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a b s t r a c t

The expressions for the free energy in two recent formulations of strain gradient plasticity
are extended to include the locked-in strain energy around statistically stored dislocations.
This is accomplished by using the strain dependent factor h(ep), which represents the
fraction of the rate of plastic work converted into heat in accordance with the latent heat
measurements from classical metal plasticity. The expressions for the plastic work in the
two formulations differ by different representations of the portion of plastic work asso-
ciated with the existence of plastic strain gradients and the corresponding network of
geometrically necessary dislocations, while the dissipative parts of plastic work are
assumed to be the same in both formulations. The expressions for the recoverable and
dissipative parts of the higher order stresses, defined as the work-conjugates to plastic
strain and its gradient, are then derived. It is shown that the stress and strain fields of
isothermal boundary-value problems of strain gradient plasticity are independent of h, but
that this factor may be of importance for non-isothermal analysis in which the dissipated
plastic work acts as an internal heat source. The effects of plastic strain gradient on the
plastic response of twisted hollow circular tubes made of a rigid-plastic material with
different hardening properties are then evaluated and discussed.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In classical plasticity there is no material length scale in the framework of the constitutive theory, so that this theory
cannot predict the size effects experimentally observed in plastic deformation problems at the micron scale, as in the bending
and torsion testing of very thin beams and wires, inelastic response of nanograined materials, dispersion strengthening by
small particles, measurements of micro-indentation hardness, thin film applications, micro-imprinting processes, etc. (Fleck
et al., 1994; Nix and Gao, 1998; St€olken and Evans, 1998; Qiu et al., 2003; Keller et al., 2011; Ma et al., 2012; Liu et al., 2013;
Nielsen et al., 2014). In general, the observed trend is that smaller is stronger. This size-dependent strengthening has been
attributed to the effects of strain gradients on plastic deformation. The theory which includes these effects has been put
forward by Aifantis (1984), Mühlhaus and Aifantis (1991), Fleck and Hutchinson (1993, 1997,2001), and Gao et al. (1999), with
subsequent developments by many investigators, including, inter alia, Huang et al. (2000, 2004), Hutchinson (2000, 2012),
Gurtin (2002, 2003,2004), Gudmundson (2004), Anand et al. (2005), Gurtin and Anand (2005a,2005b,2009), Bardella
(2006, 2007), Fleck and Willis (2009a,2009b), Polizzotto (2009), Voyiadjis et al. (2010), Voyiadjis and Faghihi (2012),
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Dahlberg et al. (2013), Nielsen and Niordson (2014), Mayeur and McDowell (2014), Fleck et al. (2014, 2015), Bardella and
Panteghini (2015), and Anand et al. (2015). From the dislocation point of view, the gradient of plastic strain is associated
with the storage of geometrically necessary dislocations, while the uniform strain is associated with random trapping and
storage of statistically stored dislocations (Ashby, 1970; Fleck et al., 1994; Nix and Gao, 1998; Kysar et al., 2010; €Oztop et al.,
2013).

In the present paper we extend the strain gradient plasticity analysis of Hutchinson (2012), and Fleck et al. (2014) to
include in their expressions for the free energy the locked-in strain energy around statistically stored dislocations. The strain
dependent factor h(ep) is used to represent the fraction of the rate of plastic work converted into heat in accordance with the
latent heat measurements from classical metal plasticity. The utilized expressions for the plastic work differ by the different
representations of the portion of plastic work associated with the existence of plastic strain gradients and the corresponding
network of geometrically necessary dislocations, while the dissipative parts of plastic work are assumed to be the same in
both formulations. The expressions for the recoverable and dissipative parts of the work-conjugates to plastic strain and its
gradient are derived in each case. It is shown that the stress and strain fields of isothermal boundary-value problems of strain
gradient plasticity are independent of h, but that this factor may be of importance for non-isothermal analysis in which the
dissipated plastic work acts as an internal heat source. The effects of plastic strain gradient on the plastic response of twisted
hollow circular tubes made of a rigid-plastic material are then evaluated and discussed. The shear stress, the edge line forces,
and the applied torque are determined for various values of the material length parameter. Results for solid rods, hollow and
thin-walled tubes are given at the onset and beyond plastic yield for linear and nonlinear hardening.

As in Hutchinson (2012) and Fleck et al. (2014), the presented analysis is phenomenological, without explicit referral to
specific dislocation mechanisms and interactions among individual dislocations. The latter are considered in the discrete
dislocation dynamics and dislocation based plasticity theory at submicron scales, e.g., Devincre and Kubin (1997), Tadmor
et al. (1999), Needleman (2000), Zbib et al. (2002), Bittencourt et al. (2003), Senger et al. (2011), Taheri-Nassaj and Zbib
(2015), and Wulfinghoff and B€ohlke (2015).

2. Gradient-enhanced effective plastic strain

It is assumed that the elastoplastic rate of strain is the sum of elastic and plastic contributions, such that _εij ¼ _εeij þ _ε
p
ij . The

elastic part of the strain rate depends on the rate of the Cauchy stress (sij) according to the generalized Hooke's law. The
plastic part of the strain rate is assumed to be codirectional with the deviatoric part of stress (s0ij), as in the classical J2 flow
theory of plasticity,

_ε
p
ij ¼ _epmij ; mij ¼

3
2

s0ij
seq

: (1)
The equivalent stress is seq ¼ ½ð3=2Þs0ijs0ij�1=2, while the loading index satisfies

_ep ¼
�
2
3
_ε
p
ij _ε

p
ij

�1=2

: (2)
Its path-dependent integral over the history of deformation gives the effective plastic strain ep. The spatial gradient of ep will
be used as a cumulative measure of plastic strain gradients, so that

ep ¼
Zt
0

_ep dt ; ep;k ¼
Zt
0

_ep;k dt: (3)
In the strain gradient plasticity, a gradient-enhanced effective plastic strain can be defined by Hutchinson (2012)

Ep ¼
�
e2p þ l2ep;kep;k

�1=2
; (4)

where l is the material length scale of the specific problem at hand, introduced in (4) on the dimensional ground.While ep is a
monotonically increasing measure of plastic strain during the course of plastic deformation, ep,k is not necessarily increasing
because _ep;k can be negative for certain non-proportional strainings, so that the gradient-enhanced plastic strain Ep is not
necessarily an increasing measure of strain either (i.e., _Ep could be negative).

