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a b s t r a c t 

Equilibrium configurations of edge dislocation pileups against a circular inhomogeneity or a bimetallic 

interface are determined numerically for a given number N of dislocations, the applied shear stress τ , 

the size of the inhomogeneity, and the degree of material disparity. The increase of applied stress moves 

a pileup closer to the inhomogeneity and increases the density of dislocations within a pileup, which is 

more pronounced for smaller and softer inhomogeneities due to their weaker repulsion of dislocations. 

The configurational force exerted by the pileup on a circular inhomogeneity is equal to N τb x , where b x is 

a Burgers vector of dislocations, plus a term dependent on dislocation positions and material properties. 

The configurational force on a bimetallic plane interface is equal to N τb x , independently of dislocation 

positions and material properties. The stress concentration caused by dislocation pileups against differ- 

ent interfaces is evaluated and discussed, which is of importance for the study of interface cracking. In 

general, the increase of the shear modulus and the Poisson ratio disparities ( G 2 / G 1 and ν2 / ν1 , where the 

subscript 1 specifies the material in which dislocations reside) diminishes the interface stresses. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

An analysis of stress field caused by dislocation pileups against

material inhomogeneities such as second-phase particles and grain

boundaries is of importance for the study of various features of

inelastic material response. For example, the grain-size depen-

dence of a polycrystalline yield strength and the corresponding

Hall–Petch relation can be explained by the build-up of stresses

caused by a dislocation pileup against the grain boundary and

the activation of the Frank–Reed dislocation sources in a neigh-

boring grain. The onset of the Stroh–Zener interface crack, or the

crack ahead of the Lomer–Cottrell lock at the intersection of two

slip planes, can be explained by the build-up of a tensile stress

below the leading dislocation of the pileup, or in front of the

locked-in dislocation. An early study of edge and screw disloca-

tion pileups in an infinite homogeneous medium was performed

by Eshelby et al. (1951) , who assumed that the leading disloca-

tion in the pileup was pinned (locked) in its position by an im-

posed force which prevented its glide. Chou (1965) considered a

screw dislocation pileup against a rigid boundary of a semi-infinite

elastic medium. Barnett and Tetelman (1966) ; 1967 ), Thölén (1970) ,

and Smith (1972) solved the problem of a screw dislocation pileup
E-mail address: vlubarda@ucsd.edu 
1 Dedicated to Professor David M. Barnett for his inspiring contributions to dislo- 

cation mechanics. 
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gainst a circular inhomogeneity. The methods based on either dis-

rete or continuously distributed dislocations were used in these

nalyzes. Barnett (1967) derived an exact solution for the distri-

ution of a pileup of screw dislocations near a bimetallic inter-

ace formed by welding together two elastic half-planes of differ-

nt shear moduli. Chou (1966) considered discrete edge dislocation

ileups against a bimetallic interface and examined numerically

he relationship between the length of the pileup, number of dislo-

ations, and the applied stress, for given material properties. Based

n the method of continuously distributed dislocations, Kuang and

ura (1968) solved analytically the singular integral equations for

he equilibrium positions of both edge and screw dislocation pile-

ps against a bimetallic interface. The integral equation for edge

islocations was solved by a Wiener–Hopf method with Mellin

ransforms, but the solution involves infinite products, whose eval-

ation is numerically quite demanding. Discrete edge dislocation

ileups against a bimetallic interface were investigated numerically

y Kuan and Hirth (1976) , who included in their analysis nonlin-

ar dislocation core terms. They examined the implication of their

esults with respect to stress concentrations at the interface and

he tendency for fracture or flow initiation. Wagoner (1981) stud-

ed dislocation pileups against planar grain boundaries employing

ull anisotropic elastic solutions, single-crystal anisotropic approxi-

ations, and isotropic approximations. Öveço ̆glu et al. (1987) con-

idered discrete edge dislocation pileups against a bimetallic inter-

ace and examined the effects of applied stress, pileup length, and

http://dx.doi.org/10.1016/j.ijsolstr.2017.09.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2017.09.004&domain=pdf
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(9) 
he elastic properties of the two phases on the distribution of dis-

ocations in the pileup and on the stresses at the interface. More

ecent work includes contributions by Voskoboinikov et al. (2007 ;

009 ), and Hall (2010) . 

