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ABSTRACT

The orthogonality of eigenfunctions in problems of unsteady heat
conduction in an infinite slab with symmetric and nonsymmetric
convective boundary conditions are demonstrated by performing
actual integration of the products of the derived forms of eigen-
functions and by implementing the corresponding eigenvalue con-
ditions. The analysis also applies to longitudinal vibrations of an
elastic rod attached at its ends to linear elastic springs, and to
advection-diffusion problems under appropriate boundary condi-
tions. The same form of eigenfunctions and the same type of eigen-
value condition apply in all three considered cases. The proofs are
compared with the well-known general proof of orthogonality of
eigenfunctions, which circumvents the actual integration. The pre-
sented analysis is pedagogically appealing for use in engineering and
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applied physics education.

1. Introduction

The well-known proof of orthogonality of eigenfunctions of the Sturm-Liouville prob-
lem circumvents the actual evaluation of the integral of the product of specific forms of
eigenfunctions by showing instead that this integral is equal to a certain combination of
the boundary terms which vanishes by the application of the prescribed homogeneous
boundary conditions (Boyce et al., 2021; Greenberg, 1998; Kreyszig, 2011; O’Neil, 2018;
Zill, 2018). While this elegant and powerful proof applies to all kinds of prescribed homo-
geneous boundary conditions, and the corresponding forms of eigenfunctions, one is
often curious or tempted to verify the orthogonality of eigenfunctions in each consid-
ered boundary-value problem by performing actual integration of the product of the
derived forms of eigenfunctions and by implementing the corresponding eigenvalue con-
ditions. Such integration is for some boundary conditions simple, but for some it is less
so. This is illustrated and discussed in this paper on the example of unsteady heat con-
duction in an infinitely long slab with symmetric and nonsymmetric convective boundary
conditions (Cengel, 2002; Lienhard IV & Lienhard V, 2017; Mills & Coimbra, 2015),
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the analysis of longitudinal vibrations of an elastic rod attached at its ends to linear
elastic springs (Rao, 2016; Weaver Jr. et al., 1991), and the analysis of one-dimensional
convection-diffusion problems under appropriate boundary conditions (Bennett, 2012;
Stynes & Stynes, 2018).

Figure 1 shows an infinite slab of thickness 2L, heat conduction coefficient k, and initial
(uniform or symmetric in x) temperature Ty, emersed in a fluid whose remote temperature
is Tt. An infinite slab is a suitable model for slabs whose height and width are much greater
than their thickness, so that possible gradients along y and z directions can be neglected
sufficiently away from the ends. Convective boundary conditions with the same convec-
tion coefficient h apply on both sides of the slab, —k(dT/0x)y=+1 = £h[T(£L,t) — T¢],
where T = T(x, t) is the temperature field in the slab, dependent on the spatial coordinate
x and time ¢. The governing parabolic-type partial differential equation for the transient
temperature field 7(x,t) = T(x,t) — Ty is 37/t = a(3%7/0x?), where a = k/cp is the
thermal diffusivity of the slab, ¢, being its specific heat capacity per unit volume. Upon
using the method of separation of variables to write 7 (x, t) = f(x)g(¢), the x-dependence
of the temperature is found as the solution to the following eigenvalue problem

7+ (w/D* =0, (1)
f(0) =0, f(L)+ (h/k)f(L)=0. 2)

The prime denotes the derivative with respect to x, and the symmetry condition f'(0) = 0
is conveniently imposed. The corresponding eigenfunctions are

Jn = cos(unx/L), (3)
where (,, are the numerically determined roots to the transcendental equation
Bi . hL ,
tanu = —, Bi= - (Biot number). (4)
7

Physically, the Biot number represents the ratio of the conduction resistance inside a body
to the convection resistance at the external surface of a body. Equation (4) follows from the
second boundary condition in (2), while the symmetry condition f'(0) = 0 eliminates the
sine functions. The functions f, are orthogonal to each other on the interval [0, L],

