥,

are specified only to within an arbitrary retation, F,F, ' and
its symmetric and antisyrumetric parts are nonunigque, Thcrc—
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fore, a precise physical interpretation of strain rate measure
(F.F, "), and the assertion that it represents the elastic part of
the total strain rate cannol be made. Secondly, the deforming
intermediate corlflguratzon also contributes to [he elastic strain
rate 5o that it is not in general given by (F,F, '),. These dif-
ficulties are resobved in the treatment prc‘:scmed below,

The elastic strain rate is defined by the kinetic relation D,
= A;': 7. where D, represents the reversible part of D in the
sense that the strain increment D4 is recovered upoen loading-
unloading cycle of the stress increment 7¢t. Here, 1 = 7 —
Wr + sW is the Jaumann derivative relative to the material
spin W of the Kirchhoff stress 7 = {detFle. With D, defined
in this way, the remaining part of the total strain rate, D, =
D -~ D, is plastic (residual) contribution. This D, can be shown
to be governed by plastic potential and codirectional with the
outward normal to current yield surface in the Cauchy stress
space {Hill and Rice, 1973). When the reference state is taken
to momentarily coincide with the current state, these strain
rates correspond to the choice of the logarithmic strain and
its conjugate stress, as discussed in Hill (1978),

To obtain the desired form, D, = A, : 7, plastic incom-
pressibility is assumed so that 7 appearing in (8) and (%) is the
Kirchholl stress, We then usc (5) to eliminate (F,F Y, {rom
(8) to get

F=Ag: WFF - A s ([FAF 5, V7
—alF(FH; WES LY. (10)
Therefore, with the clastic strain rate given by
D= (FF, )= A7 {[FAFF; F; 1o
—1[FFF W 0, (1)

the inversion of (10) provides the desired relation
D,=A 5 (12)

Note from (7) and (9) that the elastic compliance tensor A, °
possesses the foliowing svmmetry and reciprocity properties:

(A D= (AT e = (A Vier= (A7 ey (3

As & consequence A, ' 7is derivable from elastic rate potential
. = 172 A,_." {(t ® 1-) as it gradient dé,/d7 (& denotes the
tensor product) and, theretore, 13, defined by {123, gives the
reversible strain increment that is recovered upon unloading
of the Jaumann stress increment associated with 7.

We note that the second part of the strain rate D, in its
representation {11} makes no conlribution to clastic work,
which follows by ohqervmg that, in view of clastic isotropy,
the strain rate A, ' {{F.(F,F, }F“] 7~ ¥,
has paraliel prmc:lpal d1rect|0n§ to those Of the .i&::oaated stress
rate [F(F,F, "E7 ', 7 — 1[F (F F. "F, ', Since the direction
of the above stress rate is _normal to 7, thelr trace is zero.
Henee, ¢, = 7: D, = r: (F,F, "),

After identifying elastic strain rate, as given by (11) and (12},
the remaining part of the total strain rateis the plastic (regidual)
part, which is governed by plastic potential and normal to the
corresponding yicld surface. From (4) and (11), therelore,

D, = [FAF,F, W00 L+ A 0 [ [FAFF; YE Y,
~1[FFFF L), (14)

Observe that A7 ' and 7, appearing in (12), are independent
of any supcrposed rotation on the intermediate configuration,
Therefore (12) specifies D, umquei) In u}nlrd\t the consiit-
uents of N,, namely (F,F, "), and [F‘,(Ff,Pl,, YE 1, do depend
on the choice of an intermediate configuration, Similar re-
marks apply to D, and its representation {14).

We have shown that the right-hand side of {11} is the cor-
rect relation for the elastic strain rate, and not {(F ¥, ), alone,
Nevertheless, the latter has been taken to be the elastic strain
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rate in many studies. The following question arises naturally,
Is Lhcre a choice of intcrmediate configuration for which
(F F, } is exactly D,? From (12) it can be seen that this is the
case when the intermediate confu;:urdnon ts chosen such that
the so-called “‘plastic spin,” [FAF,F, "WF; ', vanishes iden-
tically.