A study of edge dislocation pileups against a cylindrical circu-

ar inhomogeneity was not previously reported in the literature,

o the best of our knowledge, and we thus consider such pileups

n Section 2 of this paper. The pileups are formed by a remotely

pplied uniform shear stress. The equilibrium positions of disloca-

ions are determined by solving numerically the system of N non-

inear algebraic equations representing the equilibrium conditions

f the vanishing Peach–Koehler force for each dislocation in the

ileup. The method of continuous distribution of edge dislocations

s not used because of the difficulties in solving the corresponding

ingular integral equations, although large radius inhomogeneities

ould possibly be handled by a perturbation analysis of the half-

pace continuous distribution solution (as pointed out to me by

ne of the reviewers). Furthermore, for small micron-size grains

n a polycrystalline sample at the onset of plastic yield, when the

islocation density is of the order of 10 8 /cm 

2 or so, only dozens

f dislocations may participate in a pileup at the grain boundary,

o that their discrete dislocation model may be more adequate. The

mage-type contribution to the Peach–Koehler force from the inter-

ction of the dislocation with the inhomogeneity is calculated by

sing the stress field around an edge dislocation near a circular in-

omogeneity, derived by Dundurs and Mura (1964) . The contribu-

ion to the dislocation force from a remotely applied shear stress is

etermined from the known stress field around the inhomogeneity

n an infinite medium under a remote shear loading. The increase

f the applied stress moves a pileup closer to the inhomogeneity

nd increases the density of dislocations within the pileup. This

s more pronounced for a smaller and softer inhomogeneities, due

o their weaker repulsion of dislocations. We derive the configu-

ational force exerted on the inhomogeneity by a pileup, which is

xpressed in terms of the sum of the local Peach–Koehler forces

rom the remote loading only, and thus is equal to N τb x plus a

erm dependent on dislocation positions and material properties.

he magnitude of the shear stress at the interface between the

nhomogeneity and the medium along the slip plane of disloca-

ions is also evaluated. This stress decreases with the increase of

he ratio � = G 2 /G 1 > 1 between the shear stiffness of the inho-

ogeneity and the surrounding matrix. In Section 3 we used the

ame approach as Öveço ̆glu et al. (1987) to shed additional light

n edge dislocation pileups against a plane bimetallic interface. If
τ
x due to applied shear stress τ has its maximum along the inter-

ace at y = y ∗, σ cτ
x due to the shear stress c τ has its maximum at

 = y ∗/c and (σ cτ
x ) max = c(σ τ

x ) max . Similar property holds for the

hear stress along the interface, except that the maximum of σ xy 

lways occurs at the intersection of the slip plane and the inter-

ace. We also discuss the dependence of the magnitude of stress

oncentration at the interface on the shear moduli and Poisson’s

atios of two materials, which is of importance for the study of in-

erface cracking. In general, the increase of the shear modulus and

oisson’s ratio disparities ( G 2 / G 1 and ν2 / ν1 ) diminishes the inter-

ace stresses due to the stronger repulsion exerted by such inter-

ace on the piled-up dislocations. 

. Edge dislocation pileup against a circular inhomogeneity 

Fig. 1 a shows an edge dislocation with a Burgers vector b x at a

istance x i from the center of a circular (cylindrical) inhomogene-

ty of radius a imbedded in an infinite elastic isotropic medium.

he elastic properties of the medium are ( G 1 , ν1 ), and of the in-

omogeneity ( G , ν ). The shear stress along the x -axis, outside of
2 2 
he inhomogeneity, is specified by ( Dundurs and Mura, 1964 ) 

ˆ disl 
xy (x, 0) = 

2 

ξ − ξi 

+ (A + B ) 
ξi 

ξξi − 1 

+ 2 A 

(ξ − ξi )(ξ
2 
i 

− 1) 

(ξξi − 1) 3 

−A + B 

ξ
+ 

A − B 

ξ 2 ξi 

+ 

2 A 

ξ 3 
, (1) 

here 

= 

x 

a 
, ξi = 

x i 
a 

, ˆ σxy = 

σxy 

k 1 (b x /a ) 
k 1 = 

G 1 

π(κ1 + 1) 
, (2)

he utilized material parameters are 

 = 

� − 1 

1 + κ1 �
, B = 

κ1 � − κ2 

κ2 + �
, � = 

G 2 

G 1 

, (3)

ith the Kolosov constants κ1 = 3 − 4 ν1 and κ2 = 3 − 4 ν2 . It is

oted that the constants A and B in (3) are opposite in sign to

hose used by Dundurs and Mura (1964) . The stress is normalized

y k 1 ( b x / a ), so that the right-hand side of (1) is independent of the

atio a / b x , which will be convenient for the subsequent presenta-

ion and interpretation of numerical results. 

The non-singular part of the shear stress at x = x i is 

ˆ disl 
xy (x i , 0) = 

1 

ξi 

(
A + B 

ξ 2 
i 

− 1 

+ 

3 A − B 

ξ 2 
i 

)
. (4) 

f the medium is subjected to a remotely applied stress σ∞ 

xy = −τ,

he shear stress along the x -axis, outside of the inhomogeneity, is

e.g., Lubarda and Markenscoff, 1999 ) 

ˆ appl 
xy (x, 0) = − ˆ τ

[ 
1 − A 

(
2 

ξ 2 
− 3 

ξ 4 

)] 
, ˆ τ = 

τ

k 1 (b x /a ) 
. (5)