L
/ @@ dc=0, n#m, (5)
0

which enables the analytical determination of the coefficients ¢, appearing in the general
expression for the transient temperature field,

[e.¢]
T = Z cn cos(ipx/L) e (n/L*t, (6)

n=1

Indeed, from the initial condition 7(x,0) = Ty — Ty, by multiplying both sides with
cos(iumx/L) and by integrating from 0 to L, we obtain

> L
Ty — T /L) d
Z cmcos(Umx/L) =To— T = ¢y = fo (To ) cos(nx/L) dx

7
et Jo cos2(unx/L) dx 7
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Figure 1. (a) A sketch of the temperature profile T = T(x, t) in an infinitely long slab of thickness 2L and
heat conduction coefficient k at an arbitrary instant of time t. The remote temperature of the surrounding
fluid is T¢. Convective boundary conditions with the same convection coefficient h apply on both sides
of the slab. The initial uniform temperature of the slab is Ty. (b) A sketch of the temperature profile under
nonsymmetric convective boundary conditions. The remote temperatures of the surrounding fluid at the
two sides of the slab are T¢; and T¢,. Convective boundary conditions apply with convection coefficient
h1 on the left, and h; on the right side of the slab.

which gives, in the case of uniform initial temperature, the well-known result (Cen-
gel, 2002; Lienhard IV & Lienhard V, 2017; Mills & Coimbra, 2015)

sin [y
ch=4(Ty —Tf) ————, n=12,3,.... 8
n ( 0 f) 2,un+sin2,un ( )

The coefficients ¢, rapidly diminish with the increase of n. For example, if Bi = 1, the three
lowest eigenvalues are p; = 0.8603, y = 3.4256, and 3 = 6.4373, and (8) gives ¢; =
1.1191, ¢; = —0.1517, and ¢3 = 0.0466, all multiplied by (Ty — Tf). Thus, the third coeffi-
cient is only 4.2% of the first coefficient, and therefore only several leading eigenfunctions
dominate the spatial variation of 7. For smaller values of Biot’s number, the conver-
gence of the series (6) is even faster. For example, for Bi = 0.1, one obtains ¢; = 0.3111,
w2 = 3.1731,and u3 = 6.2991, and (8) gives c; = 1.0161, c; = —0.0197, and ¢3 = 0.0050,
multiplied by (Tp — T¢). Thus, the third coeflicient is in this case only 0.5% of the first coef-
ficient, which is not surprising, because for small values of Biot’s number (e.g. Bi <= 0.1),
the temperature variation within a body is closer to uniform temperature.

The classical proof of orthogonality of eigenfunctions (5) is an indirect proof. If the
differential Equation (1), written for the eigenfunction f,, is multiplied by f,,, (m # n), one
obtains (1tn/L)*fufm = —fmf.- An analogous expression can be written by interchanging
the indices n and m, (tm/L)*fufm = —fufp- By subtracting the last two expressions,

(2
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and, upon integration,

nk — u?,

t 7 7\ L
L2 /0 fnfm dx = (f"fm _fmfn)o : (10)

The right-hand side of (10) is identically equal to zero by the boundary conditions (2),
and (10) reduces to

L
(u2 — ,Lfﬂ)f fufmdx =0, n#m (11)
0

Thus, since w, # Wy, for n % m, (11) implies the orthogonality of functions f,, as stated
in (5).

2. Verification of orthogonality by explicit integration

The verification of orthogonality of eigenfunctions by direct integration in (5) in the case of
negligible surface resistance and the boundary conditions f'(0) = 0 and f (L) = 0is simple.
The verification in the case of the convective boundary conditions (2) is somewhat more
involved. First, by using the relationship

2 cos(unx/L) cos(uumx/L) = cos[(tn + um)x/L] + cos[(ttn — wm)x/L)], (12)

one obtains

(13)

L . .
L _
/ cos(unx/L) cos(umx/L) dx = — |:sm(un + Hom) + Sin (i Mm)] .
0 2 Mn + m Hn — Um