In the classical J2 flow theory of plasticity, the rate of plastic work (per unit volume) is _wp ¼ s0ij _ε
p
ij≡s0ðepÞ _ep, where

s0 ¼ s0(ep) is the stress-plastic strain curve in uniaxial simple tension test, and seq¼s0(ep) is the yield condition. In the strain
gradient plasticity it has been proposed (Hutchinson, 2012) that the specific plastic work is
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wp
�
Ep
� ¼ Z

Ep

0

s0
�
ep
�
dep; (5)

where the gradient-enhanced cumulative plastic strain Ep is defined by (4). The symbol e is used in (5) and elsewhere in this
paper as a dummy variable of integration. The expression (5) implies that the plastic work to deform amaterial element to the
strain level ep in the presence of plastic strain gradients is greater than in the absence of these gradients (because Ep> ep).
Indeed, if (5) is rewritten as

wp
�
Ep
� ¼ Z

ep

0

s0
�
ep
�
dep þ

ZEp
ep

s0
�
ep
�
dep; (6)

the second integral on the right-hand side represents the strain-gradient contribution to plastic work. It will be assumed that
this portion of plastic work is, in principle, entirely recoverable, being associated with the current network of geometrically
necessary dislocations and the elastic strain energy around them. The rate of plastic work associated with (5) is
_wp ¼ s0ðEpÞ _Ep, which is positive or negative depending on the sign of _Ep.

The elastic portion of the work, associated with the infinitesimal elastic strain ε
e
ij, is

we

�
ε
e
ij

�
¼ mεe0ij ε

e0
ij þ

1
2
kεe 2

kk ; ε
e0
ij ¼ ε

e
ij �

1
3
ε
e
kkdij ; (7)

where m and k are the elastic shear and bulk moduli of an isotropic material, respectively. The total work per unit volume is
w¼w þw . If the plastic part of strain ε

p is obtained from _εp by integration along a specified history of deformation, the
e p ij ij
elastic part of the total strain εij follows from ε

e
ij ¼ εij � ε

p
ij .

2.1. An alternative definition of the gradient-enhanced effective plastic strain

The path-dependent integral in (3) over the history of deformation gives the effective plastic strain ep. Another measure of
the effective plastic strain, defined in terms of the current components of plastic part of strain ε

p
ij ¼ εij � ε

e
ij, regardless of the

history of deformation by which they are produced, thus reflecting upon the current geometric structure only, is

εp ¼
�
2
3
ε
p
ijε

p
ij

�1=2

: (8)
While ep is non-decreasing, εp can increase or decrease during the course of nonproportional plastic straining. Guided by
the anticipated physical relationship between the plastic strain gradients and the network of geometrically necessary dis-
locations which accompany them, Fleck et al. (2014) introduced the gradient-enhanced effective plastic strain, which also
reflects only upon the current geometric structure, by

Ep ¼
�
2
3
ε
p
ijε

p
ij þ

2
3
l2εpij;kε

p
ij;k

�1=2

: (9)
With the cumulative path-dependent plastic strain ep, as in (3), and the path-independent strain and strain gradient
measures εp and Ep, as in (8) and (9), Fleck et al. (2014) proposed the following expression for the specific plastic work

wp
�
ep; εp; Ep

� ¼ Z
ep

0

s0
�
ep
�
dep þ

ZEp

0

s0
�
ep
�
dep �

Zεp
0

s0
�
ep
�
dep; (10)

where s0 ¼ s0(ep) is again obtained from the stress-plastic strain curve in simple tension test. The last two terms together are
intended to represent the plastic work contribution associated with the plastic strain gradients, incorporated in the definition
of Ep through the length scale l, while the first term on the right-hand side of (10) represents the path-dependent portion of
plastic work, corresponding to the current effective plastic strain ep and a specified path of deformation bywhich it is reached.
In the absence of plastic strain gradient effects (l¼ 0), the last two integrals cancel each other and (10) reduces to the plastic
work expression of classical plasticity. In the case of proportional plastic straining, εp¼ ep and the first and third integral on
the right-hand side of (10) cancel each other.
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If expression (10) is rewritten as

wp
�
ep; εp; Ep

� ¼ Z
ep

0

s0
�
ep
�
dep þ

ZEp

εp

s0
�
ep
�
dep; (11)

the first integral on the right-hand side can be interpreted as the work spent on the evolution of statistically stored dislo-
cations from the initial to the current state, while the second integral represents the work associated with the creation of the
network of geometrically necessary dislocations giving rise to plastic strain gradients in the current state. By comparing (6)
and (11), it is seen that the two plastic work expressions differ by the different integration limits used in the second integral
on the right-hand sides accounting for the plastic work contribution from the geometrically necessary dislocations.

2.2. Other strain measures

Other measures of the gradient-enhanced effective plastic strain could be considered, such as Xp ¼ ep þ lðep;kep;kÞ1=2
(Evans and Hutchinson, 2009; Niordson and Hutchinson, 2011). The strain gradient theories with up to three length scales
have also been used (Fleck and Hutchinson, 1997, 2001; Wei and Hutchinson, 2003; Lele and Anand, 2009; Fleck and Willis,
2009a,b; Danas et al., 2012), as well as the strain-dependent length scales (Evans and Hutchinson, 2009). Fleck and
Hutchinson (2001) suggested that one length parameter is needed to characterize problems in which shearing gradients
are dominant, and the other with dominant stretch gradients. Gurtin (2004) introduced an effective distortion-rate which
involves the plastic spin, in addition to the plastic strain rate and its gradient. See also the distortion gradient plasticity
analysis of the torsion of thin metal wires by Bardella and Panteghini (2015). For the geometrical and physical foundations of
classical and higher-order plasticity models, with a historical perspective, recent books by Gurtin et al. (2010), Clayton (2011),
and Steinmann (2015) can also be consulted.

3. Work-conjugates to plastic strain and its gradient

The rate of work is the sum of elastic and plastic parts, _w ¼ _we þ _wp. The elastic part is obtained from (7) as

_we ¼ sij _ε
e
ij ; sij ¼ 2mεe0ij þ kεekkdij: (12)

The expression for the plastic part is derived by differentiation of (5), which gives

_wp ¼ s0
�
Ep
�
_Ep ; _Ep ¼ ep

Ep
_ep þ l2

ep;k
Ep

_ep;k: (13)

This can be expressed as

_wp ¼ q _ep þ tk _ep;k ; (14)

where the quantities q and tk are the work-conjugates to plastic strain and strain gradient measures ep and ep,k. By comparing
(13) and (14), these are (Hutchinson, 2012)

q ¼ s0
�
Ep
� ep
Ep

; tk ¼ l2s0
�
Ep
� ep;k
Ep

: (15)

The two quantities are related by q2 þ l�2tktk ¼ s20ðEpÞ.
The work-conjugates to plastic strain ε

p
ij and its gradient εpij;k, denoted by qij and tijk, are defined such that

_wp ¼ qij _ε
p
ij þ tijk _ε

p
ij;k: (16)

They can be identified by comparing (16) with the rate of plastic work expression (13), in which _ep ¼ ð2=3Þm _ε
p and
ij ij

_ep;k ¼ ð2=3Þmij _ε
p
ij;k have been used in the expression for _Ep. This gives

_wp ¼ 2
3
s0
�
Ep
�

Ep

�
epmij _ε

p
ij þ l2ep;kmij _ε

p
ij;k

�
: (17)

Thus, the comparison of (16) and (17) identifies, up to their workless parts, the work-conjugates
qij ¼
2
3
s0
�
Ep
�

Ep
epmij; tijk ¼ 2

3
l2
s0
�
Ep
�

Ep
ep;kmij: (18)
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The comparison of (15) and (18) establishes the relationships

q ¼ qijmij; tk ¼ tijkmij: (19)