Within the framework under discussion, the above chaoice
of spin represents a geometric (kinematic) specification of the
intermediate configuration. It is not a constitutive assumption
and has no conseguences on {12}, For any other choice of
intermediate configuration, (F,F, "), is not the elastic strain
rate I, (= A, ' : 7). as can be seen from (11).

We could jus! as well define an ml::rmedtate configuration
by requiring that the “elasticspin,” (F,F, ), vanish identically.
In [h]S case the p!acm spin is exactly equal (o total spin,
[FaF )Fp 4. = W. The end result is stilf Eq. (12), as can
be chcckc.d by m<.pcct1on. Therefore, the partitioning of the
total spin into elastic and plastic parts by direct identification
of the terms in (5), or more elaborate kinematical considera-
tions, is superficial and unnecessary. These aspecis appear Lo
be overlooked in much of the related work on this subject.

3 An Alternative Derivation

We now present an alternative derivation of the expression
for I, which gives additional insight in the kinematics of
elastoplastic deformation and partitioning of the strain rate.
To that end and in light of the assumed isotropy of the strain
enerey function ., we rewrite the hyperelasticity law (2} in
the form

.(B,)
B,

where 1 = (det V,)e is the Kirchho!f stress since plastic in-
compressibility is assumed. Note that only the elastic stretch
tensor V, and the defermation tensor B, = ¥2 appear in this
represeniation, since the stress response does not depend on
rotation R, associated with F, in its stretch-rotation decom.
position F, = ¥.R,.

Introduce the spin 2, which is defined as the solution of the
following equation (Lubarda, 199ta):

W (V V), 4 (VOV, ), (16)

{ is an invariant guantity, independent of the choice of in-
termediate configuration, as neither W nor V, and its material
derivative depend on the chosen intermediate configuration.
It then follows by applying to (15) the Jaumann derivative
with respect to 2

722V, V., (15)

. - ERZCA
L L 1 ! 2 _
£ = (V,V; Nrk oV, V)4 2V [aﬁ@a& ! Be]h, (17)

where the superposed = ig the Jaumann derivative with respect
to the spin & e, () = () — @) + (2. To obrain the
desired form in terms of T, we rearrange {16) to get

VoV ) =W, (8
and substitute (18) in {17) to reach the form

A LT A

L av,§ B
B, IB,

PIVAVL Y l)smﬁ V. (19)
Therefore, Eq. (19) can be writien in the form
7=A,: D, (20)

where A. is the well-known elastic moduli tensor with com-
ponents
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provided that the elastic strain rate is defined by
D,=(V.V, 0, (22)

This alternative representation of the clastic strain rate involves
only kinematic quantities (¥, and ), while the previous rep-
resentation (11} involves both, kinematic and kinetic quan-
tities. CF course, the two representations are cquivalent, as has
been established by the preceding derivation. Note alse that
elastic moduli tensor (21) exactly coincides with that in (9},
due to isotropy of the strain energy function i¢,. Inversion of
(20) therelore again gives the elastic strain rate expression {12).

Kinematic interpretation of (22) is more clear when (22) is
writlen in the form

D, =(¥,V, )+ VOV, Y, (23)

The above shows (hat D, has two comri_bulions. One contyi-
bution is from the elastic stretching rate (¥,¥, '), and the other
from !he spin &, "f his contribution is it generai related to both,
R R, Yand F,,t},, , and represents the effect of deforming and
rotating intermediate configuration, as well as of the rotation
due to R,. Note that this rerm has no contribution to the work,
e, the rate of work {per unit initial volume) expended
in elastic deformation is , = 7: D, = r : (V, ¥, ‘)T, %incc in
view of elastic isotropy Vo vV, = r, and 7 : ¥ QV . ik
= 0.

