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The Bounds on the Coefficients of
Restitution for the Frictional
Impact of Rigid Pendulum
Against a Fixed Surface
Upper bounds on Newton’s, Poisson’s, and energetic coefficients of normal restitution for
the frictional impact of rigid pendulum against a fixed surface are derived, demonstrating
that the upper bound on Newton’s coefficient is smaller than 1, while the upper bound on
Poisson’s coefficient is greater than 1. The upper bound on the energetic coefficient of
restitution, which is a geometric mean of Newton’s and Poisson’s coefficients of normal
restitution, is equal to 1. Lower bound on all three coefficients is equal to zero. The
bounds on the tangential impact coefficient, defined by the ratio of the frictional and
normal impulses, are also derived. Its lower bound is negative, while its upper bound is
equal to the kinetic coefficient of friction. Simplified bounds in the case of a nearly
vertical impact are also derived. �DOI: 10.1115/1.3172198�

Keywords: bounds, coefficient of restitution, energy loss, frictional impact, impulse,
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Introduction
The determination of the rebounding velocity components of

olliding bodies is an old mechanics problem, with its origin in
arly work by Newton and Poisson. Newton defined the coeffi-
ient of normal restitution as the ratio of the relative normal ve-
ocities after and before the impact. In contrast to Newton’s kine-

atic definition, Poisson’s kinetic definition is based on the ratio
f the magnitudes of the normal impulses corresponding to the
eriods of restitution and compression. In the absence of friction
frictionless impact�, the Poisson definition of the coefficient of
ormal restitution yields the same expression, in terms of the rela-
ive velocities, as does the Newton definition, which is demon-
trated in standard dynamics textbooks, e.g., Ref. �1�. In the pres-
nce of friction, however, the two definitions are, in general, not
quivalent. The simplest theory of the frictional impact is that of

hittaker �2�, in which it is assumed that the frictional impulse is
n the slip direction and is equal to the product of the coefficient
f friction and the magnitude of the normal impulse. Kane �3�
bserved that this theory leads to an increase in kinetic energy
pon the impact of a double pendulum with a rough horizontal
urface, for some values of the coefficients of friction and normal
estitution, and for some kinematic parameters of motion. Keller
4� explained this by noting that Whittaker’s theory �2� applies
nly when the direction of sliding is constant throughout the col-
ision. If there is a reversal of the slip direction during the impact
rocess, the coefficient of the proportionality between the tangen-
ial and normal impulses is different from the coefficient of kinetic
riction. Keller’s �4� analysis also demonstrated the advantage of
sing the normal impulse as an independent variable, instead of
hysical time, to cast and analyze the governing differential equa-
ions of motion during the impact process. Stronge �5� introduced
n energetic coefficient of normal restitution, whose square is
qual to the negative ratio of the elastic strain energy released
uring restitution and the internal energy of deformation absorbed
uring compression phase of the impact. Numerous papers, pro-
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posing different models of frictional impact, were published since.
A comprehensive treatment of the subject, with a historical out-
line, can be found in the monographs or review articles �6–9�.

In this paper we revisit a classical problem of frictional impact
of rigid pendulum against a fixed surface. By employing Keller’s
�4� method of analysis, we derive the expressions for the angular
velocity in terms of the monotonically increasing normal impulse
during the impact process. Three different definitions of the coef-
ficient of normal restitution are used to specify the rebounding
angular velocity and the total normal impulse: Newton’s kine-
matic, Poisson’s kinetic, and Stronge’s energetic definitions. It is
shown that the energetic coefficient of normal restitution is a geo-
metric mean of the Newton and Poisson coefficients of normal
restitution. The upper bounds on all three coefficients are estab-
lished, demonstrating that the upper bound on the Newton coeffi-
cient is smaller than 1, while the upper bound on the Poisson
coefficient is greater than 1. For the pendulum striking a rough
surface elastically, without dissipation due to deformation, the
Newton and Poisson coefficients are the reciprocals of each other.
If, upon the impact, the pendulum sticks to the ground, there is no
restitution phase of the impact, and all three coefficients of normal
restitution are equal to zero, which represents their lower bound.
The bounds on the tangential impact coefficient, defined by the
ratio of the frictional and normal impulses, are also derived. Its
lower bound is negative, while its upper bound is equal to the
kinetic coefficient of friction. Simplified bounds in the case of a
nearly vertical impact are also derived.