0
In the case of classical plasticity, qij ¼ sij and q ¼ seq, while tijk and tk both vanish.

3.1. Work-conjugates in the case of alternative measures of effective plastic strain

In the case of effective plastic strain measures ep, εp, and Ep from Section 2.1, the rate of plastic work is obtained by dif-
ferentiation of (10), which gives

_wp ¼ s0
�
ep
�
_ep þ s0

�
Ep
�
_Ep � s0

�
εp
�
_εp: (20)

While _ep is necessarily positive during plastic deformation, _εp and _Ep can be, in general, either positive or negative. It can be

readily shown by differentiating (8) and (9) that

εp _εp ¼
�
2
3
mijε

p
ij

�
_ep; Ep _Ep ¼ εp _εp þ 2

3
l2εpij;k _ε

p
ij;k: (21)

Since the gradient of the rate of plastic strain can be evaluated from (1) as _εpij;k ¼ mij _ep;k þmij;k _ep, the expression for the rate _Ep

in (21) becomes

_Ep ¼ 2
3Ep

h�
mijε

p
ij þ l2mij;kε

p
ij;k

�
_ep þ

�
l2mijε

p
ij;k

�
_ep;k
i
: (22)

Consequently, by substituting (22) into (20), the rate of plastic work can be expressed as
_wp ¼ q _ep þ tk _ep;k; (23)

where the work-conjugates to plastic strain and strain gradient measures ep and ep,k are
q ¼ s0
�
ep
�þ 2

3

�
s0
�
Ep
�

Ep
� s0

�
εp
�

εp

	
mijε

p
ij þ

2
3
l2
s0
�
Ep
�

Ep
mij;kε

p
ij;k; (24)

2 2s0
�
Ep
�

p

tk ¼ 3

l
Ep

mijεij;k: (25)

p p
Thework-conjugates to plastic strain εij and its gradient εij;k, appearing in the representation (16), can be identified as well.
Since, from (2), (8), and (9),

_ep ¼ 2
3
mij _ε

p
ij ; _εp ¼ 2

3εp
εij _ε

p
ij ;

_Ep ¼ 2
3Ep

�
εij _ε

p
ij þ l2εij;k _ε

p
ij;k

�
; (26)

the substitution of (26) into (20) specifies, up to their workless parts, the work conjugates (Fleck et al., 2014)
qij ¼
2
3
s0
�
ep
�
mij þ

2
3

�
s0
�
Ep
�

Ep
� s0

�
εp
�

εp

	
ε
p
ij ; tijk ¼ 2

3
l2
s0
�
Ep
�

Ep
ε
p
ij;k: (27)
The comparison of (27) with (24) and (25) establishes the connections

q ¼ qijmij þ tijkmij;k; tk ¼ tijkmij: (28)
4. Principle of virtual work

In the absence of body forces, the principal of virtual work for the quasi-static strain gradient plasticity reads
(Gudmundson, 2004; Gurtin and Anand, 2005a,b; Fleck et al., 2014)Z

V

�
sijdε

e
ij þ qijdε

p
ij þ tijkdε

p
ij;k

�
dV ¼

Z
S

�
Tidui þ tijdε

p
ij

�
dS: (29)
The Gauss divergence theorem applied to (29) yields the equations of equilibrium

sij;j ¼ 0; tijk;k þ s0ij � qij ¼ 0; (30)
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and the relations Ti ¼ sijnj and tij ¼ tijknk between the traction vector Ti and the Cauchy stress tensor sij, and between the
(deviatoric) moment traction tensor tij are the moment stress tensor tijk. The components of the outward unit vector,
orthogonal to the considered surface element, are denoted by ni. The displacement components are ui.

The principle of virtual work can also be expressed in terms of dep and dep,k. Since dε
p
ij ¼ depmij and seq ¼ s0ijmij, (29) can be

recast as (Fleck and Hutchinson, 2001; Hutchinson, 2012)Z
V

�
sijdε

e
ij þ qdep þ tkdep;k

�
dV ¼

Z
S

�
Tidui þ tdep

�
dS; (31)

where

t ¼ tijmij; tk ¼ tijkmij; q ¼ qijmij þ tijkmij;k; (32)

provided that the equilibrium conditions hold

sij;j ¼ 0; tk;k þ seq � q ¼ 0; (33)

together with Ti ¼ sijnj and t ¼ tknk. The last two expressions in (32) confirm (28). For the formulation of the principle of
virtual work in the case of a rigid-plastic material model in strain gradient plasticity, the paper by Fleck andWillis (2009b) can
be consulted.

5. Free energy

By considering _ep and _ep;k to be the fluxes whose conjugate thermodynamic forces (affinities) are denoted by f and gk, the
rate of internal energy dissipation due to inelastic deformation processes can be expressed as

D ¼ _wdis
p ¼ f _ep þ gk _ep;k >0: (34)

The rate of the Helmholtz free energy under isothermal conditions is then _j ¼ _w�D . It will be assumed that the dissipative
part of the rate of plastic work is

_wdis
p ¼ h

�
ep
�
s0
�
ep
�
_ep; 0:9 � h

�
ep
� � 1: (35)

The factor h(ep) specifies the fraction of the rate of plastic work converted into heat. This factor is assumed to be in the
indicated range from 0.9 to 1, based on the early experimental work by Farren and Taylor (1925) and Taylor and Quinney
(1934) from classical metal plasticity (without strain gradient effects). The functional dependence h ¼ h(ep) has been sub-
sequently studied bymany investigators, some of whichwork has been reviewed by Bever et al. (1973). More recently, Rosakis
et al. (2000) examined, analytically and experimentally, the dependence of h on plastic strain, strain-rate, and the history of
plastic deformation for various materials, which is particularly important for determining thermomechanical response under
high-rate of deformation.

By comparing (34) and (35), the affinities are

f
�
ep
� ¼ h

�
ep
�
s0
�
ep
�
; gk ¼ 0: (36)

In the early stage of plastic deformation for which the quasistatic, small strain analysis of this paper is intended to apply, h

may be approximately taken to be 0.9. The dissipated plastic work from the initial to the current state is

wdis
p ¼

Zep
0

h
�
ep
�
s0
�
ep
�
dep: (37)
The non-dissipative (conceptually recoverable) part of the rate of plastic work, associated with the locked-in energy
around both statistically stored and geometrically necessary dislocations, is the plastic contribution to the rate of free energy
( _jp). In view of (13) and (35), this is

_jp ¼ _wrec
p ¼ _wp � _wdis

p ¼ s0
�
Ep
�
_Ep � h

�
ep
�
s0
�
ep
�
_ep; (38)

which, in general, can be either positive or negative (certainly negative if _Ep <0). The negative value of the increment djp

means that in an increment of plastic deformation the released strain energy associated with plastic gradients from
geometrically necessary dislocations exceeds the stored strain energy around newly created or displaced statistically stored
dislocations. In the case of classical plasticity _jp ¼ ½1� hðepÞ�s0ðepÞ _ep � 0.

