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The energy momentum tensor in the presence of body forces
and the Peach–Koehler force on a dislocation
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Abstract

A modified energy momentum tensor, in the presence of body forces, is introduced and used to construct the noncon-
served J, M, and L integrals, and to derive the energetic forces associated with a defect motion within the material. The J

integral is then applied to evaluate the Peach–Koehler force on an inclined edge dislocation within a large block due to its
own weight. The equilibrium position of the dislocation is determined for different boundary conditions of interest in
geomechanics.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of conservation integrals in linear and nonlinear elasticity, with its application to elastic and
inelastic fracture mechanics and materials science, has been a topic of active research during the past 50 years,
following the landmark papers by Eshelby (1951, 1956), Rice (1968), Knowles and Sternberg (1972), and
Budiansky and Rice (1973). The reviews by Rice (1985), Maugin (1995), and Herrmann and Kienzler
(2001) offer an extensive list of pertinent references, mostly for problems without body forces. In the presence
of body forces, the stress tensor and the energy momentum tensor are not divergence-free tensors, which pre-
cludes the existence of the J, M, and L conservation laws (Kishimoto et al., 1980; Atluri, 1982; Kirchner,
1999). In most of the previous work with body forces, the energy momentum tensor was defined by the same
expression as in the absence of body forces, which leads to less appealing relationships to the energy release
rates and the configurational forces on moving defects. In the present paper, a modified energy momentum
tensor is introduced, which includes a work term due to the body forces, and which yields simple expressions
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for the configurational forces on defects, in terms of the integrals evaluated over the unloaded surface of the
defect. The derived J integral is then applied to evaluate the Peach–Koehler force on an edge dislocation resid-
ing on an inclined slip plane within a large block of the material due to its own weight. The equilibrium posi-
tion of the dislocation is determined for different boundary conditions of interest in the study of the
underground stress systems in geomechanics.

2. The energy momentum tensor in the presence of body forces

The infinitesimal strain components are expressed in terms of the displacement components ui as
�ij = (ui,j + uj,i)/2. The equilibrium equations are rji,j + bi = 0, where bi are the components of body forces
per unit volume. In terms of the elastic strain energy W = W(�ij), the constitutive equations are rij = oW/o�ij.
A spatial gradient of the strain energy is then
1 In
W ;k ¼
oW
o�ij

�ij;k ¼ rjiui;jk: ð1Þ
This can be recast by using the equilibrium equations as
ðW djk � rjiui;kÞ;j ¼ biui;k: ð2Þ
Since
ðbiuiÞ;k ¼ bi;kui þ biui;k; ð3Þ
the subtraction of (3) from (2) yields
½ðW � biuiÞdjk � rjiui;k�;j ¼ �bi;kui: ð4Þ
This defines the energy momentum tensor in the presence of body forces, Pjk, as
P jk ¼ ðW � biuiÞdjk � rjiui;k; P jk;j ¼ �bi;kui: ð5Þ
In Section 4 it is shown that this definition of the energy momentum tensor is most simply related to the release
rates of the potential energy associated with a defect motion within the material in the presence of body forces.
It should be noted that the body force term is also included in the structure of the JP integral used in the study
of the progressive failure of over-consolidated clay (Palmer and Rice, 1973), and in the J-integral applications
to free-boundary flows in fluid mechanics (Ben Amar and Rice, 2002). The inclusion of the body force term in
the structure of Pjk is also reminiscent of the energy momentum tensor in dynamic fracture mechanics (Fre-
und, 1990).

3. Nonconserved J, M, and L integrals in the presence of body forces

The J integrals are defined in terms of the energy momentum tensor (5) by
J k ¼
Z

S
P jknj dS ¼ �

Z
V

bi;kui dV ; ð6Þ
where S is the bounding surface of the volume V which does not include any singularity of defect. For the two-
dimensional elasticity, the surface S is replaced by the contour C, and the volume V by the area A, and the
indices j, k = 1, 2. In general, the right-hand side of (6) is not equal to zero, and thus Jk 5 0.