Second, from the additive theorems of trigonometry sin(i, £ pty) = sin i, cos iy £
COS [Ly SiN [Ly, and by incorporating the eigenvalue condition (4), it follows that

SiN(in + ) _ . COSMn COS i SIN(tn — Pm) _

B , __pj SO8 Hn €OS . (14)
Mn + Um Hnlm Hn — Wm Knlm
The substitution of (14) into (13) establishes the orthogonality
L
/ cos(uuux/L) cos(umx/L)dx =0, n # m. (15)
0

2.1. Nonorthogonality of sine functions

In contrast to negligible surface resistance and the boundary conditions f'(0) = 0 and
f(L) = 0, when both the sine and cosine functions are orthogonal on [0, L], in the case
of convective boundary conditions (2), the sine functions are not orthogonal on [0, L].
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Instead,

. COS [y COS [y

L
/ sin(uy,x/L) sin(u,x/L) dx = —LBi (16)
0 Mnlhm

This follows by an analogous derivation as used to prove (15), beginning from the
trigonometric relationship

— 2sin(unx/L) sin(umx/L) = cos[(n + pm)x/L] — cos[(in — pm)x/L)].  (17)
Furthermore, the integral of the product of the derivatives of the eigenfunctions is

t bt [* Bi
/ fify, dx = P / sin(uyx/L) sin(mx/L) dx = — COS [ COS L. (18)
0 0

2.2. Alternative proof of orthogonality of cosine functions

An alternative proof of orthogonality of eigenfunctions cos(u,x/L) in the considered
boundary value problem can be constructed by applying integration by parts to the integral
of the product of sine functions,

L L
/ sin(yx/L) sin(mx/L) dx = —L f sin(uyx/L)d[cos(umx/L)]
0 Mm Jo (19)

L . Mn L
= —— (sin Wy, cos W) + — cos(uyx/L) cos(umx/L) dx.
0

m m

By substituting into (19) the eigenvalue condition (4), it follows that

L
/ sin(yx/L) sin(m,x/L) dx
0

. COS [y COS Um Mn
j—r—rm ey T
Mntm Mm

L
= —LB / cos(uux/L) cos(iumx/L) dx. (20)
0

The left-hand side of (20) is symmetric in #n and m, and so is the first term on the right-hand
side. Consequently, the second term on the right-hand side of (20), with a nonsymmetric
pre-factor (/{4 m, must vanish. This is possible if only if

L
/ cos(inx/L) cos(imx/L)dx =0, n#m, (21)
0

which establishes the orthogonality of eigenfunctions cos(it,x/L).
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2.3. Simultaneous proofs of orthogonality of cosine and nonorthogonality of sine
functions

By applying integration by parts to the integral of the product of cosine functions, it follows
that

L L
/ cos(pnx/L) cos(umx/L) dx = L / cos(pnx/L)d[sin(umx/L)]
0 m J0O

(22)
L . Mn L . .
= — (sin Uy COS y) + — / sin(uyx/L) sin(ty,x/L) dx.
0

Hm Km

After substituting the eigenfunction condition (4), the integral in (22) becomes

L
/ cos(unx/L) cos(umx/L) dx
0

L
COS fLy COS
= LBi M + Hn sin(pyx/L) sin(uy,x/L) dx. (23)
/’Lm /’Lm 0

An analogous expression can be written by interchanging the indices n and m in (23), i.e.

L
/ cos(iupx/L) cos(umx/L) dx
0

L
COS [Ly COS
— i O B [ i (/L) sin(um/D) i, (24)
lun Mn Jo
Subtracting (24) from (23) gives
L
COS [y COS
/ sin(pyx/L) sin(umx/L) dx = —LBi M, (25)
0 Mnm

which demonstrates the nonorthogonality of sin(i,x/L) functions on the interval [0, L].
When (25) is substituted in either (23) or (24), it follows that

L
/ cos(inx/L) cos(imx/L)dx =0, n#m, (26)
0

which establishes the orthogonality of eigenfunctions cos(i,x/L) on the interval [0, L].