The overall plastic contribution to the free energy is
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jp
�
ep; Ep

� ¼ wrec
p
�
ep; Ep

� ¼ Z
Ep

0

s0
�
ep
�
dep �

Zep
0

h
�
ep
�
s0
�
ep
�
dep; (39)

i.e., � � rec� � Zep
 � �� � � ZEp � �

jp ep; Ep ¼ wp ep; Ep ¼

0

1� h ep s0 ep dep þ
ep

s0 ep dep; (40)

such that wp ¼ wrec
p þwdis

p . If it is assumed that all plastic work in the model of classical plasticity is dissipated (h¼1), (39)
reduces to the expression originally proposed by Hutchinson (2012). In that case, the entire free energy due to plastic
deformation is associated with the plastic strain gradient effects.

In an isothermal boundary-value problem, h does not affect the stress and strain fields, because it does not appear in the
structure of the higher-order stresses qij and tijk, or q and tk, and the corresponding variational principles. This is similar to
classical plasticity, without strain gradient effects, inwhich h does not affect isothermal stress and strain fields either. The use
of h ¼ h(ep) in (35) and (39) may, however, be of importance for non-isothermal elastoplastic analysis at large strains. The
development of non-isothermal strain gradient plasticity theory, in which temperature dependence of free energy must be
added to the theory, is a worthwhile goal of future investigation. Towards that goal, the thermomechanical analysis of non-
isothermal elasticeplastic deformation from classical plasticity (e.g., Prager, 1958; Lee, 1969; Lubarda, 1982; Rosakis et al.,
2000), appropriately modified to incorporate the plastic strain-gradient effects, such as that developed by Anand et al.
(2015) within strain gradient crystal plasticity, can be of help.

The total free energy consists of the elastic strain energy associated with elastic strains εeij, and the locked-in strain energy
around statistically stored and geometrically necessary dislocations, so that

j ¼ je

�
ε
e
ij

�
þ jp

�
ep; Ep

�
; je

�
ε
e
ij

�
¼ mεe0ij ε

e0
ij þ

1
2
kεe 2

kk : (41)
5.1. Free energy in the case of alternative measures of effective plastic strain

The dissipative part of the rate of plastic work is again assumed to be given by (35), with the corresponding affinities as in
(36). In view of this and the expression for the rate of plastic work (20), the plastic contribution to the rate of free energy is

_jp ¼ _wrec
p ¼ _wp � _wdis

p ¼ 
1� h
�
ep
��
s0
�
ep
�
_ep þ s0

�
Ep
�
_Ep � s0

�
εp
�
_εp: (42)
The overall plastic contribution to the free energy is

jp
�
ep; εp; Ep

� ¼ Z
ep

0



1� h

�
ep
��
s0
�
ep
�
dep þ

ZEp

0

s0
�
ep
�
dep �

Zεp
0

s0
�
ep
�
dep: (43)
The first term on the right-hand side accounts for the locked-in strain energy around statistically stored dislocations, while
the last two terms together represent the free energy contribution due to plastic strain gradient effects from the current
network of geometrically necessary dislocations. If all plastic work in the model of classical plasticity is assumed to be
dissipated (h ¼ 1), (43) reduces to the expression originally proposed by Fleck et al. (2014).

For the sake of comparison with (40), the expression for the plastic contribution to the free energy (43) is rewritten as

jp
�
ep; εp; Ep

� ¼ wrec
p
�
ep; εp; Ep

� ¼ Z
ep

0



1� h

�
ep
��
s0
�
ep
�
dep þ

ZEp

εp

s0
�
ep
�
dep: (44)
Thus, the two expressions differ by the different integration limits used in the second integral on the right-hand side of
(40) and (44), which accounts for the strain energy around geometrically necessary dislocations.

Other, more involved representations of the free energy have been considered. Gurtin and Anand (2005a,2005b) repre-
sented the free energy as the sum of the classical elastic strain energy and the defect energy, the latter assumed to depend on
the Burgers tensor defined as a measure of the incompatibility of the plastic part of the deformation gradient field. See also
Gurtin (2004), and Gurtin and Reddy (2009).
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6. Yield condition and plastic loading conditions

In the considered framework of strain gradient plasticity, the yield condition is of the von Mises (J2) type in the deviatoric
Cauchy stress space, seq ¼ sY, where sY specifies the radius of the current yield surface (Hutchinson, 2012). The loading/
unloading conditions from the state on the yield surface are

s0ij _εij

�� 0; elastic unloading
�
_ep ¼ 0

�
;

>0; plastic loading
�
_ep >0

�
:

(45)

The consistency condition during plastic loading is ð3=2Þs0ij _s0ij ¼ sY _sY , in which _sY can be positive or negative, i.e., the yield
surface in the stress space can expand or shrink, depending on the plastic strain gradients. It is also noted from (33) that
seq ¼ q� tk;k, so that the right-hand side could be used to specify the size of the yield surface. The formulation of the entire
incremental boundary value problem, based on an appropriate functional with a specified rate potential function and the
prescribed boundary conditions on _ui and _ep, is discussed by Hutchinson (2012) and Fleck et al. (2014, 2015).

An alternative approach to phenomenological strain gradient plasticity (the so-called ‘‘lower-order’’ strain gradient
plasticity), in which additional boundary conditions on plastic strain are not required, has been proposed by Acharya and
Bassani (1996), Bassani (2001) and Kuroda and Tvergaard (2010).

7. Recoverable and dissipative parts of the work-conjugates

Hutchinson (2012) and Fleck et al. (2014) partitioned the work conjugates ðq; tkÞ and (qij,tijk) to their recoverable and
unrecoverable (dissipative) parts. This partition was motivated by the observation by Gudmundson (2004) and Gurtin and
Anand (2009) that the incremental theory of strain gradient plasticity proposed by Fleck and Hutchinson (2001) can
violate thermodynamic restriction of non-negative plastic dissipation for certain nonproportional strain histories.

The partition proceeds by first expressing the rate of plastic work as the sum of a dissipative and recoverable parts,

_wp ¼ q _ep þ tk _ep;k≡ _wdis
p þ _wrec

p ; _wrec
p ¼ _jp : (46)

The dissipative part (35) can be expressed as
_wdis
p ¼ h

�
ep
�
s0
�
ep
�
_ep≡qdis _ep þ tdisk _ep;k; (47)

from which
qdis ¼ h
�
ep
�
s0
�
ep
�
; tdisk ¼ 0: (48)

_ rec _
The rate of the recoverable part of plastic work is a non-dissipative portion of the rate of plastic work (wp ¼ jp). If this is
written as

_wrec
p ¼ qrec _ep þ treck _ep;k; (49)

the recoverable potions of q and tk are found from (15) and (48) to be

qrec ¼ q� qdis ¼ s0
�
Ep
� ep
Ep

� h
�
ep
�
s0
�
ep
�
; treck ¼ tk � tdisk ¼ l2s0

�
Ep
� ep;k
Ep

: (50)