The derivation presented here, (15)-(23}, is analogous to a
rate-type hmte elasticity formutation. The spin % 1s then simply
£t = RR™, where R is the rotation from the polar de-
composttion of deformation gradient F = ¥R, In elaqroplasf
ticity the spin @ is uniquely defined by (16), with the toral spin
on the left-hand side and elastic stretch on the right-hand side,

As we have shown, elastic strain rate I3, in both represen-
tations (11) or (22), does not depend on a superposed rotaticn
on the intermediate configuration. For example, one can choose
R, = I; i.e., define intermediate configuration to be obtained
by distressing withoult rotation (Lee, 1969), or onc can choose
distressing program v»h]ch makt.s the spin of intermediale con-
figuration to vanish, (F,F, '), = 0, etc. In each case the final
cons{itutive equation is gwen by {l") and the numerical values
of I}, and & are not affected by the choice of an intermediate
configuration. However, their form in terms of kincmatic
quantities ¥, F, and their rates do depend on the intermediate
configuration. For example, in the case of intcrmediate con-
figuration defined by R, = 1, the spin @ has (for isotropic
hardening) a simple, explicit reprehnmatmn = (F J5. P I
while the plasiic strain tate becomes D, = (Ef,Pp Y, If the
mtcrmed1ale c.cnhgur.mon 1s deflined by dzstresmng such that
[FL.(F FoOF N = 0, from (5) and polar decomposmon of ¥,
it f0110\\> that 2 = R R; ', while D, = F.(F,F )F . Addi-
tional kinematic analysis of the clamc strain rate expression
and spin @ is given in Seclion 6.

A comment should also be made rezarding the definition of
elastic strain rate used in some related work. In those studies,
elastic strain rate is defined by an equation of the type (22},
but with the Jaumann ratc of ¥, taken relatively to the spin
of the director vectors triad, w hzc,h is introduced to cope with
the anisolropic hardening I“eamres (referred 10 as substructural
spin). However, for elastically isotropic material the elastic
strain rate should not depend on such a spin, nor on any other
variable that is introduced to handle the anisotropic hardening.
These variables directty effect only the constitutive expression
for the plastic strain rate, but should not be present in the
definition of the clastic part of the total strain rate, Indeed,
in our definition cf the clastic strain rate (22), the Jaumann
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rate of V_ is taken relatively to spin  which depends only on
V., ¥.and the total material spin W as shown in (16}, regardless
of the type of (isotropic or amsotropic) plastic hardening, or
any variable that is introduced to describe it.

4 Elastoplastic Constitutive Structure

With the elastic {reversible) part of the strain rate idant) fied
by (12}, the remaining part, D, = D — D, is plastic {residuai)
contribution. This is governed by the plastic potential and
codirectional with the outward normal to current yield surface
in the Cauchy stress space (Hill, 1967; Hill and Rice, 1073},
[t is D, {in its entirety) that has to be constructed at the phe-
nomenological level, In the case of isotropic hardening, with
the yield function g as an isotropic scalar function of 7, one
has the well-known representation

Lfdg .\og
D"’"h(aa‘ T)aa‘

Here £ is a scalar function of plastic deformation history and
7 is defined for a reference configuration chosen to coincide,
instantaneously, with the current confliguration. This defini-
tion differs from the one used in Sections 2 and 3 by a scalar
multiplier detF, which can be absorbed into A. Equations (12)
and (24) complete the consitutive description of the considered
model of material behavior, glving

(24)

10g _ 9
ATl=p s 2 g
N e

where A “'is the instantaneous elastopiastic compliance tensor.
The inverted (orm of (25} is

b=A"":7, (25}

Sy N N £ AN 5
T=A:D, A=A, e (aa @ ag) CAL 0 (26)
where A = £ + (92/80) 1 A, : (8g/dw). Transition from this
elastoplastic constitutive structure, with the Jaumann deriv-
ative of stress 7 = 1 - Wg + oW, to one with the convected
derivative 7 = 1 ~ Lo — oL, isdirect via ? = & + Dy +
oD. The corresponding elastoplastic moduli tensors differ by
terms of the order of stress.