3. Nonsymmetric convective boundary conditions

The presented direct proofs of orthogonality of eigenfunctions in the case of symmetric
convective boundary conditions are rather straightforward, but in the case of nonsymmet-
ric convective boundary conditions, they become more involved. This is illustrated and
discussed in this section. Figure 1(b) shows an infinite slab of thickness L, having heat con-
duction coefficient k, under convective boundary conditions —k(d7T/0x)x=0 = h1[T; —
T(0,t)] and —k(0T/0x)x—1 = ho[T(L,t) — Tf,], where h; is the convection coefficient on
the side x = 0, and h; on the side x = L. The remote fluid temperatures on the two sides of
the slab are Tf; and Tf,, and the initial temperature of the slab is Ty. These boundary con-
ditions follow from Newton’s law of cooling, by which the rate of heat loss is proportional
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to the difference between the surface temperature of the body and the remote temperature
of the environment. The temperature field in the slab T' = T'(x, t) can be expressed as the
sum T = 7(x,t) + Tss(x) of the transient (7) and steady-state temperature (Ts) fields. The
latter is given by

T — T,

T =T — i X, (27)
where
T, = Bi; (1 + Bix) Ty + Biszz, L= Bix (1 + Biy) Tr, + Bix Tty (28)
Bi (I + Biy) + Bi Biy(1 + Bi,) + Bi;

are the final temperatures of the two sides of the slab. The two Biot numbers in (28) are
Bil = hlL/k and Biz = ]’lzL/k.

The transient temperature field is governed by the differential equation dt/d9t =
o (8%7/3x?), with the initial condition 7 (x,0) = Ty — Ts and the homogeneous boundary

conditions
0T Bi J Bi
9t _>Bh. —o, (ZE422, =0. (29)
ox L =0 ox L =L

Upon using the method of separation of variables to write 7 (x, t) = f(x)g(?), it follows that
the differential equation for f(x) is

'+ (w/D* =0, (30)

accompanied by the Robin-type boundary conditions

£10) - %fm) =0, )+ %f@) 0. (31)
The corresponding eigenfunctions are
fo = sin(uax/L) + g_u cos(tnx/L), (32)
where (1, are the numerically determined roots to the transcendental equation
(u? — Bi;Biy) sin jt — (Bij + Biz)p cos u = 0. (33)

The functions f,, (x) could also be defined by f,, = cos(u,x/L) + (Bii/pn) sin(iax/L), but
we shall proceed with their representation (32).

The eigenfunctions f, (x) are orthogonal to each other on the interval [0, L], in the sense
that

L
/ Ja@)fm(x)dx =0, n#m. (34)
0

The classical proof of this orthogonality is identical to that presented in the introductory
Section 1 because the boundary conditions (31) ensure that

Ja(Dfu(L) = fin(Dfy (L) = 0, fu(0)f,(0) — fin(0)f;,(0) = 0. (35)
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3.1. Verification of orthogonality

In contrast to symmetric convective boundary conditions from Section 2, the verifica-
tion of orthogonality of eigenfunctions by direct integration in the case of nonsymmetric
convective boundary conditions becomes quite tedious, albeit still straightforward. The
product of the eigenfunctions f, and f,, is, from (32),

S = sin(in/ L) sin(ons/L) + S5 c08(1n/L) cos(ran/L)

1
(36)
+ g—ln cos(ipx/L) sin(pyx/L) + g—lm sin(yx/L) cos(femx/L).
1 1

Upon integration, and after using in the resulting expressions, the eigenvalue condi-
tion (33) to eliminate cos i, and cos iy, in terms of sin i1, and sin [, it follows that

L
L
/ sin(unx/L) sin(umx/L) dx = —————— sin W, sin wm,, (37)
0 Bij + Bip
L .
Mntlm Bip L : :
cos(uyx/L) cos x/L)dx = —— ————— sin w, sin ) 38
= /O 48/ €08(p/L) s = =2 o sin g sin e (38)
L
Mn . Um .
/ B2 cos(ux/L) sin(imx/L) + 52 sin(inx/L) cos(umx/L) | dx
0 B11 Bll
L . .
= — sin [y, Sin fy. (39)
B11