If it is assumed that h¼1 throughout plastic deformation, the expressions (48) and (50) reduce to those of Hutchinson (2012).
The dissipative (unrecoverable) parts of qij and tijk can be recognized from (35). Since _ep ¼ ð2=3Þmij _ε

p
ij , one has

_wdis
p ¼ 2

3
h
�
ep
�
s0
�
ep
�
mij _ε

p
ij≡q

dis
ij _ε

p
ij þ tdisijk _ε

p
ij;k: (51)

Thus, up to their immaterial workless terms,
qdisij ¼ 2
3
h
�
ep
�
s0
�
ep
�
mij; tdisijk ¼ 0: (52)

The recoverable parts qrec ¼ q � qdis and trec ¼ t � tdis appear in the representation
ij ij ij ijk ijk ijk

_wrec
p ¼ qrecij _ε

p
ij þ trecijk _ε

p
ij;k: (53)
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In view of (18) and (52), they are

qrecij ¼ 2
3
s0
�
Ep
�

Ep
epmij �

2
3
h
�
ep
�
s0
�
ep
�
mij; trecijk ¼ 2

3
l2
s0
�
Ep
�

Ep
ep;kmij: (54)

In particular, by comparing (50) and (54), it follows that

qrec ¼ qrecij mij; qdis ¼ qdisij mij; treck ¼ trecijk mij; (55)

as anticipated from (19). In the case of classical plasticity, qij ¼ s0ij, q
dis
ij ¼ hs0ij, and qrecij ¼ ð1� hÞs0ij, while qdis ¼ hseq and

qrec ¼ ð1� hÞseq.
The evaluation of dissipative and recoverable parts of the higher order stresses qij and tijkwithin considered simplemodels

of strain gradient plasticity may be a helpful guide in the construction of more involved models of strain gradient plasticity,
such as those which account for anisotropic strain hardening during plastic deformation under non-proportional loading.
They may also be used to study the conditions under which the incremental and nonincremental theories of strain gradient
plasticity give rise to elastic loading gaps at initial yield and under nonproportional loading histories (Fleck et al., 2015).

7.1. Partition in the case of alternative measures of effective plastic strain

The recoverable potions of q and tk in this case are

qrec ¼ 
1� h
�
ep
��
s0
�
ep
�þ 2

3

�
s0
�
Ep
�

Ep
� s0

�
εp
�

εp

	
mijε

p
ij þ

2
3
l2
s0
�
Ep
�

Ep
mij;kε

p
ij;k; (56)

treck ¼ 2
3
l2
s0
�
Ep
�

Ep
mijε

p
ij;k; (57)

while the dissipative parts are still given by (48). The recoverable parts of qij and tijk are

qrecij ¼ 2
3


1� h

�
ep
��
s0
�
ep
�
mij þ

2
3

�
s0
�
Ep
�

Ep
� s0

�
εp
�

εp

	
ε
p
ij ; trecijk ¼ 2

3
l2
s0
�
Ep
�

Ep
ε
p
ij;k; (58)

the dissipative parts qdisij and tdisijk being given by (52)
By comparing (56) and (57) with (58), the relationships hold

qrec ¼ qrecij mij þ trecijk mij;k ; qdis ¼ qdisij mij ; treck ¼ trecijk mij ; (59)

in accord with (28).
There are formulations of strain gradient plasticity in which tdisijk s0, e.g., Nielsen and Niordson (2014), and Nielsen et al.

(2014). In the theory by Fleck andWillis (2009b), both recoverable and dissipative stresses are considered in order to develop
a kinematic hardening theory. Their analysis also includes interfacial terms, which account for elastic energy stored and
plastic work dissipated at internal interfaces. The theory of Gurtin and Anand (2005a,2005b) involves a recoverable higher
order stress, that is the defect stress work-conjugate to the Burgers tensor, under the assumption of irrotational plastic flow.
See also the analyses by Gurtin (2004) and Gudmundson (2004).

7.2. Other cases

The recoverable and dissipative parts of higher order stresses can be similarly identified in the case of other represen-
tations of the dissipative and recoverable parts of plastic work. For example, if the plastic gradient contribution to the free
energy is assumed to be quadratic in plastic gradients (1/2)bl2ep,kep,k, as in Mühlhaus and Aifantis (1991), one can define
wpðep; ep;kÞ ¼ wdis

p ðepÞ þ jpðep; ep;kÞ, where

wdis
p
�
ep
� ¼ Z

ep

0

h
�
ep
�
s0
�
ep
�
dep; jp

�
ep; ep;k

�
¼
Zep
0



1� h

�
ep
��
s0
�
ep
�
dep þ 1

2
bl2ep;kep;k: (60)
The material parameter b has the dimension of stress. As in the two cases from Sections 2 and 5, while _wdis
p >0 during plastic

deformation, the rates _jp and _wp can, in general, be either positive or negative (for proportional straining, _jp >0 and _wp >0).
It readily follows that
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qdisij ¼ 2
3
h
�
ep
�
s0
�
ep
�
mij; tdisijk ¼ 0 ; qrecij ¼ 2

3


1� h

�
ep
��
s0
�
ep
�
mij; trecijk ¼ 2

3
bl2ep;kmij; (61)
while q ¼ qijmij and tk ¼ tijkmij for both dissipative and recoverable parts. If b ¼ b(ep), as considered by Gurtin and Anand
(2009) in a simple generalization of Mühlhaus and Aifantis (1991) theory, then qrecij in (61) is replaced with

qrecij ¼ 2
3
qrecmij ; qrec ¼ 
1� h

�
ep
��
s0
�
ep
�þ 1

2
l2
db
dep

ep;kep;k: (62)
7.3. Yield surface in qdisij space

For the considered types of effective plastic strain measures, the yield surface can be defined in the qdisij space. In view of
(52), this is

F ¼
�
3
2
qdisij qdisij

�1=2

� f ¼ 0 ; f ¼ h
�
ep
�
s0
�
ep
�
; (63)

such that the rate of plastic strain obeys the normality rule

_ε
p
ij ¼ _ep

vF

vqdisij

: (64)

Since for the hardening material, s0¼s0(ep) is a monotonically non-decreasing function, the yield surface (63) expands iso-
tropically in the qdisij space during plastic deformation. The radius of this surface is specified by the affinity f conjugate to the

flux _ep, such that the internal energy dissipation is D ¼ f _ep. If l¼ 0, then qdisij ¼ hðepÞs0ij and (63) reduces to the von Mises

yield surface of classical plasticity ½ð3=2Þs0ijs0ij�1=2 ¼ s0ðepÞ (Fleck et al., 2014). The corresponding recoverable part of qij in this

case is qrecij ¼ ½1� hðepÞ�s0ij, so that qij ¼ s0ij and q ¼ qijmij ¼ seq.