If the energy momentum tensor was defined without the biuidjk term, i.e., P jk ¼ W djk � rjiui;k, we would
have another nonconserved integral, given by J k ¼

R
S P jknj dS ¼

R
V biui;k dV , which is the form more frequently

used in the literature (Huang et al., 2002; Liang et al., 2003).1

When the body forces are spatially uniform (bi,k = 0), there is a conservation law
the two-dimensional context, the latter authors consider a path-independent integral J B ¼
R

C P 1bnb dC �
R

A baua;1 dA.



2 Fo
referen

1538 V.A. Lubarda / International Journal of Solids and Structures 45 (2008) 1536–1545
J k ¼
Z

S
P jknj dS ¼

Z
S
½ðW � biuiÞnk � T iui;k�dS ¼ 0; ð7Þ
for any surface S that does not enclose a singularity or defect. In the absence of body forces, (7) reduces to the
well-known result by Rice (1968).2

If the strain energy is a homogeneous function of degree 1 < p 6 2 in the strain components, then
W ¼ 1

p
rjk�jk: ð8Þ
The energy momentum tensor then satisfies the equation
ðP jkxkÞ;j � P kk ¼ �uibi;kxk; ð9Þ
where
P kk ¼ mðW � bkukÞ � rjkuk;j: ð10Þ
The parameter m = 3 for the three-dimensional elasticity, and m = 2 for the two-dimensional elasticity (plane
strain or plane stress). In view of (10) and (8), we have
P kk ¼
m� p

p
ðrjkukÞ;j þ

mð1� pÞ � p
p

bkuk; ð11Þ
and the substitution into (9) gives
P jkxk �
m� p

r
rjkuk

� �
;j
¼ ui

mð1� pÞ � p
p

bi � bi;kxk

� �
: ð12Þ
Upon the application of the Gauss divergence theorem, this specifies the M integral as
M ¼
Z

S
P jkxk �

3� p
p

rjkuk

� �
nj dS ¼

Z
V

ui
3� 4p

p
bi � bi;kxk

� �
dV ; ð13Þ
for the three-dimensional case, and
M ¼
Z

C
P jkxk �

2� p
p

rjkuk

� �
nj dC ¼

Z
A

ui
2� 3p

p
bi � bi;kxk

� �
dA; ð14Þ
for the two-dimensional case. In the absence of body forces, the M integral vanishes for any closed surface that
does not embrace a singularity or defect (Günther, 1962; Knowles and Sternberg, 1972).

Finally, the Lk integrals of linear isotropic elasticity, in the presence of body forces, are
Lk ¼ ekij

Z
S
ðP lixj þ rliujÞnl dS ¼ �ekij

Z
V

ulðdljbi þ bl;ixjÞdV : ð15Þ
In the case of two-dimensional elasticity, parallel to (x1,x2) plane, the only nontrivial integral in (15) is the L3

integral.

4. Relationships to the energy release rates

In this section we show that the J, M, and L integrals, evaluated over the unloaded surface of a defect, are
related to the potential energy release rates and the corresponding configurational forces on a moving defect.
By extending the analysis of Budiansky and Rice (1973), let the body of volume V be loaded by the surface
tractions T i ¼ T i over the portion ST of its external surface S. The displacements ui ¼ �ui are prescribed over
the remaining part Su. Suppose that within a body there is a cavity with the traction-free bounding surface S0.
The potential energy of such body is
r the conservation integrals in couple stress and micropolar elasticity, see Lubarda and Markenscoff (2000, 2003), where the
ce to related work can also be found.
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P ¼
Z