The addition of (37)-(39) establishes the orthogonality

L
/ fafmdx =0, f, =sin(u.x/L) + g—ln cos(unx/L), n # m. (40)
—L 1

4. Longitudinal vibrations of an elastic rod

Although we have discussed in previous sections the verification of orthogonality in the
context of heat conduction, the presented analysis can also be applied to other engineering
problems. For example, the same Robin-type boundary conditions, as in (31), appear in
the problem of longitudinal vibrations of an elastic rod of length L and cross-sectional
area A, whose two ends are attached to linear elastic springs with spring constants k; and
k, as shown in Figure 2(a). The governing wave-type partial differential equation for the
longitudinal displacement u = u(x,t) is 3%u/dt*> = v*(d%u/dx>), where v = (E/p)Y/? is
the wave speed, expressed in terms of the elastic modulus E of the rod and its mass density
p (Weaver Jr. et al., 1991; Rao, 2011). The accompanying boundary conditions are

ou k1 ou k2
Z_y, =0, (—+—u =0, (41)
9x EA ) _, ax EA ).,

which are analogous to (29). By writing u(x, t) = f(x)g(t), (41) reduces to homogeneous
Robin-type boundary conditions for f(x),

/ kl _ / k2 _
£0) = ﬂf(()) =0, f(D)+ ﬂf@) =0. (42)
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Figure 2. (a) A vibrating elastic rod of elastic stiffness ¢ = EA/L, attached at its two ends to elastic
springs with spring constants k1 and k3. (b) A vibrating elastic rod attached at its right end to elastic spring
with spring constant k, while its left end is traction-free. The longitudinal displacement is u = u(x, t).

The corresponding eigenfunctions are
c
ﬁ=ﬂMMMM%+;MWMWMML (43)
1

with pt, determined from the eigenvalue condition

kik ki +k
(MZ_ i) sin,u— L+ zlLCOS,LL =0, (44)
Cc

c2

where ¢ = EA/L is the overall elastic stiffness of the rod. Equation (44) is an analogue
to (33); the transition between the two is made by the replacement Bi; <> kj/c (j = 1, 2).
The vibrating rod shown in Figure 2(b) gives rise to eigenfunction boundary conditions
f'(0) = 0 and f'(L) + kf(L)/(EA) = 0, and is thus an analogue to the heat conduction
problem from Figure 1(a). The corresponding eigenfunctions are f,, = cos(u,x/L), while
the eigenvalue condition is p sin u = (k/c) cos w, in duality with (4). All the orthogonality
considerations for the heat conduction problems from Sections 1-3 thus apply to the case
of vibrating rods shown in Figure 2. If the initial conditions are u(x,0) = 1y = const. and
(0u/9t);=o = 0, the longitudinal displacement is

> uo [y fu(x) dx
u= Cafn(x) cos(wyt), ¢ = ——-—>"—, (45)
; U fOL f3(x) dx

where w, = v(u,/L) are the frequencies of the eigenmodes of longitudinal vibrations.

5. Advection-diffusion problems

The proofs from previous sections can be extended to advection-diffusion problems with
appropriate boundary conditions of interest in various branches of chemical, nuclear, geo-
logical, environmental, and bioengineering (Grindrod, 1996; Masters & Ela, 2008). The
concentration flux is one-dimensional advection-diffusion problem is defined by g, =
UC — D3C/dx, where U is the average velocity of fluid that convects the solute whose
concentration is C = C(x, t), and D is the diffusion coefficient. Thus, from the conserva-
tion of solute dC/dt = —dqy/dx, it follows that the partial differential equation for the
concentration C is

aC 02C aC
—=D—-U—. (46)
ot 0x2 0x
The initial condition is C(x,0) = Cy = const. If the entry flux of solute is constant and
equal to UC,, and if the exit concentration is assumed to be C(L™,t) = C(L™, t), where
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L is the length of the advection domain, the boundary conditions are (Danckwerts, 1953;
Van Genuchten & Parker, 1984)

oC aC
(UC _p _) _ e, (_) o, (47)
0x /o ox /1

By introducing the auxiliary function ¢, such that (Brenner, 1962)

i 2
Cx, 1) = Ce + (Co — Ce) €D~ 9D b (x, 1), (48)

the advection-diffusion problem (46) is mathematically reduced to the diffusion problem