8. Proportional plastic straining

In the case of proportional plastic straining it is assumed that the plastic strain components and their gradients mono-
tonically increase in proportion (Fleck et al., 2014). The effective plastic strain and the gradient-enhanced effective plastic
strain are then

ep ¼
�
2
3
ε
p
ijε

p
ij

�1=2

; Ep ¼
�
2
3
ε
p
ijε

p
ij þ

2
3
l2εpij;kε

p
ij;k

�1=2

: (65)

The plastic work and the plastic contribution to the free energy are

wp ¼
ZEp
O

s0
�
ep
�
dep; jp ¼

ZEp
O

s0
�
ep
�
dep �

Zep
O

h
�
ep
�
s0
�
ep
�
dep; (66)

with _wp ¼ s0ðEpÞ _Ep >0. It readily follows that

qij ¼
2
3
s0
�
Ep
�

Ep
ε
p
ij ; tijk ¼ 2

3
l2
s0
�
Ep
�

Ep
ε
p
ij;k: (67)

Since the plastic strain components are ε
p
ij ¼ epmij, from (33) and (67) the work conjugates to ep and ep,k are found to be

q ¼ s0
�
Ep
� ep
Ep

þ l2
s0
�
Ep
�

Epep

�
e� 2
p � ep;kep;k

�
; tk ¼ l2

s0
�
Ep
�

Ep
ep;k: (68)

For brevity, in the expression for q the notation is used e� 2
p ¼ ð2=3Þεpij;kε

p
ij;k.
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The dissipative and recoverable parts are

qdisij ¼ 2
3
qdismij ; qrecij ¼ qij � qdisij ; tdisijk ¼ 0 ; trecijk ¼ tijk ; (69)

with qdis ¼ hðepÞs0ðepÞ and qrec ¼ q� qdis.

9. Torsion of a hollow circular tube

The effects of strain gradients on plastic response have been studied for various problems at the micron-scale, notably in
the bending and torsion analyses of thin beams and wires (e.g., Fleck et al., 1994; Gao et al., 1999; Huang et al., 2000;
Gudmundson, 2004). An additional insight can be gained by considering torsion of a hollow circular tube made of a rigid-
plastic material. This is appealing because the problem allows a closed-form analytical solution, from which the solutions
for a solid circular rod and a thin-walled circular tube followas spacial cases. Themid-radius of the tube is denoted by a and its
thickness by d, so that the outer and inner radii of the tube are a ± d/2. If the tube is subjected to an applied torque T> TY, the
non-vanishing strain is εz4 ¼ rq/2, where q is the angle of twist (per unit length of the tube), and (r,4,z) are the cylindrical
coordinates with z along the central axis of the tube. Since elastic component of strain is absent in the case of rigid-plastic
model, there is no deformation for T� TY, while for T> TY the entire deformation is plastic. The threshold torque TY will be
determined in the sequel. Adopting the small strain framework and proportional straining, (65) give

ep ¼ 2εz4ffiffiffi
3

p ¼ rqffiffiffi
3

p ; ep;r ¼ qffiffiffi
3

p ; e�p ¼
ffiffiffi
2
3

r
q;

Ep ¼ qffiffiffi
3

p
�
r2 þ 2l2

�1=2
; Ep;r ¼ qffiffiffi

3
p r�

r2 þ 2l2
�1=2 :

(70)

In deriving (70) from (65), it is noted that
εz4;r ¼ vεz4
vr

¼ q

2
; εzr;4 ¼ �1

r
εz4 ¼ �q

2
: (71)

The substitution of (70) into (68) yields
q ¼ s0
�
Ep
� r2 þ l2

r
�
r2 þ 2l2

�1=2 ; tr ¼ s0
�
Ep
� l2�

r2 þ 2l2
�1=2 : (72)
The divergence of the vector tk is

tk;k ¼ tr;r þ 1
r
tr ¼ s0

�
Ep
� 2l4

r
�
r2 þ 2l2

�3=2 þ rqffiffiffi
3

p ds0
dEp

l2

r2 þ 2l2
: (73)

The non-vanishing component of the shear stress is obtained by substituting (73) into (33), which gives sz4 ¼ ðq� tk;kÞ=
ffiffiffi
3

p
,

i.e.,

sz4 ¼ s0
�
Ep
�

ffiffiffi
3

p r
�
r2 þ 3l2

�
�
r2 þ 2l2

�3=2 � rq
3

ds0
dEp

l2

r2 þ 2l2
: (74)
Alternatively, by (30), this expression can be obtained from sz4¼ qz4� tz4r,r, where qz4 is thework-conjugate to εz4 and tz4r
to εz4,r. From the first of (67),

qz4 ¼ rq
3

s0
�
Ep
�

Ep
: (75)
For a rigid-plastic incompressible material, there is a line force along the outer and inner radius of the cross-section of the
tube (r¼ a ± d/2), where the lateral cylindrical surface intersects the cross-section of the tube. This can be determined from

pk ¼
h
nð1Þi kð1Þj tkij � kð1Þk nð1Þi nð1Þj nð1Þl tlij

i
þ
h
nð2Þi kð2Þj tkij � kð2Þk nð2Þi nð2Þj nð2Þl tlij

i
; (76)

where n(i) is the unit outward normal to surface S(i) (i¼ 1,2), and k(i) ¼ c(i) � n(i). The vector c(i) is the unit tangent vector along
the intersecting edge of the two surfaces, with S(i) to the left. The first subscript in tijk specifies the normal to the surface over
which the tijk component acts, the second index specifies the orientation of the forces, and the third index specifies the
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orientation of the lever arm between the two forces of the doublet. The expression (76) can be derived by an analogous
analysis to one used by Fleck and Hutchinson (1997) in their earlier version of strain gradient plasticity; see also Mindlin
(1964) and the expression (13) of Huang et al. (2000). It readily follows that p4 ¼ t4zr along the outer radius r¼ aþd/2, and
p4 ¼ �t4zr along the inner radius r¼ a�d/2.

The non-vanishing components of the third-order moment stress tensor in cylindrical coordinates are, from (67) and (71),

tz4r ¼ t4zr ¼ 2
3
l2
s0
�
Ep
�

Ep
ε
p
z4;r ¼

q

3
l2
s0
�
Ep
�

Ep
¼ l2

r
qz4;

tzr4 ¼ trz4 ¼ 2
3
l2
s0
�
Ep
�

Ep
ε
p
zr;4 ¼ �q

3
l2
s0
�
Ep
�

Ep
¼ �l2

r
qz4:

(77)
Therefore, the circumferential line forces are

p4ða±d=2Þ ¼ ±
q

3
l2
�
s0
�
Ep
�

Ep

	
a±d=2

¼ ±
l2

a±d=2
qz4ða±d=2Þ: (78)
On the lateral surfaces of the tube r¼ a ± d/2, there is a nonvanishing but uniform moment stress component trz4, so that
the adjacent force components of the doublets constituting trz4 cancel each other and the traction-free boundary condition on
the lateral surfaces of the twisted tube is satisfied in that sense. For the general formulation of the independent higher-order
boundary conditions in rigid-hardening plasticity, see Fleck and Willis (2009b).