It is seen that the so-called plastic spin does not appear in
the constitutive equations at all. Therelore, the statement re-
cently often made in the literature that isotropic hardening
Prandtl-Reuss equations are obtained when the so-called plas-
tic spin is assumed to vanish is incorreet.

If hardening is anisotropic, the constitutive structure of b,
has to be accordingly constructed. In doing this, oneintroduces
in the analysis some additional ingredients. For examplc, the
back stress and its evolution law have been introduced in the
case of the kinematic hardening model. However, the back
stress model does not include any statement regarding plastic
Spin. It can be useful to introduce in the analysis a new spin
measure, say the spin of the material line that instantaneously
caincides with an cigendirection of the back stress (Lee et al.,
1983), but this spin can be directly calculated in terms of the
total spin and steain rate. Therelore, an additional constitutive
tquartion for such a hack stress (plastic) spin is not required.

Asdiseussed previously, the identification of the constituents
of the total spin must be carried out within the framework of
a physical structure. This is outlined in the next section,

5 Crystal Plasticity

la single crystal plasticity, a delinite additional structure is
attached to intermediate configuration: material Flows through
the erystal lartice via dislocation motion, while the lattice pre-
serves jls orientation (Asarg 1983a, 1S83b). In that way the
Intermediate configuralion differs from the initial, unde-
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formed configuration by deformation solely due to crystal-
lographic slip, i.e.,

F{JF;:J e Z ¥ (rlls{r'}®m{r')' (27
Here %" is the shearing (slipping) rate of the ith active slip
system, with the slip direction ' in the siip plane with the
normal m'?. Hence, both symmerric and antisymmetric parts
of F,,F;l, f.e., the strain rate and spin of the intermediate
configuration are prescribed by (27). Integration of (27) leads
to a unique ¥y, The elastic part of F, K., can be obtained from
the solution of (1) and is also unique. In the context of crysia)
plasticity, F, represents the strerching and rotation of the lattice
with the material embedded on it. The intermediate configu-
ration s therefore uniquely specitied and it can be called
isoclinie, in the sense of Mande! (1973,

Elastic strain rate can again be expressed by (1), i.e.,

D= (FF )~ At (Wyr—1W,), (28)

with
W, = [FAF F; HF 1, (29)

The first term in the right-hand side of {28) is the fattice strain
rate while the remaining term is the contribution from the
deforming intermediate configuration induced by crystalio-
graphic ship,

Since (F.F7 "), represents (he lattice spin, from (5) we see
that W, = W — (F.F, "), is the spin of the material rela-
tive to the lattice. In single crystal plasticity, W, is customarily
called plastic spin, but essential additional structure of the
crystal plasticity is all contained in the kinematics of crystal-
lographic ship, attached to intermediate configuration and de-
scribed by (27), and associated kineties which specifies the
shearing rates 4 "7 in terms of stress and stress rate. From (4)
and D = D, + D, the plastic strain rate is

D, = [FK,F; 9F, )+ A" (W,r—7W,). (30}

It is D, that is normal to the yield surface, and not
(F.(¥,F, JE. "I, In other words, in transforming the slip de-
formation F,F;’ from intermediate to current con figuration
by elastic deformation F,, the corresponding  strain rate
[FAF,F, hE; N, is equal to plaslic strain rate ¥, with an elastic
contribution, due to stress ralc {W,r — 1W,), subtracted off
{see also Hill and Havner, 1982), Note that in the faregoing
derivation, the lattice elasticity does not have 1o be isotropic
(Lubarda, 1991b).