¢ 9%¢
¥ _pl? 49
ot dx? (#9)
with homogeneous boundary conditions
0 d
<U¢ —2D —¢) =0, <U¢ +2D —¢) =0, (50)
0x /.y ox )1

and the initial condition ¢ (x,0) = e_%. If ¢ is expressed as ¢ (x, 1) = f(x)g(?), it readily
follows that the eigenfunctions are

2 UL
fn = sin(uux/L) + % cos(upx/L), Pe= D (Péclet number). (51)
e

Physically, the Péclet number represents the ratio of the advective transport rate to the
diffusive transport rate. The eigenvalues 1, are the numerically determined roots to the
transcendental equation

4Pe 1

—_—. 52
4u2 — pe? 52)

(4,u2 — Pez) sinpu —4Pepcospu =0, ie tanu =

The corresponding time-dependent functions are g, (t) = e P 1nt/L* Because (51)and (52)
are of the same type as expressions (32) and (33), the eigenfunctions f,, are clearly
orthogonal on [0, L].

The considered advection-diffusion problem can also be solved by using, instead of (48),
the transformation

Cx, 1) = Ce + (Co — Co)p(x, 1), (53)

which gives rise to homogeneous boundary conditions for the auxiliary function ¢. Upon
using the separation of variables ¢ (x,t) = F(x)G(#), the governing differential equation
for the function F = F(x) is F” — (U/D)F 4+ AF = 0. The corresponding eigenfunctions

e 2
are F,(x) = e2 f,(x) with f,(x) given by (51), while G,() = e~ 10 g, () with g,(f) =

e~DHat/I* The eigenfunctions F,(x) are orthogonal on [0, L] with respect to the weight

function w(x) = e~ %, because the Sturm-Liouville form of the differential equation for F
is
d Ux dF

_x W
= (e a) +Aiw(x)F=0, w(x)=e D. (54)
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6. Conclusion

Direct proofs of orthogonality of eigenfunctions in problems of unsteady heat conduction
in an infinite slab with convective boundary conditions are presented by performing the
actual integration of the product of the derived eigenfunctions and by implementing the
corresponding eigenvalue conditions. In the case of a symmetric initial condition and sym-
metric boundary conditions at the two sides of the slab, the proofs are simple and involve
only elementary trigonometric transformations and elementary evaluation of integrals. In
the case of nonsymmetric boundary conditions, the proofs are more lengthy, although still
straightforward. The same proofs apply to problems of longitudinal vibrations of an elastic
rod attached at its ends to linear elastic springs and to one-dimensional advection-diffusion
problems under appropriate boundary conditions. The same form of eigenfunctions and
the same type of eigenvalue condition apply in all three considered cases. The presented
analysis is particularly appealing from the pedagogical point of view because students of
engineering mathematics and applied physics are often tempted to verify the orthogonal-
ity independently of the general proof, by performing the actual integration of the product
of the derived eigenfunctions and by incorporating the corresponding eigenvalue condi-
tions. From our experience, such exercise is instructive because it provides to students an
opportunity to apply their basic trigonometry and integral calculus skills. In addition, the
numerical determination of the first ten or so roots of nonlinear Equations (4), (33), (44),
and (52) by writing independent codes, or by using built-in MATLAB or Python functions,
in conjunction with the analysis of the rate of convergence of the derived series solutions
such as (6) and (31), provides an opportunity to apply numerical and computational skills
which complement students’ analytical skills.
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