2 Rigid Pendulum Striking a Fixed Surface
Figure 1 shows a rigid pendulum, rotating around a frictionless

pin at O and striking a fixed horizontal surface at the point with
coordinates �a ,−b�, relative to the origin at O. The �incidence�
angular velocity of the pendulum just before the impact is �−

�0 �negative value indicating its clockwise direction�. If �+�0 is
the �rebounding� angular velocity immediately after the impact of

duration t1, then, by the impulse principle,
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J0�− +�
0

t1

�Na + Fb�dt = J0�+ �1�

here J0 is the pendulum’s moment of inertia about the point O,
nd N and F are the normal and friction forces acting on the
endulum at the contact point with the rough horizontal surface.
he coordinates of the contact points a and b change only infini-

esimally during the time of the impact t� �0, t1�, so that the equa-
ion of motion during the impact is

J0
d�

dt
= Na + Fb �2�

he weight of the pendulum mg, as a nonimpulsive force, does
ot contribute to Eqs. �1� and �2�. Following Ref. �4� and intro-
ucing a monotonically increasing impulse parameter �Fig. 2�

� =�
0

t

Ndt, d� = Ndt �3�

q. �2� can be recast as

J0d� = �a + b
F

N
�d�, � � �0,�1�, �1 =�

0

t1

Ndt �4�

ince a and b are nearly constant during the impact process, Eq.
4� can be integrated to give

�

�

�

�

�

�

�

�

�

	

ig. 1 A rigid pendulum, suspended from a frictionless pin O,
trikes a fixed horizontal surface with the incidence angular
elocity �−. The componential reactions at the contact point
ith the coordinates „a ,−b… are N and F.
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ig. 2 Schematic time variation of the normal and friction
omponents of the reactive force during the impact of duration

1. The normal impulse up to an arbitrary time t is �=�0
t Ndt. The

riction component of the reactive force is related to the normal
omponent by the Amontons–Coulomb law of sliding friction
=−�N sgn„t− t0…, where t0 is the time at which sliding changes
ts direction, and � is the coefficient of kinetic friction.
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J0�� − �−� = a� + b�
0

�
F

N
d� �5�

Let 0��0��1 correspond to the instant t0 when the angular ve-
locity momentarily vanishes, ���0�=0, and the slip reversal takes
place at the transition between the compression and restitution
phases of the impact. Assuming that during the impact the tangen-
tial component of the reactive force is related to the normal com-
ponent by the Amontons–Coulomb law of sliding �dry� friction,
and ignoring the tangential compliance of the colliding bodies, we
can write

F

N
= − � sgn��� = − � sgn�� − �0� �6�

where � is the coefficient of kinetic friction. The substitution into
Eq. �5�, upon integration, gives

� = �− +
a + �b

J0
�, 0 � � � �0

� =
a − �b

J0
�� − �0�, �0 � � � �1 �7�

The normal impulse �0, determined from the condition ���0�=0,
is obtained from the first equation in Eq. �7�, as

�0 = −
J0�−

a + �b
�8�

In order that ��0 in the interval ��0 ,�1�, the coefficient of kinetic
friction must be bounded by ��a /b. If ��a /b, the pendulum
sticks to the ground after the impact, with no rebounding
velocity.1 By incorporating Eq. �8�, the angular velocity expres-
sion �7� can be rewritten in a bilinear form �Fig. 3�

� = �1 −
�

�0
��−, 0 � � � �0

� =
a − �b

a + �b
�1 −

�

�0
��−, �0 � � � �1 �9�

The corresponding slopes d� /d� in the compression and restitu-
tion phases of the impact are �a+�b� /J0 and �a−�b� /J0, respec-
tively. The two slopes are equal only in the absence of friction.