The configurational force exerted by the inhomogeneity on the

islocation at x = x i is the image force from that dislocation with

espect to the inhomogeneity, f 
image 
i,i 

= σ disl 
xy (x i , 0) b x . In a dimen-

ionless form, in view of (4) , this is 

ˆ f image 
i,i 

= ˆ σ disl 
xy (x i , 0) = 

1 

ξi 

(
A + B 

ξ 2 
i 

− 1 

+ 

3 A − B 

ξ 2 
i 

)
, ˆ f = 

f 

k 1 b 
2 
x /a 

(6)

he configurational force exerted on the dislocation by the exter-

ally applied remote stress τ is, f 
appl 
i 

= σ appl 
xy (x i , 0) b x , or, in view

f (5) , 

ˆ f appl 
i 

= ˆ σ appl 
xy (x i , 0) = − ˆ τ

[
1 − A 

(
2 

ξ 2 
i 

− 3 

ξ 4 
i 

)]
. (7)

If there are two alike edge dislocations near a circular inho-

ogeneity, one at a distance x = x i and the other at a distance

 = x j from the center of the inhomogeneity ( Fig. 1 b), there is an

dditional contribution to the force on the dislocation at x = x i 
ue to its interaction with the dislocation at x = x j . This is f i, j =

f ∞ 

i, j 
+ f 

image 
i, j 

, where f ∞ 

i, j 
is the interaction force between the two

islocations if they were in an infinite medium, while f 
image 
i, j 

is the

mage part of the force due to the presence of the inhomogeneity.

rom expression (1) , these are, in a dimensionless form, 

ˆ f ∞ 

i, j = 

2 

ξi − ξ j 

, (8) 

ˆ f image 
i, j 

= 

A + B 

ξi ξ j −1 

γ j + 2 A 

(ξi − ξ j )(ξ
2 
j 

− 1) 

(ξi ξ j − 1) 3 
− A + B 

ξi 

+ 

A − B 

ξ 2 
i 
ξ j 

+ 

2 A 

ξ 3 
i 

.
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Fig. 1. (a) An edge dislocation at a distance x i from the center of a circular inhomogeneity of radius a in an infinite medium. (b) Two edge dislocations near a circular 

inhomogeneity at the positions x i and x j . 

Fig. 2. A pileup of N edge dislocations against a circular inhomogeneity of radius 

a within an infinite medium. The applied remote uniform shear stress is τ . The 

configurational force exerted on the inhomogeneity by the pileup is f 0 . In the equi- 

librium configuration the configurational force on each dislocation vanishes ( f i = 0 ), 

which specifies the corresponding positions of dislocations x i ( i = 1 , 2 , 3 , . . . , N). 
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2.1. Edge dislocation pileup 

If there are N dislocations in a pileup of edge dislocations

( Fig. 2 ), the total force on a dislocation at x i is 

f i = f appl 
i 

+ 

N ∑ 

j=1 

f image 
i, j 

+ 

N ∑ 

j � = i 
f ∞ 

i, j . (10)

In the pileup equilibrium configuration, the dislocation force on

each dislocation vanishes ( f i = 0) , which defines a system of N

nonlinear algebraic equations for the equilibrium dislocation po-

sitions. Expressed in a dimensionless form, this is 

ˆ f appl 
i 

+ 

N ∑ 

j=1 

ˆ f image 
i, j 

+ 

N ∑ 

j � = i 
ˆ f ∞ 

i, j = 0 , (i = 1 , 2 , 3 , . . . N) , (11)

where ˆ f 
appl 
i 

, ˆ f 
image 
i, j 

, and 

ˆ f ∞ 

i, j 
are specified by (7) –(9) . For a given N ,

this system of nonlinear equations was solved numerically by using

the fsolve function within the Matlab software. Among three avail-

able iterative algorithms, fsolve chooses by default the trust-region

dogleg algorithm based on the interior-reflective Newton method

and the method of preconditioned conjugate gradients ( Coleman

and Li, 1994; Conn et al., 20 0 0 ). Details of the numerical proce-

dure based on an interior penalty function method, in which nu-

merical solution is sought by solving a sequence of unconstrained

minimization problems, are given by Öveço ̆glu et al. (1987) . It is

assumed that the applied stress is small enough to ensure that

(x 1 − a ) and (x i − x i −1 ) are all sufficiently large compared with

b x to ensure that dislocation cores do not overlap. The solid line
urves in Fig. 3 specify the equilibrium positions of dislocations

or N = 5 and N = 10 , corresponding to different levels of the ap-

lied shear stress τ (scaled by k = k 1 b x /a ). This scaling factor is

sed so that the curves shown in Figs. 3 and 4 apply for all finite

atios of a / b x . The inhomogeneity was assumed to be rigid, so that

 = 1 /κ1 and B = κ1 . The Poisson ratio was taken to be ν1 = 1 / 3 ,

he increase of the applied stress moves the pileup closer to the

nhomogeneity and increases the density of dislocations within

he pileup. Fig. 4 a shows the position of the leading dislocation

 1 in the pileup, and Fig. 4 b the extent (length) of the pileup

(L = x N − x 1 ) vs. the applied shear stress τ , in the case N = 5 . In

iew of the normalizing factors utilized, it follows that for larger

nhomogeneities (larger ratio a / b x ), the repulsion from the inhomo-

eneity is stronger, thus larger are the ratios x 1 / b x and L / b x , for any

iven level of applied shear stress τ . The repulsion is also stronger

or stiffer inhomogeneities, as illustrated in Fig. 5 . The Poisson ra-

ios also have the effect: the increase of ν2 / ν1 increases the repul-

ion exerted on dislocations by the inhomogeneity. 