V
W dV �

Z
ST

T iui dS �
Z

V
biui dV : ð16Þ
The rate of change of the potential energy associated with the spatial variation of the surface of the cavity,
described by its velocity field _u0

i , is
_P ¼
Z

V

_W dV �
Z

S0

W _u0
i ni dS �

Z
ST

T i _ui dS �
Z

V
bi _ui dV þ

Z
S0

bjuj _u0
i ni dS; ð17Þ
where _ui is the velocity field within V(t) due to imposed velocity _u0
i . Body forces are assumed to be unaffected

by the cavity motion (dead body forces). The surface integrals over S0 on the right-hand side follow from the
Reynolds transport theorem, where ni is the unit normal to S0 directed into the material. Assuming that _ui is a
kinematically admissible field within V(t), we have
_W ¼ rij _�ij ¼ ðrij _ujÞ;i þ bj _uj: ð18Þ
Since S0 is unloaded and _uj ¼ 0 on Su, the application of the Gauss divergence theorem gives
Z
V

_W dV ¼
Z

ST

T j _uj dS þ
Z

V
bj _uj dV ; ð19Þ
and the substitution into (17) yields
_P ¼ �
Z

S0

ðW � bjujÞ _u0
i ni dS: ð20Þ
The rate of the energy release due to spatial variation of S0, specified by a prescribed velocity field _u0
i , is

f ¼ � _P. This represents an energetic or configurational force on the cavity (defect). Since (W � bjuj)ni = Pjinj

over the unloaded S0, we obtain
f ¼ � _P ¼
Z

S0

P ji _u0
i nj dS: ð21Þ
If the cavity translates with a unit velocity in the k-direction, then _u0
i can be replaced by dik, and (21) gives the

rate of energy release per unit cavity translation in the k-direction,
fk ¼
Z

S0

P jknj dS ¼ J kðS0Þ: ð22Þ
Since the cavity is unloaded, this is equal to Jk evaluated over S0.3

By applying the Gauss divergence theorem to the surface S0 + S bounding a region between S0 and any
closed surface S around the cavity, and by using (5), the configurational force fk is also equal to
fk ¼ J kðSÞ þ
Z

V
bj;kuj dV : ð23Þ
If the body forces are spatially uniform, there is a conservation law Jk = 0 over the closed surface that does not
enclose a cavity, so that fk = Jk(S0) = Jk(S).

If the cavity transforms such that _u0
i ¼ xi,
f ¼
Z

S0

P jixinj dS ¼ MðS0Þ: ð24Þ
Alternatively, by using any other closed surface S around the cavity,
f ¼ MðSÞ þ
Z

V
ui

4p � 3

p
bi þ bi;kxk

� �
dV : ð25Þ
he energy momentum tensor in Eq. (5) did not include the body force term, so that P jk ¼ P jk þ biuidjk , the configurational force
be given by a less appealing expression, fk ¼ JkðS0Þ �

R
S0

biuink dS, where Jk ¼
R

S0
P jknj dS.
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If the absence of body forces, there is a conservation law M = 0 over the closed surface that does not enclose a
cavity, so that f = M(S0) = M(S). The conservation law M = 0 also holds if the body forces are homogeneous
functions of degree �(4 � 3/p) in spatial coordinates xk.

If bi are homogeneous functions of degree one in the coordinates xk, so that bi,kxk = bi, then
Fig. 1.
weight
sufficie
distanc
disloca
f ¼ MðS0Þ ¼ MðSÞ þ 5� 3

p

� �Z
V

biui dV : ð26Þ
The two-dimensional counterparts of (25) and (26) are
f ¼ MðC0Þ ¼ MðCÞ þ
Z

A
ui

3p � 2

p
bi þ bi;kxk

� �
dA; ð27Þ
and
f ¼ MðC0Þ ¼ MðCÞ þ 4� 2

p

� �Z
A

biui dA: ð28Þ
If the cavity is given a unit angular velocity around the k-axis, then _u0
i in (21) can be replaced by �ekilxl, and
fk ¼ �ekil

Z
S0

P jixlnj dS ¼ �LkðS0Þ; ð29Þ
When expressed in terms of the surface integral over S, this is
fk ¼ �LkðSÞ � ekij

Z
V

ulðdljbi þ bl;ixjÞdV : ð30Þ
If the absence of body forces, there is a conservation law Lk = 0 over the closed surface that does not enclose a
cavity, so that fk = Lk(S0) = Lk(S); Budiansky and Rice (1973).