3 Coefficient of Normal Restitution
The total normal impulse �1 is still an unknown quantity in the

analysis, and cannot be determined without further assumptions.

1For small angle �=arctan�a /b� there is no rebound if friction is sufficiently large

�� ���

�

�

�

��

�

Fig. 3 Bilinear variation of the angular velocity �=�„�…, ac-
cording to Eq. „9…. The slopes in the compression and restitu-
tion phases of the impact are „a+�b… /J0 and „a−�b… /J0,
respectively.
��� tan ��; see Ref. �8�, p. 180.
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o proceed, we introduce the coefficient of normal restitution by
he Poisson definition as the ratio of the normal impulses corre-
ponding to restitution and compression phases of the impact, i.e.,

	 =
�1 − �0

�0
� 0, �1 = �1 + 	��0 �10�

ince the duration of the impact and the variation of the normal
orce during the impact depend on friction, the ratio �1 /�0 and
hus the coefficient 	 also depend on friction.2 Assuming 	 to be
iven, by using Eq. �10� it follows from Eq. �9� that the rebound-
ng angular velocity �+=���1� is related to the incidence angular
elocity by

�+ = − 	
a − �b

a + �b
�− �11�

ith this, the angular velocity during the restitution phase of the
mpact can be written, from the second equation in Eq. �9�, as

� =
1

	
�1 −

�

�0
��+, �0 � � � �1 �12�

ntroducing the horizontal and vertical velocity components of the
ontact point during the impact, u=b� and v=a�, Eq. �11� can be
ewritten as

v+ + �u+ = − 	�v− − �u−� �13�

hich demonstrates that in the case of rigid pendulum striking a
xed surface, the Poisson definition of the coefficient of normal
estitution differs from the Newton definition3

	̂ = −
v+

v− = −
�+

�− �14�

vidently, by using Eq. �11�,

	̂ =
a − �b

a + �b
	 =

1 − �b/a
1 + �b/a

	 �15�

he two coefficients of normal restitution are therefore related to
he coefficient that depends on the impact configuration, as repre-
ented by the ratio b /a, and the coefficient of friction �. A physi-
al interpretation of the parameter �b /a will be further discussed
n Sec. 6.1.

In order that there is a rebound, �− and �+ have to be of the
pposite sign, so that 	̂�0. Thus, the coefficient of friction and
he geometric parameters of the impact configuration �a ,b� have
o be such that a−�b�0. If ��a /b, the pendulum sticks to the
round after the impact ��+=0�, which establishes the lower
ound on Newton’s coefficient of normal restitution, 	̂=0.

The kinetic energy dissipated by the frictional impact is


E = E− − E+ = 1
2J0���−�2 − ��+�2� = 1

2 �1 − 	̂2�J0��−�2 �16�

.e., in view of Eq. �15�,


E =
1

2
J0��−�2	1 − 	2 �a − �b�2

�a + �b�2
 �17�

ince 
E must be non-negative �
E�0, the equality holding if
nd only if 	=1 and �=0�, and since 	�0, Eq. �17� imposes an
pper bound on Poisson’s coefficient of normal restitution

2The coefficient 	 also depends on the material properties and the incidence
ngular velocity �−, affecting the nature of the deformation, but such dependence
annot be determined within a rigid body mechanics �10�.