The dashed curves in Figs. 3 and 4 specify the equilibrium posi-

ions of the pileup dislocations in the absence of the inhomogene-

ty, obtained from the classical solution of Eshelby et al. (1951) ,

ho assumed that the leading dislocation in the pileup in an

nfinite medium is locked (see, also, Hirth and Lothe, 1982 ). In

his case, if the locked dislocation is at x 1 = 0 , the total force on

 dislocation at x i ( i > 1) is f i = −τb x + 

∑ 

j � = i f ∞ 

i, j 
+ 2 k 1 b 

2 
x /x i , where

f ∞ 

i, j 
= 2 k 1 b 

2 
x / (x i − x j ) . The total force required to hold the locked

islocation in equilibrium is N τb x . The dislocations in such pileup

re closer to the leading dislocation, because of the absence of the

nhomogeneity and its repulsive effect on the pileup. 

.2. Configurational force on a circular inhomogeneity 

Configurational forces between two material defects obey the

aw of action and reaction. Thus, the configurational force on a cir-

ular inhomogeneity from the dislocation at x i in the pileup of N

islocations is the same in magnitude but opposite in direction to

he configurational force on the dislocation at x i from the image

ffects of all dislocations in the pileup with respect to the inho-

ogeneity, i.e., 

f inhom 

i = 

N ∑ 

j=1 

f image 
i, j 

. (12)

he total configurational force on the inhomogeneity, directed to

he left, is 

f 0 = 

N ∑ 

i =1 

f inhom 

i = 

N ∑ 

i =1 

N ∑ 

j=1 

f image 
i, j 

. (13)
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Fig. 3. (a) The equilibrium positions ξ = x/a of N = 5 dislocations in a pileup against a rigid circular inhomogeneity of radius a vs. the applied shear stress τ (solid line 

curves). The Poisson ratio ν1 = 1 / 3 . The dashed curves specify the equilibrium positions in the absence of the inhomogeneity, with the leading dislocation in the pileup 

being pinned. (b) The same as in (a) for N = 10 . The utilized normalizing factor for τ is k = k 1 b x /a, with k 1 specified by (2), so that the shown curves apply for any ratio of 

a / b x . 

Fig. 4. (a) The position of the leading dislocation ξ1 = x 1 /a in the pileup against a rigid inhomogeneity vs. the normalized applied shear stress τ / k in the case N = 5 and 

ν1 = 1 / 3 . (b) The corresponding extent of the pileup (ξN − ξ1 ) = (x N − x 1 ) /a vs. the applied shear stress τ / k . 
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owever, from the equilibrium conditions of dislocations (11) , we

ave 

N 
 

j=1 

f image 
i, j 

= −
( 

f appl 
i 

+ 

N ∑ 

j � = i 
f ∞ 

i, j 

) 

. (14) 

onsequently, by substituting (14) into (13) , the total force on the

nhomogeneity is 

f 0 = −
N ∑ 

i =1 

f appl 
i 

, (15) 

ecause, by the action and reaction, 

N 
 

i =1 

N ∑ 

j � = i 
f ∞ 

i, j = 0 . (16) 

inally, the incorporation of (7) into (15) gives 

f 0 = τb x 

[ 

N + A 

N ∑ 

i =1 

(
2 

ξ 2 
i 

− 3 

ξ 4 
i 

)] 

. (17) 

his force can be interpreted as the potential energy release rate

ssociated with the increase of the distance between the inhomo-

eneity and the pileup, keeping the positions of all dislocations in

he pileup fixed relative to each other. As such, the expression for

his force could also be derived by an evaluation of the J integral
round the inhomogeneity, but details of this derivation are omit-

ed here. The part of the force f ∗
0 

= Nτb x is the force required to

eep the leading dislocation pinned in the pileup within an infinite

edium without the inhomogeneity ( Eshelby et al., 1951 ). 

.3. Shear stress concentration in front of the inhomogeneity 

The normalized shear stress at the interface between the inho-

ogeneity and the surrounding medium, at the point ( a , 0) of the

lip plane of the pileup, is 

ˆ xy (a, 0) = −(1 + A ) ̂  τ + NA −
N ∑ 

i =1 

(
2 + 

A − B 

ξi 

)
1 

ξi − 1 

, ξi = 

x i 
a 

. 