6 General Fxpression for Elastic Strain Rate

We show here that the elastic strain rate can also be rep-
resented in terms of an arbitrary F,, in the form

D, = (.5, (31

where E = F, — 4F, + F0, is the Jaumann derivative of
F,, taken relatively to spins € and ., which are associated
with the current and intermediate states, respectively. Physi-
cally, so detined ¥, gives the change of elastic deformation
gradient F, observed in the coordinate systems that rotate with
spin & in the current, and spin i, in the intermediate config-
uration. Spin  is independent of the choice of intcrmediate
configuration, whereas spin {}, does depend on that choice, as
will be seen as follows. By equating {31) and (22),

(F .Y, =(V,V7Y, (32)

we therefore have
[VARR ' +RARIOVS = (V0. ), (33)
from which, by 4 simple matrix argument, it follows that
2,=RJ(2-R.R, R, (34)

This expresses the spin 2, in terms of the spin 0, rotation R.,
and its rate R,. Recall that the spin & is uniquely determined
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by (16). Clearly from (34), @, depends on a particular choice
of intermediate configuration. Forexample, if the intermediate
configuration is defined by distressing wilhour rotation (R, =
B, &, = Q. Il the intermediate configuration is defined by
[FAF,F, )F; '], = 0, we have shown in Scction 3 that &t =
RMR.', and therefore f, = 0. Of course, in each case the
elastic strain rate is the same.
We can also write (31) in the expanded form

D, =(F.F, )+ F2,F ), (35)

which shows that besides the usual contribution given by the
first term on the right-hand side, the elastic strain rate 13, has
an additional contribution, given by the second term, which
is caused by the spin R, due to deforming and rotating inter-
mediaie configurauion. [fintermediate configuration is defined
by distressing without rotation (¥, = V¥,}, above coincides with
{23}). Comparing (35) with (11), we in addition have

(FALF o= — A 1 (IFAF ;DB T — o[V, D L1,
(36)

Wenote that the representation (31) can be established directly,
by applying the Jaumann derivalive » (o bgth sides of the
hyperelasticity law (2). By demanding & + (F.F. '), = W in
an analogous procedure to that described in Section 3, we again
artive at (31} and (34},

Finally, if we rewrite (34) in the form

= RR '+ RMR], (37)

we sce that the invariant spin £ has two contributions:  one
[rom spin R.R, ', and another which is induced from spin Q,
and which represents the cffect of deforming and rotating
intermediate configuration. Both of thesc contributions de-
pend on the choice of an intermediate conliguration, but their
combination giving € does not,

Results presentedin this and previous sections should remove
disagreements that appeared in the Hterature over a long period
of time regarding the invariance requirements and independ-
ence of the final constitutive equations of the selected inter-
mediate configuration used in developing the theory.

7T  Concluding Remarks

We have shown in this paper that, within the framework of
a phenomenological plasticity theory, there 18 no basis and no
necessity [or pariitioning the total spin into its clastic and
plastic constituents. Statements to the contrary in literature
are the result of improper partitioning of toral strain rate and
subsequent misinterpretations, The introduction of various in-
gredients to treat anisotropic hardening, such as back stress
or similar internal variables, only affects the structure of the
constitutive equation for the plastic strain rate, bur does not
provide a basis for the identification of the plastic spin. Indeed,
we have shown that such identification in the context of a
phenomenological theory is unnecessary,

The sitnation is quite different in single erystal plasticity,
where a specific additional structure is introduced in the model
{that of material flowing through the crystal lattice) while the
lattice preserves its orientation, Material and lattice then have
different spins, and it is this difference that is identified as the
plastic spin.

A remark should be also made regarding the clastically an-
isotropic, say persistently orthotropic materials. In this case
the rotation of the principal axes of orthotropy is not given
by the overall deformation gradient but must be independently
determined. This can be accomplished by introducing a con-
stitutive eguation for an associated spin, but a reliable pro-
cedure for doing this 15 yet to be proposed. In analogy with
single crystal plasticity, one could define ihe intermediate con-
figuration 1o be isoclinic, i.e., material ““flows’” through the
structure with fixed crienied axes of orthotropy {director vec-
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tors}. However, the kinematic and kinetic descripion ef such
a process for the polycrystalline material is currently not avail-
able. In single crystal plasticity this process is crystallographic
slip, i.e., the kinematics of simple shearing and kinetic rela-
tionships specifying the shearing rates in terms of stress and
stress rale.
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