5. Peach–Koehler force on a dislocation due to gravity load

We show in this section that the Jx integral, evaluated along a closed contour around the dislocation in a
large heavy block of the material, whose specific weight is c, is equal to the Peach–Koehler force on the dis-
location. For simplicity, we first assume that the traction-free boundaries of the block are far away from the
dislocation, so that near the core of the dislocation, the stress and displacement fields are as if the dislocation
was in an infinite medium. The Burgers vector of the edge dislocation is bx, and its center is at distance h� b

from the upper unloaded surface of the block (Fig. 1). The displacement is prescribed to be zero at the center
An edge dislocation of Burgers vector b along the glide plane at an angle u within a large block of the material whose specific
is c. The dislocation is at the depth h� b from the unloaded upper side of the block. The lateral sides of the block are unloaded and
ntly far from the dislocation. The weight of the block is supported by the uniform traction along the lower side of the block, at
e H� h from the dislocation. The zero displacement is imposed at the center of the lower edge of the block, directly under the
tion.
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of the remote supporting surface at lower end (H� h). The total stress and displacement fields in the block are
then the sum of the two fields, due to dislocation alone and due to gravity alone, i.e.,
ua ¼ ud
a þ ug

a; rab ¼ rd
ab þ rg

ab: ð31Þ
The stress field due to gravity is
rg
nn ¼ �cðnþ hÞ; rg

gg ¼ rg
ng ¼ 0; ð32Þ
or, with respect to the coordinate axes (x,y),
rg
xx ¼ rg

nn sin2 u; rg
yy ¼ rg

nn cos2 u; rg
xy ¼ �

1

2
rg

nn sin 2u: ð33Þ
The corresponding displacement field is
ug
n ¼
ð1� mÞc

4l ½H 2 � n2 þ 2hðH � nÞ� � mc
4l g2;

ug
g ¼

mc
2l
ðnþ hÞg;

ð34Þ
with the imposed condition ug
nðH ; 0Þ ¼ 0. The displacement components in the x, y directions are
ug
x ¼ ug

n sin uþ ug
g cos u; ug

y ¼ �ug
n cos uþ ug

g sin u; ð35Þ
with
n ¼ x sin u� y cos u; g ¼ x cos uþ y sin u: ð36Þ
Finally, the displacement gradients needed for the evaluation of the Jx integral, are
ug
x;x ¼

c
2l
ðm� sin2 uÞðnþ hÞ;

ug
y;x ¼

c
2l

1

2
ðnþ hÞ sin 2uþ mg

� �
:

ð37Þ
The stress components, sufficiently close to the dislocation center (which is far away from the free boundary
n = �h, h� b), can be approximated by the infinite medium dislocation field, which is (Hirth and Lothe,
1982)
rd
xx ¼ �

lb
2pð1� mÞ

yð3x2 þ y2Þ
ðx2 þ y2Þ2

;

rd
yy ¼

lb
2pð1� mÞ

yðx2 � y2Þ
ðx2 þ y2Þ2

;

rd
xy ¼

lb
2pð1� mÞ

xðx2 � y2Þ
ðx2 þ y2Þ2

:

ð38Þ
The displacement components (with the displacement discontinuity along the +x axis), are
ud
x ¼

b
2p

tan�1 y
x
þ 1

2ð1� mÞ
xy

x2 þ y2

� �
;

ud
y ¼ �

b
2p

1

4ð1� mÞ ð1� 2mÞ ln x2 þ y2

b2
þ x2 � y2

x2 þ y2

� �
:

ð39Þ
The displacement gradients, needed for the evaluation of the Jx integral, are
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ud
x;x ¼

b
2p
� y

x2 þ y2
þ 1

2ð1� mÞ
yðy2 � x2Þ
ðx2 þ y2Þ2

" #
;

ud
y;x ¼ �

b
2p

1

2ð1� mÞ ð1� 2mÞ x
x2 þ y2

þ 2xy2

ðx2 þ y2Þ2

" #
:

ð40Þ
The Jx integral is defined by
J x ¼
Z

C
ðW � bxux � byuyÞnx dC �

Z
C
ðT xux;x þ T yuy;xÞdC: ð41Þ
The strain energy density is
W ¼ 1

2l
1� m

2
ðrxx þ ryyÞ2 � rxxryy þ r2

xy

� �
: ð42Þ
By using the superposition of the dislocation and gravity fields, this can be expressed as
W ¼ W d þ W g þ W d;g; ð43Þ

where
W d ¼ 1

2l
1� m

2
ðrd

xx þ rd
yyÞ

2 � rd
xxr

d
yy þ rd2

xy

� �
;

W g ¼ 1

2l
1� m

2
ðrg

xx þ rg
yyÞ

2 � rg
xxr

g
yy þ rg2

xy

� �
;

ð44Þ
and
W d;g ¼ 1

2l
ð1� mÞðrd

xx þ rd
yyÞðrg

xx þ rg
yyÞ � ðrd

xxr
g
yy þ rg

xxr
d
yyÞ þ 2rd

xyr
g
xy

h i
: ð45Þ
Similarly, we can write
T xux;x þ T yuy;x ¼ ðT d
x ud

x;x þ T d
y ud

y;xÞ þ ðT g
xug

x;x þ T g
y ug

y;xÞ þ ðT d
x ug

x;x þ T d
y ug

y;x þ T g
xud

x;x þ T g
y ud

y;xÞ; ð46Þ
and
bxux þ byuy ¼ ðbxud
x þ byud

y Þ þ ðbxug
x þ byug

yÞ: ð47Þ
Consequently, the Jx integral can be expressed as the sum of three contributions,
J x ¼ J d
x þ J g

x þ J d;g
x ; ð48Þ
which are evaluated as follows. First, along a closed contour near the dislocation center, we have
J d
x ¼

Z
C

W dnx dC �
Z

C
ðT d

x ud
x;x þ T d

y ud
y;xÞdC ¼ 0; ð49Þ
which is the well-known result for the dislocation in an infinite medium, where the dislocation does not exert a
force on itself. Secondly,
J g
x ¼

Z
C
ðW g � bxug

x � byug
yÞnx dC �

Z
C
ðT g

xug
x;x þ T g

y ug
y;xÞdC ¼ 0; ð50Þ
because the gravity field is uniform, with the corresponding continuous stress and displacement fields, so that
J g

x ¼ 0 around any closed contour. The remaining contribution to the Jx integral is
J d;g
x ¼

Z
C
ðW d;g � bxud

x � byud
y Þnx dC �

Z
C
ðT d

x ug
x;x þ T d

y ug
y;x þ T g

xud
x;x þ T g

y ud
y;xÞdC: ð51Þ
We calculate the J d;g
x integral around the rectangular contour shown in Fig. 2, whose dimensions are 2a · 2a,

where a� h. This contour is selected to facilitate the integration; any other contour close to the dislocation



Fig. 2. A rectangular contour of dimensions 2a · 2a (a� h), symmetrically positioned around the dislocation, used to evaluate the Jx

integral, or the gravity-induced force on the dislocation.
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can be used, since body force c is constant, and thus there is a path-independence in the evaluation of the Jx

integral. By taking the advantage in the integration process of the even or odd nature of the involved stress
and displacement fields, it readily follows that
4 Va
Z
C

W d;gnx dC ¼ cbh
2pð1� mÞ sin 2u;Z

C
ðbxud

x þ byud
y Þnx dC ¼ 0;Z

C
T d

x ug
x;x dC ¼

Z
C

T d
y ug

y;x dC ¼ 0;Z
C

T g
xud

x;x dC ¼
Z

C
T g

y ud
y;x dC ¼ � cbh

4p
p� 1

1� m

� �
sin 2u:

ð52Þ
Note that the values of the above nonvanishing integrals do not depend on the actual size of a, provided that
a� h. By adding all contributions, the Jx integral is found to be
J x ¼
1