3The two definitions yield different expressions in many �but not all� frictional
mpact problems in which there is a change in the slip direction during the impact
rocess. For example, Newton’s and Poisson’s definitions of the coefficient of normal
estitution, as well as the energetic definition, to be discussed in Sec. 4, for a spinning

ˆ
isk striking a rough horizontal surface are all equivalent �	=	=��.
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	 � 	max, 	max =
a + �b

a − �b
�18�

for all cases in which there is a rebound of the pendulum after the
impact �a−�b�0�. Since 	max�1, the coefficient of normal res-
titution based on the Poisson definition can be greater than 1. This
is also clear from relationship �15� between Poisson’s and New-
ton’s definitions of the coefficient of normal restitution, because
	̂�1 in order that 
E= �1− 	̂2�E−�0, and thus 	max�1. Lower
values of the upper bounds on 	 and 	̂ will be derived in Sec. 5 of
this paper.

4 Energetic Coefficient of Restitution
Stronge �5� introduced an energetic coefficient of normal resti-

tution, whose square is equal to the negative ratio of the elastic
strain energy released during restitution and the internal energy of
deformation absorbed during compression phase of the impact. If
tangential compliance of colliding bodies is negligible, this coef-
ficient equals the negative ratio of the work done by the normal
component of the impulsive reaction during restitution and com-
pression phases of the impact,

�2 = −
Wr

n

Wc
n �19�

where

Wc
n =�

0

t0

Nvdt =�
0

�0

vd�, Wr
n =�

t0

t1

Nvdt =�
�0

�1

vd� �20�

The ratio −Wr
n /Wc

n accounts for irreversible deformation in the
contact region, it is presumingly independent of friction, and thus
represents an appealing coefficient to account for the normal res-
titution during a frictional impact.4 For the pendulum striking a
fixed surface, the vertical velocity component of the contact point
is v=a�, so that Eq. �20� becomes

Wc
n = a�

0

�0

�d�, Wr
n = a�

�0

�1

�d� �21�

By using angular velocity expression �7�, this gives

Wc
n = 1

2a�0�−, Wr
n = 1

2	a�0�+ �22�

When Eq. �22� is incorporated into Eq. �19�, there follows

�2 = − 	
�+

�− = 		̂ =
a − �b

a + �b
	2 =

a + �b

a − �b
	̂2 �23�

The expression �2=		̂, derived by a different route, was first
reported in Ref. �7�. Thus, for the rigid pendulum striking a fixed
surface, the energetic coefficient of normal restitution is a geomet-
ric mean of the Newton and Poisson coefficients of normal resti-
tution, i.e.,

� = �		̂ �24�

In the case of frictionless impact ��=0�, the three coefficients of
normal restitution are equal to each other �	= 	̂=��. For frictional
impact, the energetic coefficient is smaller than Poisson’s and
greater than Newton’s coefficient of normal restitution �	̂��
�	�. Indeed, from Eq. �23�,

	 = �a + �b

a − �b
�1/2

� = �1 +
2�b

a − �b
�1/2

�

4From experimental or numerical finite element method evaluations, it may be
anticipated that � depends on the material properties, the radius of pendulum’s local
curvature in the contact region, and the incidence angular velocity affecting the

extent of inelastic deformation in the region of contact.
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	̂ = �a − �b

a + �b
�1/2

� = �1 −
2�b

a − �b
�1/2

� �25�

or example, if �=0.1 and a /b=0.3, one has 	=�2� and 	̂
� /�2.
Since �1 /�0=1+	, and in view of Eq. �23�, the relationship

etween the impulse ratio �1 /�0 and the coefficient � is

�1

�0
= 1 +�a + �b

a − �b
�, a − �b � 0 �26�

n an advanced treatise on impact mechanics �8�, there is a mis-
ake in the derivation presented in pages 178–180, where the im-
ulse ratio and the energy coefficient of restitution are listed as5

pf

pc
= 1 + e��r1 + �r3

r1 − �r3
, e�

2 =
r1 − �r3

r1 + �r3

pf
2 − pc

2

pc
2

or example, if �=0, the first of these expressions yields 1+e�

pf / pc and the second 1+e�
2= pf

2 / pc
2, contradicting each other. The

xpression for e�
2 in Ref. �8� is incorrect because of the mistake in

he expression for the vertical velocity component used therein to
valuate the restitution work.