9.1. Torque expressions

The torque required to produce a given twist q is obtained from the moment equilibrium equation. This can be written as
either

TðqÞ ¼ 2p
Zaþd=2

a�d=2

r2sz4 dr þ 2p
h
ðaþ d=2Þ2p4ðaþ d=2Þ þ ða� d=2Þ2p4ða� d=2Þ

i
; (79)

or

TðqÞ ¼ 2p
Zaþd=2

a�d=2

r2qz4 dr þ 2p
Zaþd=2

a�d=2

r
�
tz4r � tzr4

�
dr; (80)

with sz4 given by (74), qz4 given by (75), and p4(a ± d/2) by (78). This can be evaluated for an assumed functional form
s0 ¼ s0(Ep) representing the stressestrain curve in uniaxial tension test. For example,

s0
�
Ep
� ¼ s0Y

�
1þm

n
Ep
�n

; 0<n � 1; (81)

where the initial yield stress is s0Y and the parameter m ¼ h0=s0Y , with h0 being the initial hardening rate. Other types of the

stressestrain curve can be used, such as s0ðEpÞ ¼ s0Y ð1þ c EnpÞ, (c¼ const.), which is characterized by an infinite initial
hardening rate (for n< 1).

The threshold value of the torque for the onset of deformation is obtained from (79) by using the corresponding ex-
pressions for the shear stress and the line forces at the onset of plastic deformation. From (74), (78) and (81), these are

s0z4 ¼ s0Yffiffiffi
3

p r
�
r2 þ 3l2

�
�
r2 þ 2l2

�3=2; p04ða±d=2Þ ¼ ±
s0Yffiffiffi
3

p l2h
ða±d=2Þ2 þ 2l2

i1=2 : (82)
Fig. 1 shows the variation of s0z4 with r for three selected values of the material length l and two selected values of the ratio
d/a. As l / 0, the shear stress approaches a constant value s0Y=

ffiffiffi
3

p
. The departure from this uniform stress distribution in-

creases with the increase of l. There is a much smaller effect of l on s0z4ðaþ d=2Þ (outer radius of the tube) than on s0z4ða� d=2Þ
(inner radius of the tube), as seen from Fig. 1a. Fig. 1b corresponds to a solid circular rod of radius 2a.

The substitution of (82) into (79) and integration gives TY¼ T(0) ¼ Ts(0) þ Tp(0), where the torque contributions from the
shear stress and the line forces are
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Tsð0Þ ¼ 2pffiffiffi
3

p s0Y

"
1
3

�
r2 þ 2l2

�3=2 � l2r2�
r2 þ 2l2

�1=2
#aþd=2

a�d=2

;

Tpð0Þ ¼ 2pffiffiffi
3

p l2s0Y

(
ðaþ d=2Þ2h

ðaþ d=2Þ2 þ 2l2
i1=2 � ða� d=2Þ2h

ða� d=2Þ2 þ 2l2
i1=2

)
:

(83)
The threshold value of the torque for the onset of deformation in the absence of strain gradient effects (l¼ 0) is

T0Y ¼ 2pffiffiffi
3

p s0Yd

�
a2 þ 1

12
d2
�
: (84)

0
Fig. 2a shows the variation of the normalized torque Tð0Þ=TY with the length parameter l/a for three selected values of the
ratio d/a. The ratio d/a¼ 2 corresponds to a solid rod of radius 2a. Fig. 2b shows the variations of the torque contributions from
the shear stress and the line forces alone. While the contribution Ts(0) decreases with the increase of l, the total torque T(0),
with the included contribution from the line forces, increases with the increase of l. The plots are for a hollow tube of
thickness d ¼ a/4.

9.2. Torqueetwist relationship

In view of (77), the integrand of the second integral in (80) is equal to 2l2qz4, so that the expression for T(q) in (80)
simplifies to

TðqÞ ¼ 2p
Zaþd=2

a�d=2

�
r2 þ 2l2

�
qz4 dr; (85)
where

qz4 ¼ s0Yffiffiffi
3

p
r
h
1þ a

�
r2 þ 2l2

�1=2in
�
r2 þ 2l2

�1=2 ; a ¼ mq

n
ffiffiffi
3

p : (86)
The variation of qz4 (lighter curves) with r for a circular tube of thickness d ¼ a and the three indicated values of mg is
shown in Fig. 3a. The length parameter was taken to be l¼ 0.25a, and the hardening parameter n¼ 0.05. For the comparison,
the darker curves represent the corresponding variation of sz4¼ qz4� tz4r,r. The corresponding variation of themoment stress
tz4r is shown in Fig. 3b. Since tz4r,r< 0, it follows that sz4> qz4 at any given r and mg. For a solid rod with nonvanishing l, the
gradient tz4r,r¼ 0 at the center of the rod.
Fig. 1. The variation of the shear stress s0z4 (normalized by s0Y=
ffiffiffi
3

p
) with r/a, for the three selected values of the material length l. Part (a) is for the thickness of the

tube d ¼ a. Part (b) corresponds to solid (non-hollow) rod of radius 2a.



Fig. 2. The variation of the normalized yield threshold value of the torque Tð0Þ=T0
Y with the length parameter l/a in the case of three different thickness ratios d/a.

(b) The variation of Tð0Þ=T0Y (solid curve) with the length parameter l/a in the case d ¼ 0.25a, so that l/d ¼ 4(l/a). The dashed and dotted curves specify the
variations of the torque contributions from the shear stress and the line forces separately.
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The integral in (85) can be evaluated in closed form. For q s 0, the result is

TðqÞ ¼ 2pffiffiffi
3

p s0Y
a3

 
rnþ3

nþ 3
� 2

rnþ2

nþ 2
þ rnþ1

nþ 1

!aþd=2

a�d=2

; r ¼ 1þ a
�
r2 þ 2l2

�1=2
: (87)

For q ¼ 0, the threshold torque at the onset of deformation is
Tð0Þ ¼ 2pffiffiffi
3

p s0Y
3

nh
ðaþ d=2Þ2 þ 2l2

i3=2 � hða� d=2Þ2 þ 2l2
i3=2o

: (88)
Note that T(q) is not a homogeneous function of some degree in q. The torque-twist expressions (87) and (88) can be
compared with the related expressions reported in the literature. The torque-twist expression in the deformation theory of
plasticity model of Fleck et al. (1994), based on the assumed powerelaw relationship between the introduced effective stress
measure and its conjugate gradient-enhanced effective strain measure, is given by their expression (6.9). See also the ex-
pressions (2.27)e(2.29) of Fleck and Hutchinson (1997). The torque-twist expression in the constitutive model adopted by
Huang et al. (2000) is given by their eq. (35). In the elastic-plastic constitutive model used by Gudmundson (2004), the
torqueetwist relationship was determined numerically from his expressions (56) and (57).