(18) 

ig. 6 a shows the variation of this stress with the ratio G 2 / G 1 in the

ase of N = 5 dislocations in the pileup under remote stress ˆ τ =
 . 25 , which is arbitrarily selected for illustrative purposes. Since

ˆ = τ/k, where k = k 1 (b x /a ) and k 1 = G 1 / [ π(κ1 + 1)] , there are

nfinitely many combinations of the actual applied stress τ and the

atio a / b x which give ˆ τ = 0 . 25 . The Poisson ratios are taken to be

1 = ν2 = 1 / 3 . The stiffer the inhomogeneity, the lower the magni-

ude of the stress σ xy ( a , 0), because dislocations are more strongly

epelled by stiffer inhomogeneity and find their equilibrium po-

itions further away from the inhomogeneity. Fig. 6 b shows a
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Fig. 5. (a) The equilibrium positions of N = 5 dislocations in a pileup against a circular inhomogeneity of radius a vs. the stiffness G 2 / G 1 . The applied shear stress is τ = 3 k, 

and it is assumed that ν1 = ν2 = 1 / 3 . (b) The corresponding extent of the pileup. 

Fig. 6. (a) The variation of the stress − ˆ σxy (a, 0) = −σxy (a, 0) /k with the ratio G 2 / G 1 in the case of N = 5 dislocations in the pileup under remote stress ˆ τ = τ/k = 0 . 25 . 

The Poisson ratios are taken to be ν1 = ν2 = 1 / 3 . (b) The variation of − ˆ σxy (a, 0) with the applied stress ˆ τ = τ/k in the case of 5 dislocations in a pileup against a rigid 

inhomogeneity. The Poisson ratio ν1 = 1 / 3 . 
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nonlinear variation of σ xy ( a, 0) with the applied stress τ in the

case of N = 5 dislocations in a pileup against a rigid inhomogene-

ity. 

For a fixed value of remote stress τ , large values of the non-

dimensional stress ˆ τ correspond to large-size inhomogeneities

(small ratio b x / a ), while for a fixed-size inhomogeneity, large val-

ues of ˆ τ correspond to large values of the applied remote stress τ .

Fig. 7 shows the variation of the normalized stress −σxy (a, 0) /k 1 
with the ratio a / b x under the applied shear stress τ = 0 . 01 k 1 . For

large values of a / b x the stress approaches the value correspond-

ing to a pileup against a flat bimetallic interface, considered in

Section 3 . In case � = 2 ( Fig. 7 a) the maximum magnitude of the

shear stress is | σxy (a, 0) | max = 0 . 316 k 1 (at a = 7 . 4 b x ). This maxi-

mum stress scales linearly with τ . 

Fig. 8 illustrates the effect of Poisson’s ratio on σ xy ( a , 0). Since

different values of ν1 lead to different values of k 1 , the stress nor-

malization is made with respect to the parameter k ∗ = μ1 b x /a . The

results for pileups with any other number of dislocations, or for

any other combinations of material parameters, can be obtained

and analyzed similarly. 

3. Edge dislocation pileup against a flat bimetallic interface 

Fig. 9 shows an edge dislocation pileup along the positive x axis

orthogonal to a perfectly bonded bimetallic interface (y = 0) . The
hear stress along the positive x -axis produced by an edge disloca-

ion at a distance x = x i from this interface can be obtained from

he results presented in Section 2 for a dislocation against a cir-

ular inhomogeneity shown in Fig. 1 a by performing the limiting

rocess a → ∞ . Toward that, we rewrite (1) as 

¯ disl 
xy (u, 0) = 

2 

u − u i 

+ (A + B ) 
ā + u i 

ā (u + u i ) + uu i 

+2 A 

ā 2 u i (u − u i )(2 ̄a + u i ) 

[ ̄a (u + u i ) + uu i ] 3 
− (A + B ) 

1 

ā + u 

+(A − B ) 
ā 2 

( ̄a + u ) 2 ( ̄a + u i ) 
+ 2 A 

ā 2 

( ̄a + u ) 3 
, (19)

here the lengths are normalized by b x , so that u is a normalized

istance along the slip plane y = 0 , measured from the boundary

f the inhomogeneity ( x = a ) in Fig. 1 a, i.e., 

 = 

x − a 

b x 
, u i = 

x i − a 

b x 
, ā = 

a 

b x 
, 

¯xy = 

σxy 

k 1 
, k 1 = 

G 1 

π(κ1 + 1) 
. (20)

he utilized material parameters A and B are defined by (3) , in

hich ( G , ν ) and ( G , ν ) stand for the elastic properties of ma-
1 1 2 2 
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Fig. 7. (a) The variation of the normalized stress −σxy (a, 0) /k 1 with the ratio a / b x in the case of N = 5 dislocations in the pileup under remote stress τ = 0 . 01 k 1 . Part (a) is 

for G 2 /G 1 = 2 and ν1 = ν2 = 1 / 3 , while part (b) is for rigid inhomogeneity and ν1 = 1 / 3 . 