Bounds on the Coefficients of Restitution
An obvious upper bound on Newton’s coefficient of normal

estitution, appearing in the relationship �+=−	̂�−, is

	̂ � 1 �27�

ecause the magnitude of �+ cannot be greater than the magnitude
f �− �otherwise there would be an energy gain by the impact
rocess E+−E−�0�. In view of relationship �15�, the correspond-
ng upper bound on the Poisson coefficient of normal restitution is

	 �
a + �b

a − �b
�28�

ower upper bounds on 	 and 	̂ can be deduced by first imposing
he upper bound on the energetic coefficient of normal restitution,

� � 1 �29�
hich must hold because the restitution phase of the impact can-
ot deliver more energy than what was stored during the compres-
ion phase, �2=−Wr

n /Wc
n�1. The limiting case �=1 corresponds

o purely elastic compression �dissipation of energy being associ-
ted with the frictional sliding only�. Consequently, by recalling
rom Eq. �25� the relationships between the three coefficients of
ormal restitution,6 inequality �29� yields the stronger �lower� up-
er bounds on the Poisson and Newton coefficients of normal
estitution. For a−�b�0, these are

	 � �a + �b

a − �b
�1/2

= �1 +
2�b

a − �b
�1/2

	̂ � �a − �b

a + �b
�1/2

= �1 −
2�b

a + �b
�1/2

�30�

n the presence of friction, the above upper bound on 	 is greater
han 1, and the upper bound on 	̂ is smaller than 1, the two being
he reciprocals of each other.

The corresponding upper bound on the normal impulse �1= �1
	��0 is

5The notations used in Ref. �8� are pc=�0, pf =�1, e�=�, r1=a, and r3=b.
6If � is assumed to be given, then the kinematic and kinetic coefficients of normal

estitution depend on � and the geometric parameter �b /a, accounting for friction
nd the pendulum impact configuration, represented by the ratio b /a. Clearly, the
igher the value of � �less dissipation by the deformation�, the higher the coefficients

ˆ +
and 	, and thus the higher the rebound �� �.
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�1 � 	1 + �1 +
2�b

a − �b
�1/2
�0, a − �b � 0 �31�

which shows that, for frictional impact, the upper bound on �1 is
greater than 2�0. For frictionless impact, the upper bound on �1 is
equal to 2�0, and is reached in the limit of perfectly elastic impact.

6 Energy Dissipated by Friction
The works done by the tangential component of impulse during

the restitution and compression phases are

Wc
t =�

0

t0

Fudt =�
0

�0 F

N
ud�

Wr
t =�

t0

t1

Fudt =�
�0

�1 F

N
ud� �32�

Since F /N=−� sgn��−�0�, and by using the expression for the
horizontal velocity component of the contact point u=b�, Eq.
�32� becomes

Wc
t = �b�

0

�0

�d�, Wr
t = − �b�

�0

�1

�d� �33�

i.e.,

Wc
t = 1

2�b�0�−, Wr
t = − 1

2�b	�0�+ �34�

The total work dissipated by friction during the impact is

Wt = Wc
t + Wr

t = 1
2�b�0��− − 	�+� �35�

This can be compared with the total work done by the normal
component of impulse, which is, from Eq. �22�,

Wn = Wc
n + Wr

n = 1
2a�0��− + 	�+� �36�

The dissipated energy by irreversible deformation due to normal
force is

− Wn = − 1
2a�0�−�1 − 		̂� = 1

2J0��−�2 a

a + �b
�1 − �2� �37�

which is positive if ��1. See also a related discussion in Ref.
�11�.