Fig. 4 shows the variation of the normalized torque TðqÞ=T0Y with the strain measure g¼(aþ d/2)q at the outer radius of the
tube, calculated from (74), (79) and (81), as the twist qmonotonically increases. The tube thickness is taken to be d¼ a, so that
the inner radius of the tube is a/2 and the outer radius 3a/2. The plots aremadewith respect tomg as an independent variable
to avoid any prior numerical specification of the parameterm> 0. The range ofmg is extended up to 1/2; for smaller values of
m (saym< 10), only portion of this range corresponds to the small strain regime (say g< 5%). The three curves correspond to
Fig. 3. (a) The variation of qz4 (lighter curves) with r for a circular tube of thickness d ¼ a and the three indicated values of mg. The length parameter is l¼ 0.25a,
and the hardening parameter n¼ 0.05. The darker curves represent the corresponding variation of sz4. (b) The corresponding variation of the moment stress tz4r.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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three selected values of the material length l. The normalizing factor is T0Y . Fig. 3a is for the hardening parameter n¼ 0.05,
while Fig. 4b corresponds to linear hardening (n¼ 1).

Fig. 5 shows the variation of TðqÞ=T0
Y with mg for a solid circular rod of radius 2a. Fig. 5a is for the hardening parameter

n¼ 0.05 and Fig. 5b for n¼ 1. Fig. 6 shows the results for a thin-walled tube of thickness d ¼ a/5. There are no micro-scale
experimental results on the torsion of thin-walled circular tubes in strain gradient plasticity reported as of yet; such ex-
periments are needed to verify the analytical predictions presented in this paper. The comparisonwith pseudo-experimental
results from discrete dislocation dynamics simulations (e.g., Bittencourt et al., 2003; Bardella et al., 2013) may also be of help.
Fleck and Hutchinson (1997) reported that for each solid rod (wire) tested, a powerelaw relationship between T(q) and the
surface strain g gave a good fit to the experimental data. The power exponent in this relationship was related to the power
dependence of the strain energy on the gradient-enhanced effective strain, and the coefficient was dependent on the ratio of
the material length scale and the radius of the wire.
9.3. Recoverable and dissipative parts

From (48) and (81), the dissipative part of thework conjugate to ep, at an arbitrary radius r and a given amount of twist q, is

qdis ¼ qdisY

�
1þ mrq

n
ffiffiffi
3

p
�n

; qdisY ¼ hðrqÞs0Y ; (89)

while qdisz4 ¼ qdis=
ffiffiffi
3

p
, tdisr ¼ 0, and tdisz4r ¼ tdiszr4 ¼ 0. The variation of qdis=s0Y at the inner, outer, and mid-radius of a hollow tube

with the shear parameter g is shown in Fig. 7a. The thickness of the tube d¼ a, the length parameter l¼ a/4, and the hardening
parameter n¼ 0.05. The factor h is assumed to be constant during the increase of q and equal to 0.9. The recoverable part of q is

qrec ¼ q� qdis, where
Fig. 4. The variation of the normalized torque T=T0
Y with mg for a hollow tube of thickness d ¼ a and the three indicated values of l. The hardening parameter is:

(a) n¼ 0.05 and (b) n¼ 1. The strain parameter g¼(aþ d/2)q, where q is the imposed twist.

Fig. 5. The variation of the normalized torque T=T0
Y with mg for a solid circular rod of radius 2a and the three indicated values of l. The hardening parameter is:

(a) n¼ 0.05 and (b) n¼ 1.



Fig. 6. The variation of the normalized torque T=T0
Y with mg for a thin-walled circular tube of thickness d ¼ a/5 and the three indicated values of l. The hardening

parameter is: (a) n¼ 0.05 and (b) n¼ 1.
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q ¼ qY ðrÞ
�
1þ mq

n
ffiffiffi
3

p
�
r2 þ 2l2

�1=2	n
; qYðrÞ ¼ s0Y

r2 þ l2

r
�
r2 þ 2l2

�1=2 : (90)

The yield threshold value of q is denoted by qY ðrÞ. Fig. 7b and c show the variations of q and qrec for the same data as used in

the plots for qdis in Fig. 7a. The large values of q and qrec at the inner radius of the tube at the onset of deformation are due to
the large value of qY at the inner radius. The plot of qY ðrÞ, obtained from (90), is shown in Fig. 7d.
Fig. 7. (a) The variation of qdis at the inner, outer, and mid-radius of a hollow tube with g in the case h¼0.9. The thickness of the tube d¼a, the length parameter
l¼ a/4, and the hardening parameter n¼ 0.05. The corresponding variation of (b) qrec, and (c) q ¼ qrec þ qdis. (d) The plot of qY with the radius r.
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10. Conclusions

There are two main objectives of the present paper. The first objective is to include the locked-in strain energy around
statistically stored dislocations in the expression for the free energy of the phenomenological strain gradient plasticity by
incorporating in the analysis the strain dependent factor h ¼ h(ep). This factor specifies the fraction of the rate of plastic work
converted into heat, in accordance with the measurements of latent heat from classical metal plasticity. The expressions for
the recoverable and dissipative parts of the higher order stresses, defined as the work-conjugates to plastic strain and its
gradient, are then derived. Two formulations of the strain gradient plasticity are considered, one based on the definition of the
gradient-enhanced effective plastic strain and the corresponding plastic work expression proposed by Hutchinson (2012),
and the other by Fleck et al. (2014). In the first case, the plastic work is given by (5) and the plastic contribution to the free
energy by (39). The corresponding recoverable parts of the work-conjugates to plastic strain and its gradient are given by (50)
for qrec and treck , and (54) for qrecij and trecijk . In the second case, the plastic work is given by (10), the plastic contribution to the

free energy by (43), and the recoverable and dissipative parts of the work-conjugates by (56) and (57) for qrec and treck , and

(58) for qrecij and trecijk . The dissipative portion of the plastic workwdis
p is assumed to be the same in both formulations and given

by (37), so that qdis is given in both cases by (48) and qdisij by (52). In the case of proportional straining, the recoverable and

dissipative parts are given by (67). For the early stage of plastic deformation, the factor h can be approximately taken to be
constant and equal to 0.9. If it is assumed that h ¼ 1, so that the recoverable energy due to plastic deformation is entirely
associated with the plastic strain gradient effects from the network of geometrically necessary dislocations, the obtained
results reduce to those of Hutchinson (2012), and Fleck et al. (2014). The stress and strain fields of isothermal boundary-value
problems are not affected by h, since this factor does not appear in the representation of the higher-order stresses qij and tijk,
or the structure of the corresponding variational principle. The factor h may, however, be of importance for the non-

isothermal analysis in which _wdis
p ¼ hðepÞs0ðepÞ _ep acts as an internal heat source. The development of such non-

isothermal strain gradient plasticity theory, in which temperature dependence of free energy must be added to the theory,
is a worthwhile goal of future investigation.

The second objective of the paper is to apply the presented analysis to evaluate the effects of the strain gradient on the
plastic response of twisted hollow circular tubes made of a rigid-plastic material characterized by different types of strain-
hardening. The shear stress, the edge line forces, and the applied torque are determined for various values of the material
length parameter. These are given by (74), (78), and (87). The results for solid rods, hollow tubes and thin-walled tubes are
presented at the onset of plastic yield and at an arbitrary stage of proportional plastic straining. Linear and nonlinear
hardening are both considered. Recoverable and dissipative parts of the work conjugates to plastic strain and its gradient are
evaluated and discussed for different hardening and length parameters.
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