Fig. 8. The variation of the normalized stress −σxy (a, 0) /k ∗ with G 2 / G 1 in the case of N = 5 dislocations in the pileup under remote stress τ = 0 . 01 k ∗, where k ∗ = μ1 b x /a . 

The Poisson ratios are taken as indicated in the legends of parts (a) and (b). 
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erials (1) and (2). By performing the limit ā → ∞ , (19) reduces to

¯ disl 
xy ( ̄x , 0) = 

2 

x̄ − x̄ i 
+ (A + B ) 

1 

x̄ + x̄ i 
+ 4 A 

x̄ i ( ̄x − x̄ i ) 

( ̄x + x̄ i ) 3 
, x̄ = 

x 

b x 
, 

(21) 

hich is the shear stress produced by an edge dislocation at a dis-

ance x i from the bimetallic interface shown in Fig. 9 . Expression

21) is equivalent to that of Dundurs (1969) , who cast it in terms

f the parameters 

= 

(κ1 + 1)� − (κ2 + 1) 

(κ1 + 1)� + (κ2 + 1) 
, β = 

(κ1 − 1)� − (κ2 − 1) 

(κ1 + 1)� + (κ2 + 1) 
. (22) 

he relationships among the two sets of parameters are 

 + B = 2 

α + β2 

1 − β2 
, A = 

α − β

1 + β
, B = 

α + β

1 − β
. (23)

n particular, Dundurs (1969) has shown that a dislocation is re-

elled by the interface if α − β2 > 0 or ( α − β2 < 0 , α + β2 > 0 ). 

The nonsingular portion of the shear stress (21) at the position

f the dislocation is 

¯ disl 
xy ( ̄x i , 0) = (A + B ) 

1 

2 ̄x i 
. (24)

he configurational force exerted by the interface on the disloca-

ion at x = x i is the image force from that dislocation, f 
image 
i,i 

=

disl 
xy (x i , 0) b x . In view of (24) , this is, in a dimensionless form, 

f̄ image 
i,i 

= (A + B ) 
1 

2 ̄x i 
, f̄ = 

f 

k 1 b x 
(25)

If a bimetallic material is subjected to a uniform remote stress
∞ 

xy = −τ, the shear stress σ xy along the x- axis (and everywhere in

he material) is equal to −τ . Thus, the configurational force exerted

n the dislocation by the externally applied remote stress is f 
appl 
i 

=
τb x , or, when normalized, 

f̄ appl 
i 

= −τ̄ , τ̄ = 

τ

k 1 
. (26) 

If there are two alike edge dislocations in the material (1), one

t a distance x = x i and the other at a distance x = x j from the

nterface, there is an additional contribution to the force on the

islocation at x = x i due to its interaction with the dislocation at

 = x j . This is f i, j = f ∞ 

i, j 
+ f 

image 
i, j 

, where, upon normalization, 

f̄ ∞ 

i, j = 

2 

x̄ i − x̄ j 
, f̄ image 

i, j 
= (A + B ) 

1 

x̄ i + x̄ j 
+ 4 A 

x̄ j ( ̄x i − x̄ j ) 

( ̄x i + x̄ j ) 3 
. (27)

If there are N dislocations in a pileup of edge dislocations

 Fig. 9 ), the total force on a dislocation at x i is specified by ex-

ression (10) , so that the equilibrium positions of dislocations are
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Fig. 9. A pileup of N edge dislocations against a bimetallic interface between the 

materials (1) and (2) under applied remote uniform shear stress τ . The configura- 

tional force exerted on the interface by the pileup is f 0 . In the equilibrium configu- 

ration the configurational force on each dislocation vanishes ( f i = 0 ). 
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obtained by solving a system of equations 

N ∑ 

j=1 

[
(A + B ) 

1 

x̄ i + x̄ j 
+ 4 A 

x̄ j ( ̄x i − x̄ j ) 

( ̄x i + x̄ j ) 3 

]

+ 

N ∑ 

j � = i 

2 

x̄ i − x̄ j 
= τ̄ , (i = 1 , 2 , 3 , . . . N) . (28)

If the shear stress is changed from, say, τ 0 to c τ 0 ( c > 0), from

(28) it follows that the corresponding equilibrium positions of dis-

locations change from x 0 
i 

to x 0 
i 
/c. The extent (length) of the pileup

changes from L 0 = x 0 
N 

− x 0 
1 

to L 0 / c . Also, by an analogous analysis to

that used in Section 2.3 , the configurational force on the interface

from the dislocation pileup is 

f 0 = −
N ∑ 

i =1 

f appl 
i 

= Nτb x . (29)

Fig. 10 a shows the equilibrium positions of N = 5 dislocations in a

pileup under remote stress τ = 0 . 1 k 1 against a bimetallic interface

corresponding to different values of � = G 2 /G 1 and the same val-

ues of the Poisson ratio ν1 = ν2 = 1 / 3 . The pileup is further away
Fig. 10. (a) The equilibrium positions of N = 5 edge dislocations in a pileup under shea

and the same value of the Poisson ratio ν1 = ν2 = 1 / 3 . (b) The corresponding extent of th
rom the interface for greater values of �, due to the correspond-

ngly stronger repulsion of the interface. Fig. 10 b shows the ex-

ent of the pileup, which increases with the increase of �. The

ashed-line is the (constant) extent of the pileup in a homoge-

eous medium with the pinned leading dislocation, obtained from

he Eshelby et al. (1951) solution, which is independent of �. 