6.1 Work Ratios. The total works done during the compres-
sion and restitution phases of the impact are

Wc = Wc
n + Wc

t = 1
2 �a + �b��0�− = − 1

2J0��−�2 �38�

Wr = Wr
n + Wr

t = 1
2 �a − �b�	�0�+ = 1

2J0��+�2 �39�

These expressions can also be obtained directly by applying the
energy-work principle to the compression and restitution phases
of the impact separately �E−+Wc=0 and 0+Wr=E+�. The total
work done by both the normal and tangential impulsive reactions
is W=Wc+Wr=Wn+Wt=E+−E−.

From the derived work expressions, the following work ratios
are observed:

−
Wr

n

Wc
n =

Wr
t

Wc
t = − 	

�+

�− = 		̂ = �2, −
Wr

Wc
= ��+

�−�2

= 	̂2 �40�

Thus, for the pendulum striking a fixed surface, the Newton coef-
ficient of normal restitution, defined by the kinematic relation 	̂
=−�+ /�−, can also be given an energy interpretation, via 	̂2=
−Wr /Wc=E+ /E−. Furthermore, the energetic coefficient of normal
restitution is equal to either the normal work ratio �−Wr

n /Wc
n�, or

the frictional work ratio �Wr
t /Wc

t �, so that in the considered prob-

lem the frictional dissipation during the restitution phase is always
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maller than during the compression phase �Wr
t �Wc

t for ��1�.
The ratio of the works associated with the tangential and nor-
al impulses is

Wt

Wn =
�b

a

1 + �2

1 − �2 �41�

hile

Wc
t

Wc
n = −

Wr
t

Wr
n =

�b

a
�42�

hus, the parameter �b /a, appearing in the relationships between
, 	̂, and �, can be given a physical interpretation as energy ratio
42�, in addition to being equal to the product of the force ratio
F� /N and the velocity ratio u /v.

If, upon the impact, the pendulum sticks to the ground, there is
o restitution �Wr

t =Wr
n=0�, and Wc

n=Wc
t =�0a�− /2=−E− /2. In

his case, all three coefficients of normal restitution are equal to
ero, which represents their lower bound, and �1=�0=
J0�− / �2a�.

Impact With Elastic Compression

If �=1 in Eq. �40�, then Wn=0 and Wr
n=−Wc

n, which corre-
ponds to elastic deformation during the impact: The elastic en-
rgy stored during the compression phase is fully recovered and
sed for the liftoff of the pendulum during the restitution phase.7

n this case, from Eq. �25�, the Newton and Poisson coefficients of
estitution are the reciprocals of each other �	̂=1 /	�, and equal to

	 = �a + �b

a − �b
�1/2

= �1 +
2�b

a − �b
�1/2

� 1

	̂ = �a − �b

a + �b
�1/2

= �1 −
2�b

a + �b
�1/2

� 1 �43�

hus, for the pendulum striking a rough surface elastically, New-
on’s coefficient of normal restitution is smaller than 1, and Pois-
on’s coefficient is greater than 1. The plots of 	̂ versus the angle
=arctan�a /b�, for various values of �, are shown in Fig. 4. The
lots are for the elastic impact. For each �, there is no rebound if
he angle � is smaller than the angle corresponding to 	̂=0. If the

7The tangential stiffnesses of the pendulum and the surface are assumed to be
nfinite, so that the elastic energy is entirely due to deformation in the normal
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ig. 4 „a… Two impact configurations of the rigid pendulum
gainst a fixed surface, corresponding to two different values
f the angle �. „b… The variation of the Newton coefficient of
ormal restitution �̂ with � „in radians…, in the case of an elastic

mpact „�=1…, with different coefficients of friction �. The far
eft curve is for �=0.1, and the subsequent curves toward the
ight are for �=1/3,0.5,2/3,1. As �\� /2, the coefficient �̂=
�+ /�−\1 for all � „passive friction for vertical impact….
irection.
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frictional impact is inelastic, the plots should be scaled by the
corresponding value of ��1.