2
cbh sin 2u ¼ rg

xyð0; 0Þb; rg
xyð0; 0Þ ¼

1

2
ch sin 2u; ð53Þ
which is indeed the Peach–Koehler force on the dislocation due to the gravity field.
If the dislocation is close to the boundary, the Head’s solution for the dislocation near a free boundary can

be used, instead of that for the dislocation in an infinite medium (Lubarda and Kouris, 1996; Lubarda, 1997;
Asaro and Lubarda, 2006). The resulting Jx integral in this case is
J x ¼ rdþg
xy ð0; 0Þb; rdþg

xy ð0; 0Þ ¼ �
l

4pð1� mÞ
b sin u

h
þ 1

2
ch sin 2u: ð54Þ
The nonsingular dislocation field contribution to the glide force on the dislocation is due to the image field
associated with the free boundary at distance h from the dislocation. This is evidently equal to zero if the dis-
location Burgers vector is parallel to the free surface. For a nonzero value of u, the dislocation is an equilib-
rium position when Jx = 0, which gives
h ¼ lb
4pð1� mÞc cos u

� �1=2

; 0 < u < p=2: ð55Þ
If the lateral sides of the large block are constrained,4 with so that ug = 0 throughout the block, the shear stress
at the center of the dislocation, due to the gravity load, is
rious assumptions about the state of stress underground (geological stress systems) are discussed by Jaeger and Cook (1976).
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rg
xyð0; 0Þ ¼

1� 2m
2ð1� mÞ ch sin 2u: ð56Þ
In this case the dislocation is in an equilibrium position at the distance
h ¼ lb
4pð1� 2mÞc cos u

� �1=2

; 0 < u < p=2: ð57Þ
6. Conclusion

A modified energy momentum tensor in the presence of body forces is introduced, which includes a work
term due to body forces, and which yields simple expressions for the energetic forces associated with a defect
motion within the material. The nonconserved J, M, and L integrals are related to the volume integrals whose
integrands depend on the body forces and their gradients. The configurational forces, associated with partic-
ular defect motions, are expressed in terms of the integrals evaluated over the unloaded surface of the defect.
When the body forces are spatially uniform, the conservation law Jk = 0 holds for both two-dimensional and
three-dimensional problems. The conservation law M = 0 holds if the body forces are absent, or if they are
homogeneous functions of particular degree in spatial coordinates. The derived J integral is applied to eval-
uate the Peach–Koehler force on an edge dislocation residing on an inclined slip plane within a large block of
the material due to its own weight. It is shown that this is the shear stress along the slip plane at the center of
the dislocation, due to the gravity load only, multiplied by the magnitude of the dislocation Burgers vector.
The equilibrium position of the dislocation is determined for different boundary conditions that are of interest
in the analysis of geological stress systems. Other applications of the J integral in the presence of body forces
are also possible, some of which have already been reported in the literature, e.g., in the study of the propa-
gation of a concentrated shear band in heavily over-consolidated clays (Palmer and Rice, 1973), and for the
computation of the energy release rate and the direction of crack growth in a thin film bonded to an elastic or
viscous layer, where an effective body force in the film is due to deformation of the underlying substrate
(Huang et al., 2002; Liang et al., 2003). It is also noted that, while in the problems without body forces the
configurational force associated with a self similar defect expansion can be calculated by evaluating the M

integral around any closed surface surrounding the defect, in the problems with body forces there is an extra
term given by the volume integral on the right-hand side of (25), which depends on the displacement field in
the region between the bounding surface of the defect and the selected surface surrounding the defect. Con-
sequently, the short-cut calculations of the stress intensity factors in crack problems based on the evaluation of
the M integral around a conveniently selected contour, without solving the corresponding boundary value
problem (Eshelby, 1975; Freund, 1978; Rice, 1985), is in general not possible for problems with body forces.
The presented analysis of the nonconserved integrals in the presence of body forces can also be extended to
dual or complementary integrals, which are related to release rates of the complementary potential energy
(Lubarda and Markenscoff, 2007a,b, 2008).
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