Fig. 11 shows the evolution of the equilibrium pileup configu-

ations under the increasing remote shear stress τ (scaled by k 1 ).

ig. 11 a is for the pileup against a rigid interface, and Fig. 11 b for

he pileup against an interface with � = 2 and ν1 = ν2 = 1 / 3 . The

esults corresponding to other values of � and ( ν1 , ν2 ) can be ob-

ained similarly. 

.1. Stress concentration along the interface 

The pileup dislocations cause large tensile stresses at the in-

erface below the slip plane of positive edge dislocations, as well

s large shear stress at the intersection of the interface with the

lip plane of dislocations. Since these stresses may cause inter-

ace cracking, it is of interest to evaluate them. The normal and

hear stresses ( σ x , σ xy ) along the interface can be obtained by

uperposition of contributions from individual dislocations. From

he stress expressions listed by Lubarda (1997) and Asaro and

ubarda (2006) , we obtain 

¯x (0 , ȳ ) = −2 c 1 ȳ 

N ∑ 

i =1 

1 

x̄ 2 
i 

+ ȳ 2 

(
c 2 + 

3 ̄x 2 
i 

+ ȳ 2 

x̄ 2 
i 

+ ȳ 2 

)
, (30)

¯xy (0 , ȳ ) = −τ̄ + 2 c 1 

N ∑ 

i =1 

x̄ i 

x̄ 2 
i 

+ ȳ 2 

(
c 2 −

x̄ 2 
i 

− ȳ 2 

x̄ 2 
i 

+ ȳ 2 

)
, (31)

here x̄ i = x i /b x , ȳ = y/b x , and 

 1 = 

1 + α

1 + β
, c 2 = 

β

1 − β
. (32)

Expressions (30) and (31) are equivalent to expressions (11)–

13) of Öveço ̆glu et al. (1987) , expressed in dimensionless form by

sing the length parameter D = 2 k 1 b x /τ, though they were left in

 slightly less compact form than expressions (30) –(32) here. At

he intersection of the interface and the slip plane of dislocations,

he shear stress is 

¯xy (0 , 0) = −τ̄ − 2 c 1 (1 − c 2 ) 
N ∑ 

i =1 

1 

x̄ i 
, (33)

hich is the largest shear stress σ xy along the interface. In view of

he discussion following (28) , it also follows that σ xy (0, 0) depends

inearly on τ . We also note that both σ τ
x (0 , y ) and σ τ

xy (0 , y ) obey
r stress τ = 0 . 1 k 1 against a bimetallic interface with different values of � = G 2 /G 1 
e pileup. 
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Fig. 11. (a) The equilibrium positions of N = 5 edge dislocations vs. the applied shear stress τ̄ = τ/k 1 in a pileup against a rigid interface ( � = ∞ , ν1 = 1 / 3 ). (b) The same 

as in (a), for a bimetallic interface with � = 2 and ν1 = ν2 = 1 / 3 . 

Fig. 12. (a) Shear stress σ xy along the y axis for pileups of 5 and 10 dislocations in the case � = 2 and ν1 = ν2 = 1 / 3 . The applied stress is τ = 0 . 01 k 1 . (b) The corresponding 

variation of the normal stress σ xx . (c) & (d) Same as (a) & (b), in the case � = ∞ . 
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w  
he following property with respect to the change of the applied

tress from τ to c τ ( c > 0), 

cτ
x (0 , y/c) = cσ τ

x (0 , y ) , σ cτ
xy (0 , y/c) = cσ τ

xy (0 , y ) , (34)

hich follows by dimensional considerations. Thus, if σ τ
x has its

aximum along the interface at y = y ∗, σ cτ
x has its maximum at
 = y ∗/c, and (σ cτ
x ) max = c(σ τ

x ) max . Similar property holds for the

hear stress σ xy along the interface, except that in this case the

aximum always occurs at y = 0 . 