The total normal impulse of the elastic impact is

�1 = 	1 + �1 +
2�b

a − �b
�1/2
�0, a − �b � 0 �44�

which is greater than 2�0 �unless �=0, in which case �1=2�0�.
The average angular velocity during the elastic impact is zero,

and

�+ = − 	̂�− = −
�−

	
= − �a − �b

a + �b
�1/2

�− �45�

The total work done by the impulsive reactions is equal to the
dissipated work by friction, which is, from Eq. �35�,

W = Wt = 1
2�b�0�1 + 	2���−�2 = − J0

�b

a + �b
��−�2 �46�

8 Tangential Impact Coefficient
The tangential impulse at an arbitrary stage of the impact pro-

cess is

f��� =�
0

t

Fdt =�
0

�
F

N
d� �47�

Since F=−�N sgn��−�0�, one readily finds that

f��� =  �� , � � �0

��2�0 − �� , � � �0
� �48�

Corresponding Routh’s impact diagram is shown in Fig. 5.
Brach �6� defined the tangential impact coefficient as the ratio

of the tangential and normal components of the impulse,

�̂ =

�
0

t1

Fdt

�
0

t1

Ndt

=
f1

�1
�49�

For the rigid pendulum striking a fixed surface, this gives

�̂ =
��2�0 − �1�

�1
�50�

Since �1= �1+	��0, and thus f1=��1−	��0, the substitution into
Eq. �50� yields

�̂ =
��1 − 	�

1 + 	
�51�

as in Ref. �4�. The ratio of the tangential and normal components
of the impulse is thus not equal to � �as in Whittaker’s theory of
frictional impact �2��, but to �̂��, because there was a change in
the slip direction at the transition between the compression and
restitution phases of the impact �4,7,8�. If there is no rebound

+ ˆ

�� ��

��

��

�

��

�	�

�� ��

�

�

��

�

�

���� �� ���

���

Fig. 5 „a… The force ratio F /N versus the normal impulse �. „b…
Routh’s impact diagram showing the variation of the tangential
impulse f versus the normal impulse �.
�� =0�, then 	=0 and �=� �as expected, because, without re-
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ound, there is no change in the slip direction�. Note also that in
q. �51�, �̂�0 if 	�1. If �=0, then �̂=0, as well.
The energy dissipated by the impact 
E=J0���−�2− ��+�2� /2

an be cast in the form of the generalized Thomson–Tait formula
e.g., Refs. �7� and �8��


E = − 1
2 f1�u− + u+� − 1

2�1�v− + v+� �52�

ndeed, from Eq. �1�, one can write a�1+bf1=−J0��−−�+�, so
hat


E = 1
2J0��− − �+���− + �+� = − 1

2 �a�1 + bf1���− + �+� �53�

ince u=b� and v=a�, Eq. �53� takes Thomson–Tait form �52�.

8.1 Bounds on the Tangential Impact Coefficient. Since
oisson’s coefficient of normal restitution is bounded by

0 � 	 � �a + �b

a − �b
�1/2

�54�

t readily follows from Eq. �51� that the bounds on �̂ are

−
a

b
�1 − �1 − ��b/a�2� � �̂ � � �55�

he upper bound �̂=� is reached if the pendulum sticks to the
round upon the impact �	=0�, while the lower bound is reached
n the case of elastic frictional impact ��=1�, since then 	 is equal
o its upper bound. Note that the lower bound on �̂ in Eq. �55� is
egative, but greater than −a /b �which itself must be greater than
�, for the rebound to take place�. For small ratio �b /a, the lower
ound on �̂ is approximately equal to −� /2. The negative values
f �̂ mean that in these cases there is a longer lasting backward
han forward slip during the impact, i.e., the duration of the resti-
ution phase is longer �on the �-scale� than that of the compression
hase ��1−�0��0, and thus 	�1�. For example, in the case of an
lastic impact ��=1� with �=0.1 and a /b=0.3, so that 	=�2, one
nds that �1−�0=�2�0 and �̂�−0.017.