Figs. 12 a and b show the stresses along the interface in the

ase of N = 5 and 10 dislocations piled-up against the interface

ith � = 2 and ν1 = ν2 = 1 / 3 , under the remote stress τ = 0 . 01 k 1 .
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Fig. 13. (a) A dislocation pileup against a circular inhomogeneity along an eccentric slip plane at an angle ϕ relative to the horizontal centroidal axis. (b) A dislocation 

pileup against a plane bimetallic interface along a slip plane at an angle ϕ relative to the horizontal axis. (c) Several pileups on parallel slip planes against a plane bimetallic 

interface. (d) A stressed double pileup between two inhomogeneities under remote shear stress τ . 
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The stress concentration is decreased in the case of pileups against

a harder interface (larger �), because dislocation equilibrium po-

sitions are further away from such interface. This is illustrated

in Fig. 12 c and d. Poisson ratios may also considerably affect

the interface stresses, which has been examined by Kuan and

Hirth (1976) , and Öveço ̆glu et al. (1987) . The observed trend is that

the increase of ν1 increases the maximum interface stress, while

the increase of ν2 decreases the stress, both being associated with

the effect of ν1 / ν2 on the intensity of the repulsion exerted by the

interface on the dislocations and the proximity of the leading dis-

location to the interface. 

It is noted that a pileup can form even in the absence of shear

modulus disparity ( � = 1 ), due to the Poisson ratio disparity, pro-

vided that ν2 > ν1 . In this case, A = 0 and the system of equations

(28) reduces to 

N ∑ 

j=1 

B 

x̄ i + x̄ j 
+ 

N ∑ 

j � = i 

2 

x̄ i − x̄ j 
= τ̄ , (i = 1 , 2 , 3 , . . . N) , (35)

where 

B = 

2 α

1 − α
= 

ν2 − ν1 

1 − ν2 

, α = β = 

ν2 − ν1 

2 − (ν1 + ν2 ) 
. (36)

The system of Eqs. (35) has the solution provided that B > 0, i.e.,

ν > ν . For example, if only one dislocation is near the interface,
2 1 
he shear stress required to hold it in equilibrium at a distance x 1 
rom the interface is τ̄ = B/ (2 ̄x 1 ) , i.e., 

= 

G 1 

8 π

ν2 − ν1 

(1 − ν1 )(1 − ν2 ) 

b x 

x 1 
. (37)

or τ to be positive, B must be positive, i.e., ν2 > ν1 . 

. Conclusions 

The pileups of discrete edge dislocations against a circular in-

omogeneity within an infinite isotropic matrix, or against a flat

imetallic interface were considered. The equilibrium configura-

ions of pileups under remote shear loading were determined by

olving numerically the nonlinear algebraic equations representing

he equilibrium conditions of the vanishing Peach–Koehler force

or each of N dislocations in a pileup. The increase of the ap-

lied stress moves a pileup closer to the inhomogeneity and in-

reases the density of dislocations within a pileup. This is more

ronounced for smaller and softer inhomogeneities, due to their

eaker repulsion of dislocations. The configurational force exerted

n the inhomogeneity by a pileup is the sum of the local Peach–

oehler forces from the remote loading only, and is thus equal to

 τb x plus a term dependent on dislocation positions and material

roperties. The stiffer the inhomogeneity, the smaller the configu-
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ational force, for any given level of applied shear stress. The mag-

itude of the shear stress at the interface between the inhomo-

eneity and the matrix along the slip plane of dislocations is eval-

ated. This stress decreases with the increase of the ratio G 2 / G 1 > 1

etween the shear stiffness of the inhomogeneity and the sur-

ounding matrix material. The configurational force exerted on a

lane bimetallic interface by a pileup of N dislocations is equal to

 τb x , independently of dislocation positions and material proper-

ies. The shear and normal stress concentration is evaluated along

he interface. The maximum shear and normal stresses at the in-

erface change linearly with τ . If σ τ
x due to shear stress τ has its

aximum along the interface at y = y ∗, σ cτ
x has its maximum at

 = y ∗/c and (σ cτ
x ) max = c(σ τ

x ) max . Similar property holds for the

hear stress σ xy along the interface. The stress concentration at the

nterface depends strongly on both the shear moduli and the Pois-

on ratios of two materials. The general trend is that the increase

f the shear modulus and Poisson’s ratio disparities ( G 2 / G 1 and

2 / ν1 ) diminishes the interface stresses due to the stronger repul-

ion exerted by the interface on the piled-up dislocations, whose

quilibrium positions are in that case more distant from the inter-

ace. 

A worthwhile extension of the present work is the considera-

ion of the pileup configurations shown in Fig. 13 . Part (a) shows

 dislocation pileup against a circular inhomogeneity along an ec-

entric slip plane, while part (b) shows a dislocation pileup against

 bimetallic interface along a slip plane at an angle ϕ relative to

he horizontal axis. Fig. 13 c shows several pileups on parallel slip

lanes against a plane bimetallic interface. More difficult is the

nalysis of stressed double pileups between two inhomogeneities

 Fig. 13 d) because of the absence of an analytical solution for the

dge dislocation between two inhomogeneities, although large ra-

ius inhomogeneities which are far enough apart could possibly be

andled by a perturbation analysis, as pointed out to me by one of

he reviewers. These studies, as well as the incorporation of the ef-

ects of the boundary of a finite body in which the pileups reside,

an be done numerically by using the finite element method and

he methodology developed by Lubarda et al. (1993) in their study

f equilibrium dislocation distributions. 
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