Nearly Vertical Impact
The effect of friction on the impact response diminishes with

he decrease in the ratio b /a. For a given coefficient of friction �,
nd sufficiently small ratio b /a �nearly vertical impact, Fig. 6�,
rom Eq. �23� there follows8

	 = �1 + �b/a��, 	̂ = �1 − �b/a��

8Thus, � is here the arithmetic mean of 	 and 	̂, i.e., �= �	+ 	̂� /2, which is in
greement with the exact geometric mean relationship �= �		̂�1/2, to first order terms

�

�

�

�

�
	

ig. 6 A nearly vertical impact „b™a… of a rigid pendulum
gainst a rough horizontal surface. The componential reactions
t the contact point are N and F.
n �b /a.
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	 = �1 + 2�b/a�	̂, 	̂ = �1 − 2�b/a�	 �56�

to first order terms in �b /a �neglecting the quadratic term
��b /a�2�1�. In this case, and to this order of accuracy, the
bounds on the kinematic and kinetic coefficients of normal resti-
tution are

0 � 	̂ � 1 − �b/a, 0 � 	 � 1 + �b/a �57�
The corresponding bounds on the total normal impulse are

�0 � �1 � �2 + �b/a��0 �58�

The tangential impact coefficient can be expressed in terms of �
as

�̂ = �	1 − �

1 + �
− 2�

b

a

�

�1 + ��2
 �59�

to first order terms in �b /a, and is bounded by

−
1

2
�2b

a
� �̂ � � �60�

For example, if �=0.4 and a=4b, so that �b /a=0.1, the bounds
on the impact coefficients are 0�	�1.1, 0�	̂�0.9, and −0.02
��̂�0.4.

10 Conclusion
The frictional impact of rigid pendulum against a fixed surface

was studied by using kinematic, kinetic, and energetic definitions
of the coefficient of normal restitution, which specify the rebound-
ing angular velocity and the total normal impulse during the im-
pact. The tangential stiffnesses of the pendulum and the surface
are assumed to be infinite, so that the elastic energy is entirely due
to deformation in the normal direction. It is shown that the ener-
getic coefficient of normal restitution is a geometric mean of the
kinematic �Newton’s� and kinetic �Poisson’s� coefficients of nor-
mal restitution. In the case of frictionless impact, the three coef-
ficients are equal to each other. For frictional impact, the energetic
coefficient is smaller than Poisson’s and greater than Newton’s
coefficient of normal restitution. The upper bounds on all three
coefficients are established, demonstrating that, for the frictional
impact, the upper bound on the Newton coefficient is smaller than
1, while the upper bound on the Poisson coefficient is greater than
1. The upper bound on the energetic coefficient of normal restitu-
tion is equal to 1, because the restitution phase of the impact
cannot deliver more energy than what is stored during the com-
pression phase. The frictional dissipation during the restitution
phase is always smaller than during the compression phase. For
the pendulum striking a rough surface elastically, without dissipa-
tion due to deformation �dissipation of energy being associated
with the frictional sliding only�, the Newton and Poisson coeffi-
cients are the reciprocals of each other. If, upon the impact, the
pendulum sticks to the ground, there is no restitution phase of the
impact, and all three coefficients of normal restitution are equal to
zero, which represents their lower bound. The bounds on the tan-
gential impact coefficient, defined by the ratio of the frictional and
normal impulses �which is not equal to �, because of the slip
reversal at the transition from the compression to restitution
phases of the impact�, are also derived. Its lower bound is nega-
tive, while its upper bound is equal to the kinetic coefficient of
friction. The simplified bounds on the impact coefficients are de-
duced in the case of a nearly vertical impact, for which friction
exerts the least effect on the impact response. The obtained results
may be of interest for the analysis of planar impacts of linkages
and related problems in the mechanics of frictional impact
�12–14�.
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